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Energy consumption in solving computational problems has been gaining growing attention as
one of the key performance measures for computers. Quantum computation is known to offer ad-
vantages over classical computation in terms of various computational resources; however, proving
its energy-consumption advantage has been challenging due to the lack of a theoretical foundation
linking the physical concept of energy with the computer-scientific notion of complexity for quan-
tum computation. To bridge this gap, we introduce a general framework for studying the energy
consumption of quantum and classical computation, based on a computational model conventionally
used for studying query complexity in computational complexity theory. Within this framework, we
derive an upper bound for the achievable energy consumption of quantum computation, accounting
for imperfections in implementation appearing in practice. As part of this analysis, we construct
a protocol for Landauer erasure with finite precision in a finite number of steps, which constitutes
a contribution of independent interest. Additionally, we develop techniques for proving a nonzero
lower bound of energy consumption of classical computation, based on the energy-conservation law
and Landauer’s principle. Using these general bounds, we rigorously prove that quantum computa-
tion achieves an exponential energy-consumption advantage over classical computation for solving
a paradigmatic computational problem—Simon’s problem. Furthermore, we propose explicit crite-
ria for experimentally demonstrating this energy-consumption advantage of quantum computation,
analogous to the experimental demonstrations of quantum computational supremacy. These results
establish a foundational framework and techniques to explore the energy consumption of computa-

tion, opening an alternative way to study the advantages of quantum computation.

I. INTRODUCTION

With growing interest in the sustainability of our soci-
ety, energy consumption is nowadays considered an im-
portant part of performance measures for benchmarking
computers. It is expected that quantum computation
will be no exception; its energy efficiency will ultimately
be one of the deciding factors as to whether quantum
computers will be used on a large scale [1-3]. Originally,
quantum computers emerged as a promising platform to
solve certain computational problems that would other-
wise be unfeasible to solve on classical computers. The
advantage of quantum computation is generally exam-
ined in terms of computational complexity, which quan-
tifies computational resources required for solving the
problems, such as time complexity, communication com-
plexity, and query complexity [4]. Energy is, however, a
different computational resource from the above ones. A
priori, an advantage in some computational resource does
not necessarily imply that in another; for example, quan-
tum computation is believed to achieve an exponential
advantage in time complexity over classical computation
but does not provide such an advantage in the required
amount of memory space [5]. Whether quantum compu-
tation can offer a significant energy-consumption advan-
tage over classical computation is a fundamental question
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that has been asked since the earliest days of quantum
computation [6, 7], but has not been explored rigorously
as of now due to the lack of theoretical foundation to re-
late the known advantages of quantum computation and
the advantage in its energy consumption. For example,
some existing works [3, 8] numerically evaluate achievable
upper bounds of energy consumption of quantum compu-
tation, but it is not theoretically proven in these works
how the energy consumption of quantum computation
scales on large scales in general; even more problemati-
cally, it has been challenging to provide a fundamental
lower bound of the energy consumption of any classical
computation, which the existing works do not rigorously
analyze. It has been, therefore, a fundamental open prob-
lem to formulate the theoretical framework to compare
an upper bound of energy consumption of quantum com-
putation and a lower bound of energy consumption of
classical computation fairly in a technology-independent
way, so as to prove the energy-consumption advantage
of quantum computation over classical computation in a
commonly studied setting of computation [2].

Main achievements of our work. In this work, we
carry out a rigorous, in-depth study of the energy
consumption of quantum and classical computation.
Through our work, we introduce a general framework to
analyze energy consumption in both quantum and classi-
cal computation, which incorporates computational and
thermodynamic aspects, as illustrated in Fig. 1.

