Foundations of Data Science

COM-406

Media

COM-406 Foundations of data science

26.2, Lecture 26.2 - Generalization Error

22.12.2021, 19:33

26.1, Lecture 26.1 - Generalization Error

22.12.2021, 12:46

25.1, Lecture 25.1 - Exploration Bias

17.12.2021, 10:32

25.2, Lecture 25.2 - Exploration Bias

17.12.2021, 10:19

24.2, Lecture 24.2 - Compression

16.12.2021, 18:07

24.1, Lecture 24.1 - Compression

16.12.2021, 17:28

23.2, Lecture 23.2 - Johnson-Lindenstrauss

10.12.2021, 13:29

23.1, Lecture 23.1 - PCA

10.12.2021, 13:19

22.3, Lecture 22.3 - Compression

08.12.2021, 16:58

22.2, Lecture 22.2 - Compression

08.12.2021, 16:50

22.1, Lecture 22.1 - Compression

08.12.2021, 16:46

21.3, Lecture 21.3 - Compression

03.12.2021, 15:00

21.2, Lecture 21.2 - Compression

03.12.2021, 14:33

21.1, Lecture 21.1 - Exponential Family

03.12.2021, 14:22

20.2, Lecture 20.2 - Exponential Family

01.12.2021, 12:21

20.1, Lecture 20.1 - Exponential Family

01.12.2021, 12:17

19.2, Lecture 19.2 - Exponential Family

27.11.2021, 22:09

19.1, Lecture 19.1 - Exponential Family

26.11.2021, 19:13

18.2, Lecture 18.2 - Detection & Estimation

24.11.2021, 22:57

18.1, Lecture 18.1 - Detection-Estimation

24.11.2021, 22:37

17.2, Lecture 17.2 - Detection & Estimation

21.11.2021, 18:08

17.1, Lecture 17.1 - Detection & Estimation

21.11.2021, 13:30

16.2, Lecture 16.2 - Detection & Estimation

13.11.2021, 20:01

16.1, Lecture 16.1 - Detection & Estimation

13.11.2021, 19:05

15, Lecture 15 - Property Testing

10.11.2021, 13:27

14.2, Lecture 14.2 - Distribution Estimation

08.11.2021, 10:24

14.1, Lecture 14.1 - Distribution Estimation

08.11.2021, 09:42

13.2, Lecture 13.2 - Distribution Estimation

03.11.2021, 18:56

13.1, Lecture 13.1 - Distribution Estimation

03.11.2021, 18:41

12.2, Lecture 12.2 - Distribution Estimation

30.10.2021, 12:05

12.1, Lecture 12.1 - Multi-arm Bandits

30.10.2021, 11:43

11.2, Lecture 11.2 - Multi-arm Bandits

27.10.2021, 14:47

11.1, Lecture 11.1 - Multi-arm Bandits

27.10.2021, 13:36

10.1, Lecture 10.1 - Multi-arm Bandits

25.10.2021, 13:18

10.2, Lecture 10.2 - Multi-arm Bandits

22.10.2021, 10:17

9.2, Lecture 9.2 - Multi-arm Bandits

21.10.2021, 14:16

9.1, Lecture 9.1 - Multi-arm Bandits

21.10.2021, 13:47

8.1, Lecture 8.1 - signal representations

12.10.2020, 12:23

8.2, Lecture 8.2 - Signal Representations

15.10.2021, 10:07

7.2, Lecture 7.2 - signal representations

09.10.2020, 11:19

7.1, Lecture 7.1 - Signal Representations

09.10.2020, 11:19

6.2, Lecture 6.2 - signal representations

05.10.2020, 11:49

6.1, Lecture 6.1 - signal representations

05.10.2020, 11:59

5.2, Lecture 5.2 - Signal Representations

07.10.2021, 09:48

5.1, Lecture 5.1 - Signal Representations

07.10.2021, 09:24

4.2, Lecture 4.2 - Linear Algebra Review

01.10.2021, 10:36

4.1, Lecture 4.1 - Information Measures

01.10.2021, 10:20

3.2, Lecture 3.2 information measures

25.09.2020, 10:46

3.1, Lecture 3.1 - information measures

25.09.2020, 10:56

2.2, Lecture 2.2 - Information Measures

24.09.2021, 21:26

2.1, Lecture 2.1 - Probability Review

24.09.2021, 21:11

1.2, Lecture 1.2 - Probability Review

22.09.2021, 12:54

1.1, Lecture 1.1 - Introduction

18.09.2020, 18:22

26, Lecture 26 - Review Session

18.12.2020, 11:06

25, Lecture 25 - generalization bound

