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The Agri-Food Sustainability Challenge

What Goes Wrong Today Impact on Sustainability
m Farmers plan independently based m Environmental: overuse of land,
on past prices water, chemicals
m Leads to over- or underproduction m Economic: unstable income,

m Causes supply-demand imbalance wasted logistics

and price volatility m Social: unmet demand, food

= Drives food waste and unmet insecurity, unfair profit

demand
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Classical Model for Sustainability’

Five Objectives Approach
m Maximize supply chain profit m Centralized planning across farms
(economic) and markets
m Minimize food waste m Multi-objective optimization with
(environmental) tunable weights
m Minimize unmet demand (social) m Enables evidence-based
m Maximize freshness at sale (social decision-making

and environmental)

m Minimize economic inequality
among farmers (social)

Esteso, Alemany, and and, “Sustainable agri-food supply chain planning through multi-objective optimisation” .
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How Our Approach Supports the SDGs
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Reduces unmet demand by aligning Minimizes waste and avoids unneces-
supply with actual need. sary overproduction.
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How Our Approach Supports the SDGs

1 REDUCED
INEQUALITIES

A

1 CLIMATE
ACTION

(=)

v

<

Reduces profit inequality between Less waste = fewer emissions;
farmers by optimizing equity. better planning = lower transport and
resource use.
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Our Approach optimizes for Sustainability

Maximize economic availability - Affordability
Minimize impact on soil - Environmental Impact

Minimize waste - Sustainability

|

|

[

m Provide high food quality - Nutrition Scores

m Provide enough variety - Food Group Constraints
|

Assure farmers are employed - Social Benefit
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Quantum Meets Sustainability

Problem Vision
m Global food systems must m Combine MILP* + quantum
optimize nutrition, cost, and techniques for hybrid optimization
sustainability m Use Benders' Decomposition to
m Traditional methods struggle with break up the problem
multi-objective complexity m Apply quantum-inspired and
m optimization that does not take quantum-native solvers

into account the full picture is key
to future food security

*Mixed Integer Linear Programming
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Decision Variables & Parameters

Decision Variables

m Arc: Area (ha) planted, cultivated, and harvested with food ¢ on farm f.
® Y¢ .. Binary indicator for planting decisions:

{1 if food c is planted at farm f,
Yf,c =

0 otherwise.
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Multi-objective Food Allocation Model

Objective Function

Mixed continuous + binary — MILP

Z = Z Wizzsy) Af,c - Wenvzzsz(:erw) Af,c- (1)

i#env feF ceC feF ceC

Optimization Goals

m Maximize: Nutrition, affordability, sustainability
® Minimize: Environmental impact

Subject to Constraints:
m Land availability and usage
m Food group diversity requirements
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Classical Decomposition: Benders

NP-hard
Integer Variables

Strategy Master Problem

m MILP — Master (QUBO)
+ Subproblem (LP)

m lterative cuts improve

Integer Solution

quantum computing

A g0
. Benders Decomposition
QUBO over time P Y
10000
-fo =
- -
4 CPU
Optimality & Feasibility Cuts - -
LA RAA)
Subproblem

Continuous Variables
Polynomial Complexity
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Hands-on Example: Benders Decomposition

Setup Step-by-Step

m 5 crops: ¢, ¢, C3, C4, Cs m Master solution: Y =[1,0,1,0,0]
m Land L = 10; Min area Acmi” =2 m Active crops: ci1, ¢3
m Nutritional vector: m Subproblem:

N =1[3,5,2,4,1]
m Environmental vector: ALt As <10, Ay As 22

E=1[43,6,25] m New objective:
m Objective:

_ —A1—4A3
— 2oc NeAc =3 ¢ EcA A+ A;
Zc AC

m Smaller problem — faster solve
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From MILP to QUBO

How to get there? Why QUBO?
m Benders splits our MILP into: m Standard input for quantum
m Binary master problem solvers

m Continuous subproblem . . .
P m Allows interactions and penalties

m The master problem becomes a

QUBO m “Benders gives structure, QUBO

gives gateway to quantum”
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What is a QUBQO?

QUBO Definition Example
® QUBO = Quadratic |10
. . B Q=
Unconstrained Binary 0 4
Optimization mx=[1,00=xTQx=1

m Form: minxe{oﬁl}nxTQx
m x: binary vector, Q: symmetric
matrix
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How Does QUBO Work?

