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The Agri-Food Sustainability Challenge

What Goes Wrong Today

Farmers plan independently based
on past prices

Leads to over- or underproduction

Causes supply-demand imbalance
and price volatility

Drives food waste and unmet
demand

Impact on Sustainability

Environmental: overuse of land,
water, chemicals

Economic: unstable income,
wasted logistics

Social: unmet demand, food
insecurity, unfair profit
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Classical Model for Sustainability1

Five Objectives

Maximize supply chain profit
(economic)

Minimize food waste
(environmental)

Minimize unmet demand (social)

Maximize freshness at sale (social
and environmental)

Minimize economic inequality
among farmers (social)

Approach

Centralized planning across farms
and markets

Multi-objective optimization with
tunable weights

Enables evidence-based
decision-making

1Esteso, Alemany, and and, “Sustainable agri-food supply chain planning through multi-objective optimisation”.
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Classical Model Diagram
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How Our Approach Supports the SDGs

Reduces unmet demand by aligning
supply with actual need.

Minimizes waste and avoids unneces-
sary overproduction.
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How Our Approach Supports the SDGs

Reduces profit inequality between
farmers by optimizing equity.

Less waste = fewer emissions;
better planning = lower transport and
resource use.
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Our Approach optimizes for Sustainability

Maximize economic availability - Affordability

Minimize impact on soil - Environmental Impact

Minimize waste - Sustainability

Provide high food quality - Nutrition Scores

Provide enough variety - Food Group Constraints

Assure farmers are employed - Social Benefit
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Quantum Meets Sustainability

Problem

Global food systems must
optimize nutrition, cost, and
sustainability

Traditional methods struggle with
multi-objective complexity

optimization that does not take
into account the full picture is key
to future food security

Vision

Combine MILP* + quantum
techniques for hybrid optimization

Use Benders’ Decomposition to
break up the problem

Apply quantum-inspired and
quantum-native solvers

*Mixed Integer Linear Programming
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Decision Variables & Parameters

Decision Variables

Af ,c : Area (ha) planted, cultivated, and harvested with food c on farm f .

Yf ,c : Binary indicator for planting decisions:

Yf ,c =

{
1 if food c is planted at farm f ,

0 otherwise.
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Multi-objective Food Allocation Model

Objective Function

Mixed continuous + binary → MILP

Z =
∑
i ̸=env

wi

∑
f ∈F

∑
c∈C

s
(i)
c Af ,c − wenv

∑
f ∈F

∑
c∈C

s
(env)
c Af ,c . (1)

Optimization Goals

Maximize: Nutrition, affordability, sustainability

Minimize: Environmental impact

Subject to Constraints:

Land availability and usage

Food group diversity requirements
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Classical Decomposition: Benders

Strategy

MILP → Master (QUBO)
+ Subproblem (LP)

Iterative cuts improve
QUBO over time
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Hands-on Example: Benders Decomposition

Setup

5 crops: c1, c2, c3, c4, c5

Land L = 10; Min area Amin
c = 2

Nutritional vector:
N = [3, 5, 2, 4, 1]

Environmental vector:
E = [4, 3, 6, 2, 5]

Objective:

Z =

∑
c NcAc −

∑
c EcAc∑

c Ac

Step-by-Step

Master solution: Y = [1, 0, 1, 0, 0]

Active crops: c1, c3

Subproblem:

A1 + A3 ≤ 10, A1,A3 ≥ 2

New objective:

Z =
−A1 − 4A3

A1 + A3

Smaller problem → faster solve

Edoardo Spigarolo, Douaa Salah, Constantin Wehrbach May 21, 2025 11 / 32



From MILP to QUBO

How to get there?

Benders splits our MILP into:

Binary master problem
Continuous subproblem

The master problem becomes a
QUBO.

Why QUBO?

Standard input for quantum
solvers

Allows interactions and penalties

“Benders gives structure, QUBO
gives gateway to quantum”
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What is a QUBO?