14.12.2020, 10:52

24, Lecture 24 - exploration bias and generalization bound

11.12.2020, 12:12

23, Lecture 23 - compression

07.12.2020, 11:08

22, Lecture 22 - compression

04.12.2020, 10:46

21, Lecture 21 - compression

30.11.2020, 11:15

20, Lecture 20 - exponential family

27.11.2020, 12:19

19, Lecture 19 - exponential family

23.11.2020, 11:32

18, Lecture 18 - exponential family

20.11.2020, 12:10

17, Lecture 17 - Property Estimation and Exponential Family

16.11.2020, 12:43

16, Lecture 16 - property testing

13.11.2020, 12:31

15, Lecture 15 - distribution estimation

09.11.2020, 11:14

14, Lecture 14 - distribution estimation

06.11.2020, 12:14

13, Lecture 13 - multi-arm bandits, distribution estimation

02.11.2020, 11:07

12, Lecture 12 - multi-arm bandits

30.10.2020, 12:03

11, Lecture 11 - multi-arm bandits

26.10.2020, 11:41

10.1, Lecture 10.1 - detection

19.10.2020, 11:36

10.2, Lecture 10.2 - detection

19.10.2020, 11:36

9.1, Lecture 9.1 - estimation

16.10.2020, 10:46

9.2, Lecture 9.2 - estimation

16.10.2020, 10:45

8.2, Lecture 8.2 - estimation

12.10.2020, 12:20

5.1, Lecture 5.1 - signal representation

02.10.2020, 10:18

5.2, Lecture 5.2 - signal representation

02.10.2020, 10:18

4.2, Lecture 4.2 - signal representation

28.09.2020, 11:14

4.1, Lecture 4.1 - signal representation

28.09.2020, 10:08

2.2, Lecture 2.2 - information measures: part 2/2

18.09.2020, 18:37

2.1, Lecture 2.1 - information measures: part 1/2

18.09.2020, 18:30

1.2, Lecture 1.2 - Review of probability

18.09.2020, 18:24


Media

COM-406 Foundations of data science

26.2, Lecture 26.2 - Generalization Error

22.12.2021, 19:33

26.1, Lecture 26.1 - Generalization Error

22.12.2021, 12:46

25.1, Lecture 25.1 - Exploration Bias

17.12.2021, 10:32

25.2, Lecture 25.2 - Exploration Bias

17.12.2021, 10:19

24.2, Lecture 24.2 - Compression

16.12.2021, 18:07

24.1, Lecture 24.1 - Compression

16.12.2021, 17:28

23.2, Lecture 23.2 - Johnson-Lindenstrauss

10.12.2021, 13:29

23.1, Lecture 23.1 - PCA

10.12.2021, 13:19

22.3, Lecture 22.3 - Compression

08.12.2021, 16:58

22.2, Lecture 22.2 - Compression

08.12.2021, 16:50

22.1, Lecture 22.1 - Compression

08.12.2021, 16:46

21.3, Lecture 21.3 - Compression

03.12.2021, 15:00

21.2, Lecture 21.2 - Compression

03.12.2021, 14:33

21.1, Lecture 21.1 - Exponential Family

03.12.2021, 14:22

20.2, Lecture 20.2 - Exponential Family

01.12.2021, 12:21

20.1, Lecture 20.1 - Exponential Family

01.12.2021, 12:17

19.2, Lecture 19.2 - Exponential Family

27.11.2021, 22:09

19.1, Lecture 19.1 - Exponential Family

26.11.2021, 19:13

18.2, Lecture 18.2 - Detection & Estimation

24.11.2021, 22:57

18.1, Lecture 18.1 - Detection-Estimation

24.11.2021, 22:37

17.2, Lecture 17.2 - Detection & Estimation

21.11.2021, 18:08

17.1, Lecture 17.1 - Detection & Estimation

21.11.2021, 13:30

16.2, Lecture 16.2 - Detection & Estimation

13.11.2021, 20:01

16.1, Lecture 16.1 - Detection & Estimation

13.11.2021, 19:05

15, Lecture 15 - Property Testing

10.11.2021, 13:27

14.2, Lecture 14.2 - Distribution Estimation

08.11.2021, 10:24

14.1, Lecture 14.1 - Distribution Estimation

08.11.2021, 09:42

13.2, Lecture 13.2 - Distribution Estimation

03.11.2021, 18:56

13.1, Lecture 13.1 - Distribution Estimation

03.11.2021, 18:41