Interpretation Note on Constraints
m Diagonal terms: cost or reward for m QUBO is unconstrained by nature
choosing x; m Constraints are added as penalty
m Off-diagonal terms: interaction terms
between x; and x; m We'll see how in detail later

m Q; > 0: penalizes both x;,x; =1
m Q; < 0: rewards both x;,x; =1

m @ = 0: no effect
]

Model synergy or conflict and
constraints
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Conversion to QUBO

The initial binary decision variables make up the vector y € Y with length of n. In
order to reformulate the master problem into the QUBO formulation, we need to
represent the continuous variables x using binary bits.

my m_
_ i ). _ 2
x= > 2Wim — ) YWiiimim, = x(w). )
m J
Positive Integer+Decimal Negative Integer

ZZhao, Fan, and Han, Hybrid Quantum Benders’ Decomposition For Mixed-integer Linear Programming.
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Conversion to QUBO

Next, we get the optimal solution by finding the best penalty coefficients of the
constraints. Here x1, xo and x3 are binary variables. P is a user-defined penalty
coefficient. 3

Zhao, Fan, and Han, Hybrid Quantum Benders' Decomposition For Mixed-integer Linear Programming.

Constraint | Equivalent Penalty
x1+x =1 P(X1+X2—1)2
x1+x>1 P(l—Xl—X2+X1X2)2
x1+x <1 | P(x1x)
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Objective Conversion

QUBO Objective

i €)= max —Clx)= max JZ (—Qy)xix;.

ij=1
MaxCut Formalism
m x; — node ~—,
m Q — edge weights w; ; .. ¢ v -
\%
C(x) = Z wiixi(1 — x), Figure: Left: A problem graph with 6 vertices and 11
i,j=1 equal-weight edges, next to its MaxCut solution.
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Quantum Approximate Optimization Algorithm

Hamiltonians
The mapping of the graph to the hamiltonians follows from

1
Xj — 5(1 — Z,‘). (4)
And leads to
A 1
Ae =5 Z wi(l — Z,Z), (5a)
(iJ)e
Ay = ij, (5b)
jev
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Quantum Solver: QAOA? with Graph Partitioning

Scaling Issue
Standard QAQOAs require n qubits to solve a MaxCut problem with n vertices.

m Divide:
Partition the given graph using a metis partition from NetworkX
QAOAs are exploited to seek optimal solutions {x,-}f’:1 of these subgraphs in parallel.

m Conquer:
The obtained solutions of all subgraphs are merged to obtain the global solution z of
G.
Taking into account the connections among h subgraphs, the global solution yields
5 _ 4
2 = argmax C(2). (6)

4Zhou et al., QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum machines.
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Graph Partitions

Simple Problem Full Problem

5 . . Subgraph 2: 25 qubits
QAOA? Partitioning - 1 Subgraphs @ Subgraph 1: 18 qubits \QAOA? Partitioning - 4 Subgraphs. .
® subgraph 4: 15 qubits
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Problem Setting

(a) Land Availability per Farm (b) Food Attributes
Farm L (ha) Food Nut. Val Nut. Den Env. Imp
Farml 50 Wheat 0.7 0.6 0.3
Farm2 75 Corn 0.6 0.5 0.4
Farm3 100 Rice 0.8 0.7 0.6
Soybeans 0.9 0.8 0.2
Potatoes 0.5 04 0.3
Apples 0.7 0.6 0.2
(c) Food Group Classification (d) Optimization Parameters
Food Group Constituent Foods Category Parameter Value
Grains ‘Wheat, Corn, Rice Nutritional Value 0.25
Legumes Soybeans Weights  Nutrient Density 0.25
Vegetables  Potatoes Environmental Impact 0.50
Fruits Apples

Table 1. Overview of farms, foods, groups, and parameter settings, Simplified Problem

Edoardo Spigarolo, Douaa Salah, Constanti May 21, 2025 22 /32



Real WOI"CI Data Courtesyof5

Food Name Food Group Nut. Val.  Nut. Den. Sust. Env. Imp.  Afford.
Mango Fruits 0.4468 0.2458  0.0757 0.0044  0.0261
Papaya Fruits 0.4754 0.2748  0.1778 0.0172  0.0398
Orange Fruits 0.4707 0.2537  0.1280 0.0083  0.0254
Banana Fruits 0.4195 0.1963  0.1140 0.0088  0.0801
Guava Fruits 0.5156 0.3102 0.1791 0.0120  0.0570
Watermelon  Fruits 0.3111 0.0706  0.0833 0.0089  0.0152
Apple Fruits 0.3710 0.0884  0.0776 0.0045  0.0133
Avocado Fruits 0.4674 0.2455  0.0511 0.0026  0.0357
Durian Fruits 0.4516 0.2483  0.0275 0.0016  0.0203
Corn Starchy staples 0.3908 0.1535  0.1214 0.0113  0.4179
Potato Starchy staples 0.4782 0.3053  0.1246 0.0113  0.0934
Tofu Pulses, nuts, and seeds 0.5211 0.3471  0.1052 0.0188  0.1026
Tempeh Pulses, nuts, and seeds 0.5391 0.3946 0.1115 0.0201  0.2248
Peanuts Pulses, nuts, and seeds 0.4650 0.4268  0.0546 0.0031  0.2678
Chickpeas Pulses, nuts, and seeds 0.5153 0.3286  0.1404 0.0125  0.3980
Pumpkin Vegetables 0.5889 0.4766  0.0579 0.0030  0.0338
Spinach Vegetables 0.9032 0.9346  0.0859 0.0043  0.0362
Tomatoes Vegetables 0.5816 0.4394  0.1039 0.0061  0.0387
Long bean Vegetables 0.5616 0.4127  0.0821 0.0047  0.3634
Cabbage Vegetables 0.6376 0.5007  0.0791 0.0043  0.0341
Eggplant Vegetables 0.3967 0.1731  0.0597 0.0035  0.0217
Cucumber Vegetables 0.4306 0.2272  0.1058 0.0084  0.0188
Egg Animal-source foods 0.5837 0.4851  0.0343 0.0017  0.0217
Beef Animal-source foods 0.5968 0.5424  0.0038 0.4468  0.0241
Lamb Animal-source foods 0.5941 0.5332  0.0088 0.0005  0.0242
Pork Animal-source foods 0.5840 0.5233  0.0165 0.0008  0.3743
Chicken Animal-source foods 0.5533 0.4336  0.0249 0.0013  0.0572

