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The Sustainability Challenge

• Food price spikes → insecurity, 
malnutrition, reduced access to health 
& education

• Climate change disrupts crops (ex: 
heatwaves → lower tomato yields → 
price surge)

• Poor households are hit hardest

Forecasting = key for early action & 
sustainable food systems

Why Forecasting Matters

• Enables early action: better planning 
for imports, aid, and farming decisions

• Reduces market volatility and food 
waste by aligning supply with demand

• Contributions to the SDGs

Introduction 



• Food prices rose by more than 35%; rice price doubled in 
one year

• People looted food warehouses; 7 people died during a 
rice sale

• Fear of more protests and a breakdown of public order

• Farming is disrupted by violence and kidnappings; some 
farmers had to pay to use their own land

• 8% of Nigerians are food insecure (IMF)

• Accusations of food hoarding led to warehouses being 
taken over

= Forecasting food prices helps act early, send food aid, 
and avoid social crisis



SDG 1 – No Poverty: 
Food affordability is a 
central component of 
poverty. Early
identification of price 
stress points can inform 
cash-transfer programs 
and price stabilization
policies.

SDG 2 – Zero Hunger: 
Anticipating price 
volatility allows for 
proactive food security
strategies, ensuring 
that populations 
maintain access to 
sufficient and nutritious 
food.

SDG 12 – Responsible 
Consumption and 
Production: 
Accurate demand 
forecasting
reduces inefficiencies 
across the food supply 
chain and lowers 
environmental impact.

SDG 13 – Climate Action: 
Incorporating climate data 
into price models provides 
better insight into how 
global warming affects 
food systems, supporting 
adaptation policies and
long-term resilience 
planning.

Contributions to the SDGs



QRC Pipeline Overview
Let 𝑦(𝑡) ! a n–dimensional time series. Given the past values of the series 𝑦(𝜏) "#!, the goal is to 
predict the value of 𝑦 𝑡 + Δ𝑡 .

Abstract 
Implementation of 
a general RC 

Concrete 
Implementation 
of a QRC



Step 1: Input Encoding

Single-input: n = 1

(Multi-input: n > 1)

𝑖 	𝑦 𝑡 	∈ 	ℝ	 → 	 -𝑦(𝑡) ∈ 0,1

𝑖𝑖 	 ⟩|𝑦 𝑡 = 1 − -𝑦(𝑡) ⟩|0 + -𝑦(𝑡) ⟩|1

(Normalization)

(Encoding)

Where (ii)	can be done using a RY(ϴ)	gate:	

⟩RY(2arcsin -𝑦(𝑡)|0 = 1 − -𝑦(𝑡) ⟩|0 + -𝑦(𝑡) ⟩|1

𝑖 	𝑦 𝑡 	∈ 	ℝ$ 	→ 	 -𝑦(𝑡) ∈ 0,1 $

𝑖𝑖 	 ⟩|𝑦 𝑡 = 	⨂%&'
$()( 1 − -𝑦%(𝑡) ⟩|0 + -𝑦%(𝑡) ⟩|1 )

-𝑦 𝑡 =
𝑠𝑖𝑛 𝑡 + 1

2
∈ 0,1

⟩|𝑦 0 = 1 − -𝑦(0) ⟩|0 + -𝑦(0) ⟩|1

Example.

𝑦 𝑡 = sin t 	 t = 0,1,2, … (as	rad. )

sin(t) ∈ 	ℝ	→ single-input case (n=1)

⟩|𝑦 1 = 1 − -𝑦(1) ⟩|0 + -𝑦(1) ⟩|1

QR with N = 3 qubits (n=1 input qubit and 
N-n=2 memory qubits)

=	 ⟩RY(2arcsin -𝑦(0)|0

= 	 ⟩RY(2arcsin -𝑦(1)|0

…



Step 2: Reservoir State Initialization

The full reservoir at time t incorporates both the new 
input and the memory of past ones:

𝜌 𝑡 = ⟩|𝑦 𝑡 ⟨ |𝑦 𝑡 ⨂	𝑇𝑟$(𝜌 𝑡 − Δ𝑡 )

Where 𝑇𝑟$(𝜌 𝑡 − Δ𝑡 ) is the partial trace over the n 
input qubits, isolating the memory stored in the 
remaining N-n qubits.

