Applied biomedical signal processing
EE-512
Course : Applied Biomedical Signal Processing
Teachers: Dr. Mathieu Lemay (responsible), Dr. Philippe Renevey, Dr. João Jorge, Dr. Martin Proença, Dr. Adrian Luca, Dr. Guillaume Bonnier, Dr. Karen Adam, Dr. Ramin Soltani, Dr. Clémentine Aguet
Assistants: Cristina Sainz Martínez, Loïc Jeanningros, Yamane El-Zein
Course description
The goal of this course is twofold: (1) to introduce physiological basis, signal acquisition solutions (sensors) and state-of-the-art signal processing techniques, and (2) to propose concrete examples of applications for vital sign monitoring and diagnosis purposes.
The main signal processing topics presented will be:
- Basics on continuous and discrete time Fourier transform
- Linear filter deisgn
- Stochastic signals and filtering
- Power spectral density
- Autoregressive, Moving average and ARMA signal modeling
- Basic concpets of time frequency analysis
- Time frequency distributions
- Instantaneous frequency
- Adaptive filter frequency tracking
- Singular value decomposition
- Principal component analysis
- Linear/non-linear regression
- Classification and feature selection
- Perceptron, MLP & activation function
- Gradient descent and backpropagation
- CNN & RNN
As the course content may evolve over time, the agenda is on a short-term basis.
This course comprises weekly exercise or computer lab sessions. All courses and exercise sessions take place in room INF213, including lab sessions from 17h to 19h. The lab sessions will be computer lab ones, during which experimental biomedical signals will be investigated, with groups of two-to-three students allowed. Students should handle them 7 days after the session at the latest. The corrections will be handled back one week later.
N.B. The date, time and location of the final exam need to be confirmed. All printed/written documents will be allowed, laptops and phones prohibited.
Thursday (15h15-19h)
15h-19h: Lecture on Module 01 - Introduction. ROOM AAC137
Presentation of the course, general context and module structure. Presentation of biomedical signal processing examples and real data (short laboratory exercises on Python).
The course will not be recorded.
Thursday
15h15-17h: Lecture on Module 02 - Basics. ROOM AAC137
17h15-19h: Lab session (Module 02). ROOM AAC137
The course will not be recorded.
- Lab report - Module 02 - Basics (File)
- EE512 - Module 02 - Basics (File)
- Lab - Module 02 - Basics (File)
Thursday
15h15-17h: Lecture on Module 03 - Basics II. ROOM AAC137
17h15-19h: Lab session (Module 03). ROOM AAC137
- EE512 - Module 03 - Basics II (File)
- Lab - Module 03 - Basics II (File)
- Lab report - Module 03 - Basics II (File)
Thursday
15h-17h: Lecture on Time-Frequency Analysis (Module 04). ROOM AAC137
17h-19h: Lab session (Module 04). ROOM AAC137
- EE512 - Module 04 - Time-Frequency (File)
- Lab - Module 04 - Time-Frequency (File)
- Lab report - Module 04 - Time-Frequency (File)
Thursday
15h15-17h: Lecture on Linear Models I (Module 05). ROOM AAC137
17h15-19h: Lab session (Module 05). ROOM AAC137
- EE512 - Module 05 - Linear Models I (File)
- Lab - Module 05 - Linear Models I (File)
- Lab - Module 05 - Linear Models I Answers (File)
Thursday
15h15-17h: Lecture on Linear Models II (Module 06). ROOM AAC137
17h15-19h: Lab session (Module 06). ROOM AAC137
- EE512 - Module 06 - Linear Models II (File)
- Lab - Module 06 - Linear Models II (File)
- Lab - Module 06 - Linear Models II Answers (File)
Holidays
Thursday
15h-17h: Lecture on Instantaneous Frequency Estimation (Module 07). ROOM AAC137
17h-19h: Lab session (Module 07). ROOM AAC137
- Lab - Module 07 - Instantaneous Frequency Estimation (File)
- EE512 - Module 07 - Instantaneous Frequency Estimation (File)
- Videos (Folder)
- Lab - Module 07 - Instantaneous Frequency Estimation - Answers (File)
Thursday
15h-19h: Mock Exam - Optional (Module 08). ROOM AAC137
Thursday
15h-17h: Lecture on Singular Value Decomposition (Module 09) -
ROOM AAC137
- EE512 - Module 08 - Singular value decomposition (File)
- Lab - Module 08 - Singular value decomposition (File)
- Lab- code (File)
- Lab - Module 8 - Singular Value Decomposition Lab Answer (File)
Thursday
15h-17h: Lecture on Principal Component Analysis (Module 10) - ROOM AAC137
17h-19h: Lab session (Module 10) - ROOM AAC137
- EE512 - Module 10 Principal Component Analysis (File)
- Lab-Module10-PrincipalComponentAnalysis (File)
- Lab-Module10-PrincipalComponentsAnalysis-Solutions (File)
Thursday
15h-17h: Lecture on Regression and Classification (Module 11) - ROOM AAC137
17h-19h: Lab session (Module 11) - ROOM AAC137
- EE512 - Module 11 - Regression and Classification (File)
- Lab - Module 11 - Regression and Classification (File)
- Lab - Module 11 - Regression and Classification - Code (File)
- Lab - Module 11 - Regression and Classification - Answers (File)
Thursday
15h-17h: Introduction to neural networks (Module 12) - ROOM AAC137
17h-19h: Lab session (Module 12) - ROOM AAC137
- EE512-NN (File)
- Lab-Module12-NN-Description (File)
- Lab-Module12-NN (File)
- Lab-Module12-Answers (File)
Thursday
15h-17h: Neural network architectures (Module 13) - ROOM AAC137
17h-19h: Lab session (Module 13) - ROOM AAC137
- EE512-Module13-NN (File)
- Lab-Module13-NN-Description (File)
- Lab-Module13-NN (URL)
- Lab-Module13-Answers (File)