5Global Alliance for Improved Nutrition, Global Alliance for Improved Nutrition (GAIN).
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Example Solution |

Optimization Results (Objective: 63.97, Status: optimal)

Area Distribution by Farm Crop Distribution by Area
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Example Solution Il

Environmental Impact 27.30|

Nutrient Density

Nutrtonal Value
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Example Solution IlI

Optimization Results (Objective: 101.48, Status: optimal)

Area Distribution by Farm Crop Distribution by Area
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Example Solution IV
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Objective Convergence |

Simple Problem Full Problem
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Objective Convergence II

Simple Problem Full Problem
Method Mean  Std. Dev. Range Success Rate Method Mean  Std. Dev. Range Success Rate
PuLP 56073 146> [55.6049. 01 5749] 100.0% PuLP 1050612 150674 [B6.6516, 127.3313] 100.0%
Benders 67.4878 00412  [67.2471, 67.5000] 50.0% Benders 109.2669 180189  [89.0097, 139.4527]  55.0%
Quantum-Enhanced 551660 8602  [17.1000, 676000 80.0% Quantum-Enhanced 98.8800  14.6066  [66.2366, 123.0124] 30.0%
Quantum-Enhanced-Merge 100.8802  8.8148  [89.6082, 123.3505] 70.0%

Quantum-Enhanced-Merge 59.2825  6.0666 [42.1000, 67.3500] 90.0%

Method Runtime (s) Memory Peak (MB) Method Runtime (s) Memory Peak (MB)
Mean Std. Dev. Mean  Std. Dev.
Mean Std. Dev. Mean  Std. Dev.
PuLP 0.21 0.05 4.56 3.38
PuLP 0.14 0.03 0.17 0.24 Benders 511 1.5 8.87 1.99
Benders 4.73 1.23 0.87 1.02 ' ’ : ;
Quant Enh d 14.05 337 134.42 73.79 Quantum-Enhanced 21.30 3.07 233.56 21.25
uantum-Ennance : : : : Quantum-Enhanced-Merge  21.86 320 23262 2213

Quantum-Enhanced-Merge  14.39 3.85 130.55 85.45
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Runtime

Simple Problem Full Problem

Objective Value vs Runtime by Method
Objective Value vs Runtime by Method jective Yalue vs Runfime by Metho
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Conclusion and QOutlook

Takeaways What's Next?
m Quantum-enhanced optimization m Implementation on Annealer and
is feasible QPU
m Hybrid classical-quantum models m Integration of Market Demand
are effective and Labor

m Benders offers a quantum-ready
interface

Edoardo Spigarolo, Douaa Salah, Consta May 21, 2025 31/32



Question Timel!

May 21, 2025



Bibliography

References

Esteso, Ana, M.M.E. Alemany, and Angel Ortiz and. “Sustainable agri-food supply chain planning through multi-objective optimisation”.

Global Alliance for Improved Nutrition. Global Alliance for Improved Nutrition (GAIN).
Zhao, Zhongqi, Lei Fan, and Zhu Han. Hybrid Quantum Benders' Decomposition For Mixed-integer Linear Programming.

Zhou, Zeqiao et al. QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum machines.

doardo Spigarolo, Douaa Salah, Constan May 21, 2025 32/32


https://doi.org/10.1080/12460125.2023.2180138
https://doi.org/10.1080/12460125.2023.2180138
https://doi.org/10.1080/12460125.2023.2180138
https://www.gainhealth.org/
https://arxiv.org/abs/2112.07109
https://arxiv.org/abs/2112.07109
https://arxiv.org/abs/2112.07109
https://arxiv.org/abs/2205.11762
https://arxiv.org/abs/2205.11762

	Bibliography
	References

