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SUTAINABLE DEVELOPMENT GOALS
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Figure 3: Progress needed
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OPEN QUANTUM INSTITUTE PROJECTS

Smart Grid Management

Quantum optimisation solution to improve the
management of large energy grids and efficiently
distribute energy.

Combinatorial optimisation (quantum-inspired)

« Smart grid management is a cornerstone of modern
infrastructure, supporting the development of resilient
infrastructure by enhancing the grid’s ability to adapt to
real-time supply, demand fluctuations and integrate
various energy sources.»

Layout of Turbines in a Wind Farm

Quantum optimization solution to efficiently layout
turbines in a wind farm and maximise the power
produced.

Combinatorial optimisation (Quantume-inspired)

«Quantum computers may offer a way to find
high-quality windfarm. configurations faster
or more accurately than classical approaches.»
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FACILITY LOCATION-ALLOCATION PROBLEMS

Quantum computing for energy systems optimization: Challenges

and opportunities
Akshay Ajagekar, Fengqi You"

Cornell University, Ithaca, New York 14853, USA
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FACILITY LOCATION-ALLOCATION PROBLEMS
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Figure 4: Flow between facilities and their locations




FACILITY LOCATION-ALLOCATION PROBLEMS
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Figure 5: Flow between facilities and their locations map as a
QUBO problem




FACILITY LOCATION-ALLOCATION PROBLEMS
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Figure 5: Flow between facilities and their locations map as a
QUBO problem
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FACILITY LOCATION-ALLOCATION PROBLEMS

number of units of energy to be transported from
plant p to plantyg quantum description

C =YY T,

g=1 p=1 j=1 i=1

2 2
cAY[ 13, +Az[1_zxp1]
i p p I

From Classical discretization...

(2)

Z":xpi =1, Vp=12..n

i=1
cost of transporting one unit of energy from location i to location j

e
(L
- 4
w
r 4
w
<
g
w
-
o
Q
<
g
w
-
m
g
Q
[ 4
o
T
™
g

“Only problems which can be mapped onto an Ising model or a quadratic
unconstrained binary optimization (QUBO) formulation as in Eq. (2) can be solved on a
D-Wave system.”
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QUANTUM ANNEALING

Adiabatic Theorem:

«A physical system remains in its instantaneous eigenstate
if a given perturbation is acting on it slowly enough and if there is a gap between
the eigenvalue and the rest of the Hamiltonian's spectrum.»

A B
H(s) = -—(S) Z 57 +—— (S) Z 68+ ) J,,626°
a,b
R,—J ~ J
initial state final state

Theoritically:
-Hamiltonian of a Anneling problem going from a easy initial state to the desired state
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https://en.wikipedia.org/wiki/Eigenstate
https://en.wikipedia.org/wiki/Perturbation_theory_(quantum_mechanics)
https://en.wikipedia.org/wiki/Eigenvalue
https://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)
https://en.wikipedia.org/wiki/Spectrum_of_an_operator

RESULTS

Gurobi solver Quantum solver

(single CPU core) (D-wave 2000Q)
No. facilities Best known time(s)  obj.fun. time(s) obj. fun. ®
solution ™
1]
Z
3 24 1.33 24 0.024 24 -
4 32 1.48 32 0.062 32 >
S5 58 1.5 58 0.066 58 -
6 94 1.35 94 0.043 94 o
8 214 1.96 214 0.127 214 g
9 264 2.01 264 44523 264 <
12 578 325.68 578 1946.12 578 -
14 1014 42,010.42 1014 1008.7 1026 m
15 1150 _ 1160 98619 1160 5
17 1732 _ 1750 921.71 1786 5
20 2570 - * 2674 744.76 2640 :
<

"Timeout of 12 hours reached by Gurobi
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Large-scale mixed-integer nonlinear non-convex NP-hard
optimization problem
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PRIORITY-
LIST
SCHEMES

X NOT OPTIMAL

MILP SOLVERS

v BUT SLOW FOR LARGE SYSTEMS

DYNAMIC
PROGRAMMING
(DP)

X EXPONENTIAL IN NUMBER OF UNITS

LAGRANGIAN
RELAXATION

POTENTIALLY INFEASIBLE
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https://arxiv.org/pdf/2305.08482

QUANTUM BS&8DBT EWN

Nonlinear mixed-integer non-convex optimization problem

Continuous variables must be made integer -

a) Naive: discretise p by bit representation complexity
explosion ref

b) New paper: ref

T N
. gen start Ay . .
IIllIlZ Z (Ci pit + C; wi(1 “’hf—l)) + embed constraints as penalties
t—1 i—1

mm) Quadratic unconstrained binary optimisation (QUBO)
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https://arxiv.org/pdf/2003.00254v1
https://www.sciencedirect.com/science/article/pii/S037877962401006X

.
.......

5 QUANTUM SOLUTION

ccccccc

T N
min ) > (CFpie + OF* - wie(1 — 1))

t=1 i=1 — /

Master problem - QPU Subproblem - CPU
m111 Z Carty, w;i (1 —u;p 1) +0 Irgn;Cfenpi,t

0 > ¢p(u) @% Zijz-,t =D, Yt

Pmmu” <p%t Pmax u; 4 Vz,t

1) Proposesau -> Answers with p... else “infeasible”
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2) new constraint, proposesau ->  Answers with p... else “infeasible

3) Done when upper bound = lower bound
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Hybrid quantum annealing decomposition framework for unit commitment

Jiajie Ling, Quan Zhang, Guangchao Geng *, Quanyuan Jiang
College of Electrical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
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Objective ($)
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RESULTS

- 6.1% optimal solution with 70 qubits

- "“In this experiment, about 15% of the samples are
concentrated in the interval with the lowest energy solution,
and about 50% of the samples fall in an interval with the
lowest energy and an interval near the lowest energy”
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