In Fig. 1, the computation is modeled as a thermo-
dynamic cycle. This model is composed of five parts:
the computer, agent, environment, input, and output.
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FIG. 1. Our thermodynamic model of quantum and classical
computation. To solve a computational problem, an external
agent manipulates the computer at a work cost Wgates- In
the computation, the input for the problem is provided from
an input system to the computer, with energy AE®™ flowing
into the computer. At the end of the computation, the com-
puter outputs the result of the computation into the output
system, with energy AE©) flowing out; then, the internal
state of the computer must be reinitialized into a fixed state
~ |00---0), so that the computer can be used for solving
the next computational task. Throughout manipulating and
initializing the computer, energy in the computer may flow
into the environment as a heat Q. As explained in the main
text, the energy consumption Wgates + AE) _ Aput) of
the computation is classified into three contributions: the en-
ergetic cost, the control cost, and the initialization cost. Our
analysis provides a comprehensive account of each contribu-
tion to bound the overall energy consumption of quantum and
classical computation.

The computer, either quantum or classical, is the physi-
cal platform with (qu)bits, where an algorithm is carried
out. To execute the algorithm, an external agent invests
some work Weates into the computer to perform a se-
quence of gates on the (qu)bits in the computer. Part
of this work is an energetic cost used for changing the
energy of the internal state of the computer, while the
rest is the control cost dissipated into the environment
due to energy loss arising from, e.g., friction and elec-
tric resistance. Moreover, as in a conventional setting of
studying query complexity to separate the complexities
in quantum and classical computation [4, 9, 10], we struc-
ture the algorithm to process the input coming from an
oracle — a black-box circuit outside the computer that
is unknown to the agent, so that the agent should per-
form the computation to learn a property of this black
box through the queries to the oracle. For this input,
we use an additional input system representing the or-
acle and label the energy of the states transferred from
the input system to the computer as AE(™ . The result
of the entire computation is to be output and stored in

another separate system, the output system. In our case,
we solve a decision problem, so the output system should
be a single bit. The energy of the state output from the
computer incurs an energetic cost AE®©) At the end
of the computation, the final state of the computer is
reinitialized into its initial state, so that, afterward, the
agent should be able to carry out the next computation
by the same computer. Aside from the control cost, irre-
versible operations such as the erasure of the final state
of the computer for the initialization also dissipate heat
into the environment, which incurs an initialization cost.
All-in-all, we summarize the heat dissipated into the en-
vironment as Q. The energy consumption of the compu-
tation is all the energy used for the above process except
for that dissipating into the environment, given by

Weates + AE — AR, (1)

Our methodology pioneers general techniques to clar-
ify the upper and lower bounds of the energy consump-
tion for the computation in the query-complexity set-
ting. The upper bound of achievable energy consump-
tion of quantum algorithms is obtained by meticulously
considering the work cost of implementing gates to finite
precision, erasing the computer’s memory state for the
initialization based on Landauer’s principle [11], and re-
ducing the effect of noise by quantum error correction.
Under the scalability assumption that each elementary
operation has, at most, a polynomial amount of energy
consumption, we derive an upper bound of energy con-
sumption of quantum computation by bounding the re-
quired number of elementary operations for solving com-
putational problems, including quantum error correction.
Also notably, we develop a novel technique for deriving
a fundamental lower bound of the energy required for
classical algorithms to solve computational problems. In
contrast with the upper bound, it is, in general, unknown
whether one can find a nonzero lower bound of the en-
ergy consumption of each elementary operation; after all,
in the idealized limit of zero friction or zero electrical re-
sistance, each elementary operation may consume almost
zero energy. To overcome this challenge, we will develop
the technique to argue that a lower bound of the query
complexity in solving the computational problems can be
turned into a lower bound of the Laudauer cost, i.e., the
energy consumption to erase the information obtained by
the queries.

