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Introduction

The Sustainability Challenge

Food price spikes - insecurity,
malnutrition, reduced access to health
& education

Climate change disrupts crops (ex:
heatwaves > lower tomato yields >

price surge)

Poor households are hit hardest

Forecasting = key for early action &
sustainable food systems

Why Forecasting Matters

Enables early action: better planning

for imports, aid, and farming decisions

Reduces market volatility and food
waste by aligning supply with demand

/

Contributions to the SDGs
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Nigerians protesting in Abuja last month over the rising cost of living as food price inflation jumps above 35% ©
AFP via Getty Images

Food price inflation in Nigeria is more than 35%
Annual food CPI change (%)
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ngerla hit by wave of food looting as economic
crisis deepens

Ransacking of warehouses and deadly stampede at grain sale spark fears of breakdown
in law and order

* Food prices rose by more than 35%; rice price doubled in
one year

* People looted food warehouses; 7 people died during a
rice sale

* Fear of more protests and a breakdown of public order

* Farming is disrupted by violence and kidnappings; some
farmers had to pay to use their own land

* 8% of Nigerians are food insecure (IMF)

* Accusations of food hoarding led to warehouses being
taken over

= Forecasting food prices helps act early, send food aid,

and avoid social crisis
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Contributions to the SDGs
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SDG 1 - No Poverty:
Food affordability is a
central component of
poverty. Early
identification of price
stress points can inform
cash-transfer programs
and price stabilization
policies.
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HUNGER
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Anticipating price
volatility allows for
proactive food security
strategies, ensuring
that populations
maintain access to
sufficient and nutritious
food.

12 RESPONSIBLE
CONSUMPTION

AND PRODUCTION

SDG 12 - Responsible
Consumption and
Production:

Accurate demand
forecasting

reduces inefficiencies
across the food supply
chain and lowers
environmental impact.

1 CLIMATE

ACTION

SDG 13 - Climate Action:
Incorporating climate data
into price models provides
better insight into how
global warming affects
food systems, supporting
adaptation policies and
long-term resilience

planning. EPFL



QRC Pipeline Overview

Let {y(t)}; a n—-dimensional time series. Given the past values of the series {y(7)},<;, the goal is to
predict the value of y(t + At).

Input Layer Reservoir Layer

Initialization

;) = j k= Yi-110) + Vyi-1[1)

pi = W)l & Try[p;i—4]

Output Layer

Quantum evolution
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Concrete
Implementation
of a QRC
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Step 1: Input Encoding

Single-input: n =1
(D) y(@) € R - y(t) € [0,1] (Normalization)

i) ly@®) = y1-3(®)|0) +/F(t)|1) (Encoding)

Where (ii) can be done using a Ry(0) gate:
Ry(2arcsiny(0)]0) = /1 - 5(6)[0) + {/5(6)[1)

(Multi-input: n>1)
() y@) € R" - y(&) € [0,1]"

(i) ly(©) = Qg (V1 — 57 (D)10) + /7:(D)[1))

Example.
y(t) =sin(t) t=0,1,2,...(asrad.)

sin(t) € R > single-input case (n=1)
sin(t) + 1
2

QR with N = 3 qubits (n=1 input qubit and
N-n=2 memory qubits)

y(t) = € [0,1]

o B 1y(0)) = /1-75(0)|0) +/5(0)|1)

qi

= Ry(2arcsiny(0)|0)

qz

o |y(D) = V1 -3D)I0) +/F(D)I1)
" = Ry(2arcsiny(1)|0)

=PrL

qz



Step 2: Reservoir State Initialization Example.

0) = 0 0)|® pini
The full reservoir at time tincorporates both the new p(0) y(OXY(OI® pinit
input and the memory of past ones: p(1) = ly(DXy(D|® Try(p(0))

p(2) = ly@C)Xy(2)|® Try(p(1))

p(t) = ly(OXy(®)|® Tr(p(t — Ab))

Where p;,it can be chosen

Where Tr;,,(p(t — At)) is the partial trace over the n randomly (ESP property), e.g., let’s
input qubits, isolating the memory stored in the say pinit=00)(00|
remaining N-n qubits.
0.25 0.114 4+ 0.0372 —0.028 + 0.248z 0.049 -- 0.109z
T 0)) = 0.114 0.037z 0.25 0.023 + 0.1182 0.028 — 0.248:
o o(P(0) = | Zo.028 - 0.248i 0.023 0.118i 0.25 —0.114 -0.037i
Inifialization 0.049 + 0.109i  0.028 + 0.248i —0.114 + 0.037 0.25

[Yi) =1 —yi—110) + /yi—1[1) @
| I S|

AP sl

______

pi = WXyl @ Try[p;_1]

n
3
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Step 3: Quantum Evolution via fixed U

Next, the entire N-qubit system undergoes a fixed
quantum evolution:

p'(t) = Up()UT

The unitary operator U is sampled randomly once at
initialization and remains fixed for all time steps.