12.2, Lecture 12.2 - Distribution Estimation

30.10.2021, 12:05

12.1, Lecture 12.1 - Multi-arm Bandits

30.10.2021, 11:43

11.2, Lecture 11.2 - Multi-arm Bandits

27.10.2021, 14:47

11.1, Lecture 11.1 - Multi-arm Bandits

27.10.2021, 13:36

10.1, Lecture 10.1 - Multi-arm Bandits

25.10.2021, 13:18

10.2, Lecture 10.2 - Multi-arm Bandits

22.10.2021, 10:17

9.2, Lecture 9.2 - Multi-arm Bandits

21.10.2021, 14:16

9.1, Lecture 9.1 - Multi-arm Bandits

21.10.2021, 13:47

8.1, Lecture 8.1 - signal representations

12.10.2020, 12:23

8.2, Lecture 8.2 - Signal Representations

15.10.2021, 10:07

7.2, Lecture 7.2 - signal representations

09.10.2020, 11:19

7.1, Lecture 7.1 - Signal Representations

09.10.2020, 11:19

6.2, Lecture 6.2 - signal representations

05.10.2020, 11:49

6.1, Lecture 6.1 - signal representations

05.10.2020, 11:59

5.2, Lecture 5.2 - Signal Representations

07.10.2021, 09:48

5.1, Lecture 5.1 - Signal Representations

07.10.2021, 09:24

4.2, Lecture 4.2 - Linear Algebra Review

01.10.2021, 10:36

4.1, Lecture 4.1 - Information Measures

01.10.2021, 10:20

3.2, Lecture 3.2 information measures

25.09.2020, 10:46

3.1, Lecture 3.1 - information measures

25.09.2020, 10:56

2.2, Lecture 2.2 - Information Measures

24.09.2021, 21:26

2.1, Lecture 2.1 - Probability Review

24.09.2021, 21:11

1.2, Lecture 1.2 - Probability Review

22.09.2021, 12:54

1.1, Lecture 1.1 - Introduction

18.09.2020, 18:22

26, Lecture 26 - Review Session

18.12.2020, 11:06

25, Lecture 25 - generalization bound

14.12.2020, 10:52

24, Lecture 24 - exploration bias and generalization bound

11.12.2020, 12:12

23, Lecture 23 - compression

07.12.2020, 11:08

22, Lecture 22 - compression

04.12.2020, 10:46

21, Lecture 21 - compression

30.11.2020, 11:15

20, Lecture 20 - exponential family

27.11.2020, 12:19

19, Lecture 19 - exponential family

23.11.2020, 11:32

18, Lecture 18 - exponential family

20.11.2020, 12:10

17, Lecture 17 - Property Estimation and Exponential Family

16.11.2020, 12:43

16, Lecture 16 - property testing

13.11.2020, 12:31

15, Lecture 15 - distribution estimation

09.11.2020, 11:14

14, Lecture 14 - distribution estimation

06.11.2020, 12:14

13, Lecture 13 - multi-arm bandits, distribution estimation

02.11.2020, 11:07

12, Lecture 12 - multi-arm bandits

30.10.2020, 12:03

11, Lecture 11 - multi-arm bandits

26.10.2020, 11:41

10.1, Lecture 10.1 - detection

19.10.2020, 11:36

10.2, Lecture 10.2 - detection

19.10.2020, 11:36

9.1, Lecture 9.1 - estimation

16.10.2020, 10:46

9.2, Lecture 9.2 - estimation

16.10.2020, 10:45

8.2, Lecture 8.2 - estimation

12.10.2020, 12:20

5.1, Lecture 5.1 - signal representation

02.10.2020, 10:18

5.2, Lecture 5.2 - signal representation

02.10.2020, 10:18

4.2, Lecture 4.2 - signal representation

28.09.2020, 11:14

4.1, Lecture 4.1 - signal representation

28.09.2020, 10:08

2.2, Lecture 2.2 - information measures: part 2/2

18.09.2020, 18:37

2.1, Lecture 2.1 - information measures: part 1/2

18.09.2020, 18:30

1.2, Lecture 1.2 - Review of probability

18.09.2020, 18:24


This file is part of the content downloaded from Foundations of Data Science.

Summary

We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas and techniques that come from probability, information theory as well as signal processing.

Content