Based on these bounds, we rigorously prove that a
quantum algorithm can attain an exponential energy-
consumption advantage over any classical algorithm for
an exemplary computational problem—Simon’s prob-
lem [12, 13]. Furthermore, for this problem, we clarify
how to implement the quantum algorithm using a cryp-
tographic primitive to feasibly implement the input sys-
tem in Fig. 1 and provide explicit criteria for demon-
strating the energy-consumption advantage of quan-
tum computation in experiments. In this way, we ex-
pand the traditional focus from conventional complexity-
theoretic notions in theoretical computer science to en-



ergy consumption—a critical aspect of computational re-
sources that was often overlooked in the existing theoret-
ical studies. These results lay a solid foundation for the
exploration of the advantage of quantum computation
over classical computation in terms of energy consump-
tion.

Key physical insights. In our analysis of energy con-
sumption, we develop a comprehensive account of the
above three types of costs that contribute to energy con-
sumption: the energetic cost, the control cost, and the
initialization cost.

The energetic cost to change the energy of the state
of the computer would be hard to evaluate at each step
of the algorithm, but to avoid this hardness, our analy-
sis evaluates the sum of the energetic cost of the overall
computation rather than each step. The hardness arises
from the fact that an energetic cost per gate can be both
positive and negative depending on the state of the com-
puter; after all, when performing a gate in the algorithm,
the same gate may change a low-energy state to a high-
energy state and also a high-energy state to a low-energy
state. Thus, if one wants to know the required energetic
cost at each step of the algorithm, the internal state of
the computer at the step should also be kept track of,
which would be as hard as simulating each step of the al-
gorithm. By contrast, in our analysis, instead of focusing
on each step, we regard the overall computation as a ther-
modynamic cycle as described in Fig. 1. As a result, the
net energetic cost of all the steps sums up to zero due to
the energy-conservation law, in both quantum and classi-
cal computation, leading to the total energy consumption
of the computation coming solely from heat dissipation
due to ineflicient control and irreversible erasure.

The control cost, arising from the energy loss in imple-
menting each gate, also needs careful analysis. On one
hand, the quantum computer is often said to consume
a large amount of energy due to the complicated experi-
mental setup under the current technology and, in this re-
gard, might be considered to be more energy-consuming
than the classical computer. But this argument overlooks
the fact that the energy loss in any scalable implementa-
tion of each quantum gate is reasonably upper bounded
by, at most, a polynomial factor per physical gate (and
usually upper bounded by a constant factor) as the size of
problems to be solved by the computer increases; that is,
the apparent difference in the energy efficiencies between
quantum and classical computers is that of the cost per
implementing each physical gate. With this observation,
we derive an achievable upper bound of the control cost of
quantum computation from the number of gates used for
performing the overall algorithm. On the other hand, as
opposed to the above saying, it is also often said that the
quantum computer could save energy compared to the
classical computer due to the large quantum speedup in
solving some problems. This logic also overlooks another
fact that the control cost per implementing a classical
gate can be made extremely small compared to that of
a quantum gate. Due to this fact, the quantum advan-

tage in time complexity does not straightforwardly lead
to that of energy consumption over classical computa-
tion, especially in the case where the control cost of each
classical gate is negligibly small; for example, imagine a
limit of idealization where the friction and the electric
resistance are negligible, and then, no energy loss oc-
curs regardless of the number of gates to be applied. For
example, it is indeed proposed to use superconducting
materials for classical computation, which may allow for
nearly dissipation-free classical computation in the future
(see, e.g., Ref. [14]). Thus, unlike the upper bound of the
control cost, a lower bound of the control cost can be, in
principle, arbitrarily close to zero even if the runtime of
the computation is long.

