Analysis IV
MATH-207(d)
Media
MATH-207(d) Analyse IV_1
Wave Equation via Fourier series - completion
23.05.2025, 17:00
Clip of MATH-207(d) Analysis IV | Thursday | Spring 25
23.05.2025, 16:53
MATH-207(d) Analysis IV | Thursday | Spring 25
20.02.2025, 17:39
MATH-207(d) Analyse IV
Wave Equation via Fourier series - completion
23.05.2025, 17:00
Clip of MATH-207(d) Analysis IV | Thursday | Spring 25
23.05.2025, 16:53
MATH-207(d) Analysis IV | Thursday | Spring 25
23.05.2025, 16:53
MATH-207(d) Analysis IV | Thursday | Spring 25
15.05.2025, 21:24
MATH-207(d) Analysis IV | Thursday | Spring 25
12.05.2025, 21:16
MATH-207(d) Analysis IV | Thursday | Spring 25
01.05.2025, 17:43
MATH-207(d) Analysis IV | Thursday | Spring 25
17.04.2025, 17:43
MATH-207(d) Analysis IV | Thursday | Spring 25
10.04.2025, 17:43
MATH-207(d) Analysis IV | Thursday | Spring 25
03.04.2025, 17:43
MATH-207(d) Analysis IV | Thursday | Spring 25
27.03.2025, 17:45
MATH-207(d) Analysis IV | Thursday | Spring 25
20.03.2025, 17:44
MATH-207(d) Analysis IV | Thursday | Spring 25
13.03.2025, 17:41
MATH-207(d) Analysis IV | Thursday | Spring 25
06.03.2025, 17:44
MATH-207(d) Analysis IV | Thursday | Spring 25
27.02.2025, 17:40
MATH-207(d) Analysis IV | Thursday | Spring 25
20.02.2025, 17:39
MATH-207(d) Analysis IV | Thursday | Spring 25
20.02.2025, 17:44
Lecture title: Analysis IV - MATH-207(d)
Instructor: Martin Licht
Email: martin.licht@epfl.ch
Lecture location: SG1 138
Lecture time: Thursday 15:00-17:00 at SG1
Mediaspace subscription link: Subscription link
Mediaspace channel link: Channel link
Main assistant: Ferhat Sindy
Email main assistant: ferhat.sindy@epfl.ch
Exercise location: SG1 138
Exercise time: Thursday 17:00-19:00 at SG1
Exam date and time: Wednesday 18.06.2025 from 09h15 to 12h15
Exam place: CM 1 1, CM 1 105, CM 1 106, CM 1 2, CM 1 3, CM 1 4
Textbook:
Homework and exercise sessions:
You are strongly encouraged to attend the exercise sessions and work through the assignments. Discussing the material with the assistants and your peers is essential in gaining a comprehensive understanding of the subject matter.
Final exam and final grade:
General remarks:
Slides for the lecture will be posted after the lecture on Moodle. There will be some delay to fix small mistakes and the like.
Each lecture is livestreamed and recorded. The link for the livestream is here:
- Annonces (Forum)
- Ed discussion forum (External tool)
- Analyse avancée pour Ingénieurs, 4ème édition par B. Dacorogna et C. Tanteri (URL)
- Tables of Fourier and Laplace transforms (provided with the exam) (File)
- Old exam (File)
- Seat maps (Folder)
- Seat assignments (File)
- Review sheet 1 (File)
- Review sheet 2 (File)
- Additional exercises (File)
- Second past exam (File)
Content : Review complex numbers. Complex functions
Content: complex differentiability, Cauchy-Riemann equations
Content: Complex logarithm, complex line integrals
Content : complex line integrals, Laurent series
Contenu : intégrales complexes et théorème des résidus
Contenu : Le théorème des résidus