𝜌(1) = ⟩|𝑦 1 ⟨ |𝑦 1 ⨂	𝑇𝑟'(𝜌 0 )

𝜌(2) = ⟩|𝑦 2 ⟨ |𝑦 2 ⨂	𝑇𝑟'(𝜌 1 )

…

𝜌 0 = ⟩|𝑦 0 ⟨ |𝑦 0 ⨂	𝜌%$%!

Where 𝜌%$%! can be chosen 
randomly (ESP property), e.g., let’s 
say 𝜌%$%!= ⟩|00 ⟨ |00

Example.

…



Next, the entire N-qubit system undergoes a fixed 
quantum evolution: 

𝜌′(𝑡) = 𝑈𝜌(𝑡)𝑈*

The unitary operator U is sampled randomly once at 
initialization and remains fixed for all time steps. 

Common choice: random quantum circuit built from 
the universal gate set: G = 𝐶𝑁𝑂𝑇,𝐻, 𝑇  

…

Step 3: Quantum Evolution via fixed U Example.

t	=	0:

t	=	1:



Step 4: Measurement and classical 
feature extraction

𝑃* 𝑡 = 𝑇𝑟 𝑃*𝜌+ 𝑡 , 	 𝑃*∈ 𝑋*, 𝑍*

At the end of each time step, the quantum state 𝜌+ 𝑡  is 
measured to extract classical information that will serve 
as features for the prediction.

In this work we compute the expectation values of the 
Pauli X and Z operators on each qubit:

These measurements yield a classical feature vector:

𝑓 𝑡 =

𝑋)
𝑍)
⋮
𝑋,
𝑍,

∈ 	ℝ-,

Example.

…



Step 5: Linear Regression Example.

At each time t, the QR outputs a feature vector 𝑓 𝑡 ∈ 	ℝ-, built 
from expectation values of Pauli observables like 𝑋% , 𝑍% .

We want to predict the future value 𝑦 𝑡 + Δ𝑡  using: 

W𝑦 𝑡 + Δ𝑡 = 𝑤. 𝑓 𝑡 + 𝑏

To do so, we define the matrix 𝑋 and the target vector 𝑦	 (the values 
we want to predict) 

𝑋 =
𝑓(0).
⋮

1
⋮

𝑓(𝑇 − 1). 1

𝑦⃗ =
𝑦(1)
𝑦(2)
⋮

𝑦(𝑇)

Note: If input runs from t=0 to T-1, targets go from t=1 to T.

We now solve the LSM:

Z𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛/ 𝑋𝜃 − 𝑦⃗ - 	→ 	 𝜃= 𝑤
𝑏

= (𝑋.𝑋)()𝑋.𝑦⃗



Computation of the features :

For each circuit, we'll get a vector of features :

The density matrix of each state at 
the end of the 3 circuits will be

1.

2.

3.

Circuit Implementation with 3 qubits for the feature 
generation of a serie for 3 timesteps



For T timesteps, the feature matrix will be :

In our example with T = 3 and 3 qubits,

Training Weights :

The closed-form solution of this equation is, 
solved by scikit learn in our implementation:

Where

We learn the weights by minimizing the 
regularized mean square error :



Using the optimized weigths and bias learnt 
on training, the one step forecast is :

In order to evaluate the performance or 
our model, we will compute the MSE of 
the test set as follow :

The feature matrix of the test set will be :

Test phase



As the number of qubits 
increases, the quantum 
reservoir generates 
more features (one per 
qubit). This initially 
reduces the test MSE, as 
the model captures 
richer temporal 
dynamics. However, 
beyond a certain point, 
the increased number of 
features leads to 
overfitting. 

Changing the number of qubits in 
our reservoir





Simple example with n=7 and optimal 
regularization parameter



Dataset for food price forecasting:

Daily price of tomatoes 
from january 2014 to 
May 2021.



Predictions of the Quantum Reservoir
Here the Reservoir is a fixed random unitary circuit generated by Qiskit.



Unitary circuit with the set of gates 𝐺 = 𝐶𝑁𝑂𝑇,𝐻, 𝑇

Optimal quantum reservoir computing for market forecasting: An application to fight food price crises https://arxiv.org/pdf/2401.03347

https://arxiv.org/pdf/2401.03347


Comparisons between QRC and classical methods

Forecasting Accuracy Memory Capacity Execution Time Energy Efficiency Scalability

- Classical RC 
already excels at 
complex time-series 
(ex. beat ARIMA & 
LSTM on food 
prices).

- QRC can 
exploit exponentially 
large state space. 