Common choice: random quantum circuit built from
the universal gate set: G = {CNOT,H, T}

Example.

t=20:

t=0 (input sin=0.50)




Step 4: Measurement and classical
feature extraction

At the end of each time step, the quantum state p'(t) is
measured to extract classical information that will serve
as features for the prediction.

In this work we compute the expectation values of the
Pauli X and Z operators on each qubit:

(P)(t) =Tr[Pp'(t)], P€{X;Z;}

These measurements yield a classical feature vector:

(X1) 1 )
] (Zy) )
f&=1 : |eR¥N ? o
(Xn) ﬂ ? (2w

(Zn) °

[/

AV

3
meas

Example.

Quantum Reservoir Circuit — t=0, input = sin(t) = 0.0

R
o 10—

q1

"
o

Feature vectors f(t):

<X0>
-6.162976e-33
0.000000e+00
2.763182e-01

-9.231335e-03
-6.392955e-01
-3.792994e-02

1.052087e-01
3.675652e-01

-2.937448e-02
-3.449099e-01

8.413024e-02
2.695989e-01
-3.207709e-01

<Z0>
1.000000
0.246451
0.141994
0.975531
0.372790
0.064477
0.905218
0.513110
0.016715
0.797682
0.656561
0.000015
0.665340

<X1>
0.000000

-0.097575

0.008456
0.953252
0.020097
0.022641
0.549807

-0.021380
-0.013559

-0.126191

-0.251054

0.000009

-0.065628

<Z1>
0.000000e+00
5.551115e-17
3.959186e-01
-5.955142e-02
9.771621e-01
5.390888e-02
-3.511470e-01
6.073754e-01
-4.166817e-02
-8.111583e-01
-1.581965e-01
-3.823769e-01
6.094180e-01

<X2>
4.163336e-17

-7.334021e-02

4.326006e-01
8.035054e-01
3.013385e-01
2.090132e-01
1.957629e-01
-5.781106e-01
6.337733e-01
3.612699e-01
1.307226e-01
4.260884e-01
-5.815577e-01

m

<Z2>
5.551115e-17
-5.5651115e-17
-7.334021e-02
4.326006e-01
8.035054e-01
3.013385e-01
2.090132e-01
1.957629e-01
-5.781106e-01
6.337733e-01
3.612699e-01
1.307226e-01
4.260884e-01




Step 5: Linear Regression

At each time t, the QR outputs a feature vector f () € R2N built
from expectation values of Pauli observables like (X;), (Z;).

We want to predict the future value y(t + At) using:
P+ At) =wT f(©) + b

To do so, we define the matrix X and the target vector y~ (the values
we want to predict)

FenT 1 y(1)
. f(?) ) 7= [¥@
fr-nr 1 ()

Note: If input runs from t=0 to T-1, targets go fromt=1to T.

We now solve the LSM:

—>

0 = argming [1X6 —yI|* - 6= (VZ) = (XTX)" X"y

Example.

True vs Predicted y(t) on training data

—8— True sin(t)

Predicted sin

(t)

m
=
"1

12




Circuit Implementation with 3 qubits for the feature
generation of a serie for 3 timesteps

— Ry __ E

| 1. p(0) = [y(0)}y(0)I® pinit

The density matrix of each state at
the end of the 3 circuits will be

@« —a— 2. p(1) = ly(WNyDI® Try(p(0))

% 2— X 3. p2) = ly@)y(@)I® Try(p(1))
o5 il —d

2 1 1 i .

. : | ﬂ- Computation of the features :

cin = 2 - filt) = (Z)e = nO,i(t);nl,i(t)’ i €{0,1,2}.

For each circuit, we'll get a vector of features :
o EE— B B e ' —
qi 1Unitary 1Unitary 1Unitary
qz 2 2 2 a_

. 1
c_in

£t) = (fot), A1), ot))' €RY| N=3.

3
z



For T timesteps, the feature matrix will be : Training Weights .