Initialization cost, i.e., the required energy for resetting
the state of the computer to a fixed initial state, is the
key to our proof of the energy-consumption advantage
of quantum computation over classical computation; this
cost can provide a fundamentally nonzero lower bound of
the energy consumption of classical computation, unlike
the above energetic and control costs. As described in
Fig. 1, after solving a computational problem, the (quan-
tum or classical) computer needs to reset all the (qu)bits
to conduct the next task, by erasing the final state of the
(qu)bits into a fixed initial state, i.e., |00 - - - 0). However,
in the thermodynamic analysis of the energy consump-
tion, we need to be careful about the cost of this ini-
tialization due to Nernst’s unattainability principle [15];
it is known that the ideal initialization of a qubit ex-
actly into a pure state would require divergent resource
costs, e.g., infinite energy consumption or infinitely long
runtime [16]. To avoid an unbounded energy consump-
tion in the initialization, we newly construct a finite-step
Landauer-erasure protocol for erasing the states of the
qubits to a pure state approximately within a desired fi-
nite precision, which allows us to achieve a finite energy
consumption for all the erasure steps required for the ini-
tialization after conducting the computation in Fig. 1.

Apart from this explicit protocol construction for
showing an achievable upper bound of energy consump-
tion, we discover a way to prove a nonzero lower bound of
the initialization cost by applying two fundamental con-
cepts in physics: the energy-conservation law in thermo-
dynamics, and Landauer’s principle [11] that relates the
irreversible process to energy consumption. Landauer’s
principle shows that we need more energy consumption
to initialize more information stored as states of (qu)bits,
which is measured by the entropy of the states. In par-
ticular, to solve Simon’s problem [12, 13], we see that
any classical algorithm needs to make an exponentially
large number of queries to obtain an exponentially long
bit string obtained from the input system. In this case,
our analysis shows that the initialization cost required for
erasing this input information, in terms of entropy, also
becomes exponentially large, which is one of our key tech-
niques for proving the exponential energy-consumption
advantage of quantum computation.

Consequently, with our formulation of the computation



as the thermodynamic cycle in Fig. 1, we provide an un-
precedented detailed analysis of all three types of costs,
establishing the novel techniques for showing upper and
lower bounds of the energy consumption of quantum and
classical computation. Our analysis shows that the up-
per bound on the energy consumption of quantum com-
putation is governed by the gate and query complexities
and the heat dissipation achievable through finite-step
Landauer erasure. Therefore, to ensure an upper bound
of energy consumption within this framework, it suffices
to feasibly bound each of these factors. In contrast,
the provably nonzero lower bound on the energy con-
sumption of classical computation arises from the min-
imum cost of Landauer erasure, quantified by entropy.
Although we analyze this lower bound using techniques
originally developed for studying query complexity, the
lower bound is ultimately determined by the Landauer
cost—the entropic quantity that depends both on the
query complexity and the probability distribution of the
oracle. These techniques make it possible to rigorously
analyze the energy-consumption advantage of quantum
computation with a solid theoretical foundation.

Impact. In today’s world, where sustainability is a
key concern, energy efficiency has become an essential
performance metric for modern computers, along with
computational speed and memory consumption. Our
theoretical framework provides a new pathway for ex-
amining the relevance of quantum computation in terms
of energy efficiency. Our study provides a fundamental
framework and techniques for exploring a novel quantum
advantage in computation in terms of energy consump-
tion. The framework is designed in such a way that a
quantum advantage in query complexity can be employed
to prove the energy-consumption advantage of quantum
computation over classical computation. These results
also clarify the physical meaning of the quantum advan-
tage in the query-complexity setting in terms of energy
consumption.

The query-complexity setting is a widely studied set-
ting of computation by itself, but also, from a broader
perspective, quantum computers may have promising ap-
plications in learning properties of physical dynamics de-
scribed by an unknown quantum-mechanical map [17-
22]. In these learning problems, the physical dynam-
ics can be considered a black-box oracle whose proper-
ties are to be learned, as in the query-complexity set-
ting. In other words, the query-complexity setting can
also be regarded as a variant of these learning problems
of unknown physical dynamics represented by the ora-
cles. Furthermore, we also clarify how to implement and
demonstrate the query-complexity setting in an experi-
mental setup. The framework and techniques developed
in this work serve as a theoretical foundation to realize
the energy-consumption advantage of quantum compu-
tation in query-complexity settings with these physically
well-motivated applications.

Organization of this article.
organized as follows.