This class presents basic concepts of Information Theory and Signal Processing and their relevance to emerging problems in Data Science and Machine Learning.

A tentative list of topics covered is:

  1. Information Measures
  2. Multi-arm Bandits
  3. Detection and Estimation
  4. Distribution Estimation, Property Testing, and Property Estimation
  5. Exponential Families
  6. Signal Representations
  7. Compression and Dimensionality Reduction
  8. Information Measures and Generalization Error

Materials

Additional Material:

Schedule

Classes:

  • Tuesday       11:15-13:00    (CE 1 104)
  • Thursday    17:15-19:00  (INF 1)
Exercise:

  • Tuesday        13:15-15:00    (CE 1 104)

ED Discussion Forum

  • We will use the ED Discussion Forum for this class. Everyone is strongly encouraged to make the most of this!
    • Ask questions!
    • Answer questions!
  • The class staff will check the forum on Monday afternoon and on Thursday afternoon.


SWITCHtube Channel

We will not make new video recordings this year. You can access the videos from a couple of years ago. The content is largely the same, but the order of the topics is slightly different.

Grading

  • If you do not hand in your final exam your overall grade will be NA.
  • Otherwise, your grade will be determined based on the following weighted average: 10% for the Homework (specifically, 9% for the graded Homework sets and 1% for your activity on the ED forum), 30% for the Midterm Exam, 60% for the Final Exam.
  • The Midterm Exam will take place on Thursday, November 14, 2024, 17:15-19:00
  • The Final Exam will take place on at some point between January 13, 2025 and February 1, 2025.




September 9 - September 15

Sept 10: Introduction and Probability Review
Sept 12: Information Measures


September 16 - September 22

Sept 17: Information Measures
Sept 19: Information Measures


September 23 - September 29

Sept 24 : Information Measures
Sept 26 : Multi-Arm Bandits

September 30 - October 6

Oct 1 : Multi-Arm Bandits
Oct 3 : Multi-Arm Bandits

October 7 - October 13

Oct 8 : Multi-Arm Bandits
Oct 10 : Detection & Estimation

October 14 - October 20

Oct 15: Detection and Estimation
Oct 17: Parameter estimation, Fisher Information, Cramer-Rao Lower Bound


October 21 - October 27

Fall Break - no class, no exercise session


October 28 - November 3

Oct 29: Distribution Estimation
Oct 31: Distribution Estimation


November 4 - November 10

Nov 5: Distribution Estimation
Nov 7: Property Testing


November 11 - November 17

Nov 12 : Exponential Families
Nov 14 : Midterm Exam

November 18 - November 24

Nov 19: Exponential Families
Nov 21: Exponential Families


November 25 - December 1

Nov 26 Signal Representations: Linear Algebra Review++ (chapter 3)
Nov 28 Signal Representations: Fourier & Hilbert


December 2 - December 8

Dec 3: Signal Representations: Time-Frequency perspective
Dec 5: Compression: Dimensionality Reduction (PCA and Random Projections)


December 9 - December 15

December 10: Compression: Dimensionality Reduction (Random Projections), then classic data compression
December 12: Compression: Classic data compression


December 16 - December 22

December 17: Information-theoretic perspective on Generalizaton of Learning Algorithms
December 19: Overview of the class, followed by Outlook.