Analysis IV (for SV, MT)

MATH-207(a)

Media

MATH-207(a) Analyse IV by prof Marco Picasso 2021

20.03.2024, 15:06

Cours donnés en 2021 par Prof Picasso


This file is part of the content downloaded from Analysis IV (for SV, MT).

General Information

Analyse IV (SV, MT)
Enseignant : Yoav Zemel
Assistant principal : Giuliano Guarino

Examen mercredi 18 juin 9h15-12h15.

Une page recto-verso de formulaire écrit par vos soins est autorisée.  Il n'y a aucune restriction concernant ce formulaire à part la longueur d'une page recto-verso.
Les tableaux de transformée de Fourier et Laplace seront fournies à l'examen.

Le cours aura lieu les lundis entre 15h15 et 17h à la salle CO 1 près de L'Esplanade.

Les séances d'exercices auront lieu toute de suite après, entre 17h15 et 19h, aux salles CE1100, CE1103, CM1104, CM1105, CM1221

Nous allons étudier les chapitres 9-12 et 16-18 du livre de Dacorogna et Tanteri.


Semaine 1

Lecture 1: recollection on complex numbers; complex functions, holomorphic functions and Cauchy Riemann equations, examples.
Chaper 9 of "Analyse avancée pour ingénieurs" Dacorogna-Tanteri contain all the material.


Semaine 2

Lecture 2: Recollection on integration of vector fields and Green's Theorem (chapter 3 and 4). Integration of a complex function along a curve, Cauchy's Theorem, Cauchy's integral formula (Chapter 10).



Semaine 3

Lecture 3: Corollaries of Cauchy Theorem, proof of Cauchy Integral formula (Chapter 10). Recollection on Taylor expansions. Taylor and Laurent expansions for complex functions: regular points, poles and essential singularities (Chapter 11).

Exercises: in addition to the Exercises in Exercise sheet 2, Look at Exercise 10.1,10.2,10.3,10.4,10.5 in the book


Semaine 4

Lecture 4: More Examples of Laurent expansion: poles, essential singularities and ray of convergence (Chapter 11). Computation of Residues, Theorem of Residues (Chapter 12) and examples.

Exercises: I suggest looking at Exercise 11.7,11.9,11.10,11.11,11.12 and 11.15.


Semaine 5

Lecture 5: Residue Theorem (Chapter 12).



Semaine 6

Lecture 6: With this Lecture we conclude the Complex Analysis part of the course. For the exam, the following competences are necessary: 1) Be able to determine weather a given function is holomorphic in a given domain and be able to compute the complex derivative (Chaper 9) 2) Understand how the integration along a curve of a complex function is defined; be able to compute complex integrals using either the definition (for simple one) or Cauchy Theorem (and its Corollaries) and Cauchy Integral Formula. (Chapter 10) 3) Be able to compute the Taylor/Laurent expansion of a complex function satisfying the hypothesis of Theorem 11.1 and to determine the order of pole at a point z_0 of a given complex function; be able to compute the Residue at a given point of a given complex function (Chapter 11). 4) Be able to apply the Theorem of Residues (in particular understand how to control that its hypothesis are verify) to compute complex or real integrals; for real integrals on the real line, be able to prove the convergence to 0 of the auxiliary complex integral along the upper semi-circle ( Chaper 12)


Semaine 7

Lecture 7: Reminder on Furier transform (Chapter 15). Definition and properties of the Laplace transform (Chapter 16) plus Examples. 





Semaine 8

Reminder of: Definition and properties of Laplace transform (Chapter 16); application to ordinary differential equations ( 1st order; the mass-spring-dumper example.) 

Inversion Formula for Laplace transform (Theorem 16.3); a detailed Example: Example 16.7.

Other Exercises and Examples to look at: Exercise 16.4 (sketch of solution in the notes); Exercise 16.7; Example 17.1.


Semaine 9

Lecture 9: Reminder of Laplace inverse transform formula; solving ODE using Laplace transform


Semaine 10

Lecture 10. Example of PDE (chapter 18); introduction to distributions: the Dirac mass example; definition in general; Examples.


Semaine 11

Lecture 11: More on distributions: Derivatives, Laplace transform and convolution. Differential equations for distributions. Fundamental solution of the wave equation. 


Semaine 12

Lecture 12: Distributions and fundamental solution for PDE. Fouries series, solution to heat equation on the interval using Fourier series. (Chapter 14+Chapter 18)


Semaine 13

Lecture 13: recap on how to solve Heat and Wave equation on an interval using Fourier series. Recollection of properties of the Fourier transform and application to solution of Heat and Wave equations over the all real line.

What you need to know on distributions: definition of test function and distribution 

(Gerrit, section 2.2. Warning: he defines distributions as linear forms from the set of test functions to complex numbers instead of real numbers; a part from this, it is the same definition we saw in class!)

Distributional derivative; what does it mean to solve a distributional partial differential equation  (Section 3.1; Examples 1 and 2 and 3 of Section 3.2. Also look at Exercises 3.2 and 3.3)

 Laplace transform of a distribution which is defined as the derivative of a PW continues function.


Semaine 14


Slides & other material


vidéos et notes de cours de 2021

https://mediaspace.epfl.ch/playlist/dedicated/29977/0_pawjmvte/0_je9iixnc




Last year's material


EXAM INFO