SO . We learn the weights by minimizing the
fglgr zgg regularized mean square error :
Ftrain = . € RTXN, Ytrain = . € RT.
. : 1
£(T-1) | ()] J(W,b) = = [Yirain — FirainW — blr|s + o |[W]5, a>0

In our example with T =3 and 3 qubits,

The closed-form solution of this equation is,

fo(0)  f1(0)  £2(0) y(1) solved by scikit learn in our implementation:
Ftrain = fO(l) fl(l) f2(1) ) Ytrain = y(2) .
fo2) £2) f(2) y(3) W* = (F] ;. Fuain + Toly)  F] .y

train

Where Y = Yirain — 017



Test phase

The feature matrix of the test set will be :

] ftest (T)T 1
ftest (T+ l)T

_ftest (T;;ot - l)T-

Tiest XN
c R test ,

Ytest =

y(T+1)]
y(T+2)

L y(ﬁot) N




Test MSE

Changing the number of qubits in

our reservoir

QRC - Test MSE vs number of qubits

0.010 A

0.008 -

0.006 A

0.004 A

0.002 -

- 6 7
Number of qubits

As the number of qubits
iIncreases, the quantum
reservoir generates
more features (one per
qubit). This initially
reduces the test MSE, as
the model captures
richer temporal
dynamics. However,
beyond a certain point,
the increased number of
features leads to
overfitting.



MSE
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Simple example with n=7 and optimal
regularization parameter

QRC - Test prediction with a*

Normalized amplitude
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Dataset for food price forecasting

Average weekly price of tomatoes - 2014
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Predictions of the Quantum Reservoir

Here the Reservoir is a fixed random unitary circuit generated by Qiskit.

Quantum Reservoir : Average weekly price of tomatoes

— Rall
~~= QRC Predictions

80 -
70 A

60 -

Price (€/kg)
3

2019-11 2020-01 2020-03 2020-05 2020-07 2020-09 2020-11 2021-01 2021-03 2021-05
Week



Unitary circuit with the set of gates G = {CNOT,H, T}

Quantum Reservoir : Average weekly price of tomatoes

— Rall
- QRC Predictions
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Week

Optimal quantum reservoir computing for market forecasting: An application to fight food price crises https://arxiv.org/pdf/2401.03347



https://arxiv.org/pdf/2401.03347

Comparisons between QRC and classical methods

Forecasting Accuracy

Memory Capacity

Execution Time

Energy Efficiency

Scalability

- ClassicalRC
already excels at
complex time-series
(ex. beat ARIMA &
LSTM on food
prices).

- QRC (with optimal
design) achieved
similar low error
and high trend

accuracy (MDA) on
volatile price data.

QRC can
exploit exponentially
large state space.

QRC can pack
memory easily with a
trace that has fixed
dimension.

Today, classical RC is faster
(runs on conventional
hardware in ms).

QRC is limited by quantum
hardware speeds and
repeated measurements.

- Classical
implementations
(optical, analog) are
extremely energy-
efficient

- Current QRC
hardware requires
heavy infrastructure
(ex. cryogenics), so
energy costis high.

- QRC scales differently:
adding qubits
exponentially increases
feature space (10 qubits
> ~1000-dimensional
space).

- Demonstrations up to
~100 qubits show

feasibility. However,
noise grows with system
size.



https://granadaseminar.com/wp-content/uploads/2023/09/17GS_abstract_javier_borondo.pdf
https://granadaseminar.com/wp-content/uploads/2023/09/17GS_abstract_javier_borondo.pdf
https://ar5iv.org/html/2401.03347v1
https://ar5iv.org/html/2401.03347v1
https://ar5iv.org/html/2401.03347v1
https://ar5iv.org/html/2401.03347v1
https://ar5iv.org/html/2401.03347v1
https://ar5iv.org/html/2401.03347v1
https://ar5iv.org/html/2401.03347v1

Limitations of QRC

Real quantum processors are still limited in qubit count, have short coherence times,
and can be error-prone.

Extracting information from a quantum reservoir requires measurements that can
demand multiple runs, which complicates the design and could
slow down operation.

Current quantum hardware is still energy-intensive. If the goalis to implement a
solution for food security, one must consider whether the benefits of QRC justify the
resource usage, especially when classical methods are pretty effective already.

Interestingly, some research suggests that a bit of noise in QRC might actually help (by
preventing overfitting, analogous to regularization), but too much noise will destroy useful
information.
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https://www.researchgate.net/publication/355664262_Physical_reservoir_computing_using_finitely-sampled_quantum_systems/figures?lo=1
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