QUBO Definition

QUBO = Quadratic
Unconstrained Binary
Optimization

Form: minx∈{0,1}n x
TQx

x : binary vector, Q: symmetric
matrix

Example

Q =

[
1 0
0 4

]
x = [1, 0] ⇒ xTQx = 1
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How Does QUBO Work?

Interpretation

Diagonal terms: cost or reward for
choosing xi

Off-diagonal terms: interaction
between xi and xj

Qij > 0: penalizes both xi , xj = 1

Qij < 0: rewards both xi , xj = 1

Qij = 0: no effect

Model synergy or conflict and
constraints

Note on Constraints

QUBO is unconstrained by nature

Constraints are added as penalty
terms

We’ll see how in detail later
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Conversion to QUBO

Binary Conversion

The initial binary decision variables make up the vector y ∈ Y with length of n. In
order to reformulate the master problem into the QUBO formulation, we need to
represent the continuous variables x using binary bits.

x =

m̄+∑
i=−m

2iw(i+m)︸ ︷︷ ︸
Positive Integer+Decimal

−
m̄−∑
j=0

2jwj+1+m+m̄+︸ ︷︷ ︸
Negative Integer

= x (w) .2
(2)

2Zhao, Fan, and Han, Hybrid Quantum Benders’ Decomposition For Mixed-integer Linear Programming.
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Conversion to QUBO

Penalties

Next, we get the optimal solution by finding the best penalty coefficients of the
constraints. Here x1, x2 and x3 are binary variables. P is a user-defined penalty
coefficient. 3

Zhao, Fan, and Han, Hybrid Quantum Benders’ Decomposition For Mixed-integer Linear Programming.

Constraint Equivalent Penalty
x1 + x2 = 1 P(x1 + x2 − 1)2

x1 + x2 ≥ 1 P(1− x1 − x2 + x1x2)
2

x1 + x2 ≤ 1 P(x1x2)
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Objective Conversion

QUBO Objective

min
x∈{0,1}n

C (x) = max
x∈{0,1}n

−C (x) = max
x∈{0,1}n

n∑
i ,j=1

(−Qij)xixj . (3)

MaxCut Formalism

xi → node

Q → edge weights wi ,j

C (x) =
V∑

i ,j=1

wijxi (1− xj), Figure: Left: A problem graph with 6 vertices and 11
equal-weight edges, next to its MaxCut solution.
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Quantum Approximate Optimization Algorithm

Hamiltonians
The mapping of the graph to the hamiltonians follows from

xi →
1

2
(1− Zi ). (4)

And leads to

ĤC =
1

2

∑
(i ,j)∈

wij(I − ZiZj), (5a)

ĤM =
∑
j∈V

Xj , (5b)
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Quantum Solver: QAOA2 with Graph Partitioning

Scaling Issue

Standard QAOAs require n qubits to solve a MaxCut problem with n vertices.

Divide:
1 Partition the given graph using a metis partition from NetworkX

2 QAOAs are exploited to seek optimal solutions {xi}hi=1 of these subgraphs in parallel.

Conquer :
1 The obtained solutions of all subgraphs are merged to obtain the global solution z of

G.
2 Taking into account the connections among h subgraphs, the global solution yields

ẑ = argmax
z∈Z

C (z).4 (6)

4Zhou et al., QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum machines.
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Graph Partitions

Simple Problem Full Problem
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Problem Setting
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Real World Data Courtesy of 5