- Today, classical RC is faster 
(runs on conventional 
hardware in ms).

-     Classical 
implementations 
(optical, analog) are 
extremely energy-
efficient

- QRC scales differently: 
adding qubits 
exponentially increases 
feature space (10 qubits 
→ ~1000-dimensional 
space). 

- QRC (with optimal 
design) achieved 
similar low error 
and high trend 
accuracy (MDA) on 
volatile price data.

- QRC can pack 
memory easily with a 
trace that has fixed 
dimension.

- QRC is limited by quantum 
hardware speeds and 
repeated measurements.

- Current QRC 
hardware requires 
heavy infrastructure 
(ex. cryogenics), so 
energy cost is high. 

- Demonstrations up to 
~100 qubits show 
feasibility. However, 
noise grows with system 
size.

https://granadaseminar.com/wp-content/uploads/2023/09/17GS_abstract_javier_borondo.pdf
https://granadaseminar.com/wp-content/uploads/2023/09/17GS_abstract_javier_borondo.pdf
https://ar5iv.org/html/2401.03347v1
https://ar5iv.org/html/2401.03347v1
https://ar5iv.org/html/2401.03347v1
https://ar5iv.org/html/2401.03347v1
https://ar5iv.org/html/2401.03347v1
https://ar5iv.org/html/2401.03347v1
https://ar5iv.org/html/2401.03347v1


Limitations of QRC

• Hardware constraints: Real quantum processors are still limited in qubit count, have short coherence times, 
                   and can be error-prone.

• Measurement overhead: Extracting information from a quantum reservoir requires measurements that can 
                demand multiple runs, which complicates the design and could 
                     slow down operation.

• Sustainability Trade-Off: Current quantum hardware is still energy-intensive. If the goal is to implement a 
      solution for food security, one must consider whether the benefits of QRC justify the 

     resource usage, especially when classical methods are pretty effective already.

• Noise and error: Interestingly, some research suggests that a bit of noise in QRC might actually help (by      
    preventing overfitting, analogous to regularization), but too much noise will destroy useful 

                        information.

https://www.researchgate.net/publication/355664262_Physical_reservoir_computing_using_finitely-sampled_quantum_systems/figures?lo=1


Bibliography
1. Domingo et al. (2024) – Optimal Quantum Reservoir Computing for Market Forecasting: An 

Application to Fight Food Price Crises. Introduces QRC for staple-food price prediction; central to 
our study. arXiv:2401.03347

2. O’Gorman et al. (2023) – Quantum Reservoir Computing. Detailed methodology and performance 
analysis of quantum reservoirs. arXiv:2310.07455

3. Fujii & Nakajima (2017) – Harnessing Disordered-Ensemble Quantum Dynamics for Reservoir 
Computing. Seminal paper proposing quantum reservoirs built from random circuits. Phys. Rev. 
Applied 8, 024030

4. Nokkala et al. (2021) – Gaussian States of Continuous-Variable Quantum Systems Provide 
Universal and Versatile Reservoir Computing. Extends QRC theory to continuous-variable 
platforms. Commun. Phys. 4, 53

5. Bharti et al. (2022) – Noisy Intermediate-Scale Quantum Algorithms. Comprehensive review of 
NISQ-era techniques relevant to QRC. Rev. Mod. Phys. 94, 015004

6. Jaeger (2001) – The “Echo State” Approach to Analysing and Training Recurrent Neural Networks. 
Classic introduction to classical reservoir computing. GMD Report 148

7. Financial Times (2024) – “Nigeria Hit by Wave of Food Looting as Economic Crisis Deepens”. 
Illustrates the social impact of sudden food-price spikes.

8. Kaggle (2023) – Tomato Daily Prices Dataset. Dataset used to benchmark QRC on real agricultural 
time series. Kaggle link

https://arxiv.org/abs/2401.03347
https://arxiv.org/abs/2310.07455
https://doi.org/10.1103/PhysRevApplied.8.024030
https://doi.org/10.1103/PhysRevApplied.8.024030
https://www.kaggle.com/datasets/ramkrijal/tomato-daily-prices


Image References
Front page: https://medium.com/analytics-vidhya/time-series-forecasting-c73dec0b7533
RC abstract implementation: https://botpenguin.com/glossary/reservoir-computing 
Others: available in bibliography.

https://medium.com/analytics-vidhya/time-series-forecasting-c73dec0b7533
https://botpenguin.com/glossary/reservoir-computing