Food Name Food Group Nut. Val. Nut. Den. Sust. Env. Imp. Afford.
Mango Fruits 0.4468 0.2458 0.0757 0.0044 0.0261
Papaya Fruits 0.4754 0.2748 0.1778 0.0172 0.0398
Orange Fruits 0.4707 0.2537 0.1280 0.0083 0.0254
Banana Fruits 0.4195 0.1963 0.1140 0.0088 0.0801
Guava Fruits 0.5156 0.3102 0.1791 0.0120 0.0570
Watermelon Fruits 0.3111 0.0706 0.0833 0.0089 0.0152
Apple Fruits 0.3710 0.0884 0.0776 0.0045 0.0133
Avocado Fruits 0.4674 0.2455 0.0511 0.0026 0.0357
Durian Fruits 0.4516 0.2483 0.0275 0.0016 0.0203
Corn Starchy staples 0.3908 0.1535 0.1214 0.0113 0.4179
Potato Starchy staples 0.4782 0.3053 0.1246 0.0113 0.0934
Tofu Pulses, nuts, and seeds 0.5211 0.3471 0.1052 0.0188 0.1026
Tempeh Pulses, nuts, and seeds 0.5391 0.3946 0.1115 0.0201 0.2248
Peanuts Pulses, nuts, and seeds 0.4650 0.4268 0.0546 0.0031 0.2678
Chickpeas Pulses, nuts, and seeds 0.5153 0.3286 0.1404 0.0125 0.3980
Pumpkin Vegetables 0.5889 0.4766 0.0579 0.0030 0.0338
Spinach Vegetables 0.9032 0.9346 0.0859 0.0043 0.0362
Tomatoes Vegetables 0.5816 0.4394 0.1039 0.0061 0.0387
Long bean Vegetables 0.5616 0.4127 0.0821 0.0047 0.3634
Cabbage Vegetables 0.6376 0.5007 0.0791 0.0043 0.0341
Eggplant Vegetables 0.3967 0.1731 0.0597 0.0035 0.0217
Cucumber Vegetables 0.4306 0.2272 0.1058 0.0084 0.0188
Egg Animal-source foods 0.5837 0.4851 0.0343 0.0017 0.0217
Beef Animal-source foods 0.5968 0.5424 0.0038 0.4468 0.0241
Lamb Animal-source foods 0.5941 0.5332 0.0088 0.0005 0.0242
Pork Animal-source foods 0.5840 0.5233 0.0165 0.0008 0.3743
Chicken Animal-source foods 0.5533 0.4336 0.0249 0.0013 0.0572

5Global Alliance for Improved Nutrition, Global Alliance for Improved Nutrition (GAIN).
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Example Solution I
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Example Solution II
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Example Solution III
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Example Solution IV
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Objective Convergence I

Simple Problem Full Problem
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Objective Convergence II

Simple Problem

Method Mean Std. Dev. Range Success Rate
PuLP 58.8273 2.1482 [55.6949, 61.5749] 100.0%
Benders 67.4878 0.0412 [67.2471, 67.5000] 50.0%
Quantum-Enhanced 55.1460 8.6992 [17.1000, 67.6000] 80.0%
Quantum-Enhanced-Merge 59.2825 6.0666 [42.1000, 67.3500] 90.0%

Method Runtime (s) Memory Peak (MB)
Mean Std. Dev. Mean Std. Dev.

PuLP 0.14 0.03 0.17 0.24
Benders 4.73 1.23 0.87 1.02
Quantum-Enhanced 14.95 3.37 134.42 73.79
Quantum-Enhanced-Merge 14.39 3.85 130.55 85.45

Full Problem

Method Mean Std. Dev. Range Success Rate
PuLP 105.0812 15.0674 [86.6516, 127.3313] 100.0%
Benders 109.2669 18.0189 [89.0097, 139.4527] 55.0%
Quantum-Enhanced 98.8809 14.6066 [66.2366, 123.0124] 30.0%
Quantum-Enhanced-Merge 100.8892 8.8148 [89.6082, 123.3505] 70.0%

Method Runtime (s) Memory Peak (MB)
Mean Std. Dev. Mean Std. Dev.

PuLP 0.21 0.05 4.56 3.38
Benders 5.11 1.95 8.87 1.99
Quantum-Enhanced 21.30 3.07 233.56 21.25
Quantum-Enhanced-Merge 21.86 3.20 232.62 22.13
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Runtime

Simple Problem Full Problem
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Conclusion and Outlook

Takeaways

Quantum-enhanced optimization
is feasible

Hybrid classical–quantum models
are effective

Benders offers a quantum-ready
interface

What’s Next?

Implementation on Annealer and
QPU

Integration of Market Demand
and Labor
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