The rest of this article is

e In Sec. II, we formulate a framework within which
the energy consumption of quantum and classical
computation can be rigorously studied. We will
describe its core idea based on Fig. 1, and further
detail of the framework will be illustrated in Fig. 3.

e In Sec. II, we show general upper and lower bounds
of quantum and classical computation within the
framework of Sec. II. In Sec. IITA, we derive a
general upper bound on the energy consumption
that is achievable by the quantum computation
in our framework. For this analysis, extending
upon the existing asymptotic results [16, 23—-26] on
Landauer erasure [11], we show the achievability
of finite-fidelity and finite-step Landauer erasure
(Theorem 2). Apart from the finite Landauer era-
sure, we derive the upper bound of achievable en-
ergy consumption using complexity-theoretic con-
siderations and also taking into account overheads
from quantum error correction, so as to cover all
the energy consumption in the framework (Theo-
rem 4). Moreover, in Sec. III B, we develop a tech-
nique for obtaining an implementation-independent
lower bound on the energy consumption of the clas-
sical computation in our framework. The lower
bound is derived using energy conservation and the
Landauer-erasure bound (Theorem 5).

e In Sec. IV, we show an explicit example where the
energy consumption of quantum and classical com-
putation for solving a computational problem is ex-
ponentially separated. To prove this exponential
energy-consumption advantage of quantum compu-
tation rigorously, we apply the above upper and
lower bounds to Simon’s problem [12, 13] (Corol-
laries 7 and 9).

e In Sec. V, we propose a setting to demonstrate the
energy-consumption advantage of quantum compu-
tation in quantum experiments.

e In Sec. VI, we provide a discussion and outlook
based on our findings.

II. FORMULATION OF COMPUTATIONAL
FRAMEWORK AND ENERGY CONSUMPTION

In this section, we present the setting of our analy-
sis. We start with introducing the thermodynamic model
of the computation in Sec. ITA. In Sec. II B, we formu-
late and elaborate on the framework used for analyzing
the energy consumption of the computation (Fig. 3). In
Sec. ITC, we introduce all the relevant costs that con-
tribute to the energy consumption of the computation in
this framework.



A. Thermodynamic model of computation

Computation is a physical process in a closed physical
system that receives a given input and returns the cor-
responding output of a mathematical function. Various
models can be considered as the physical processes for
the computation. Conventionally, classical computation
uses the Turing machine, or equivalently a classical logic
circuit, which works based on classical mechanics; quan-
tum computation can be modeled by a quantum circuit
based on the law of quantum mechanics [4, 9]. Under
restrictions on some computational resources, the differ-
ences between classical and quantum computation may
appear. For example, in terms of running time, quan-
tum computation is considered to be advantageous over
classical computation [27]. Another type of quantum ad-
vantage can be shown by query complexity [10], where
we have a black-box function, or an oracle, that can be
called multiple times during executing the computation.
In this query-complexity setting, the required number
of queries to the oracle for achieving the computational
task is counted as a computational resource of interest.
This setting may concern the fundamental structure of
computation rather than space and time resources. The
advantage of quantum computation over classical compu-
tation can also be seen in the required number of queries
for solving a computational task.

Progressing beyond the studies of these various compu-
tational resources, we here formulate and analyze the fun-
damental requirements of energy consumption in classi-
cal and quantum computation, by introducing the model
illustrated in Fig. 1 for our thermodynamic analysis of
computation. To clarify the motivation for introducing
this model, we start this section by going through the
main difficulties in proving a potential advantage in the
energy consumption of quantum computation over classi-
cal computation. Then, in the next step, we will provide
additional details to Fig. 1 and formally define what we
refer to as the energy consumption of a computation.

Challenges in studying energy-consumption advan-
tage of quantum computation. To analyze the energy-
consumption advantage of quantum computation over
classical computation, there are two inequalities that
have to be shown: first, an achievable upper bound for
the energy consumption of performing a quantum algo-
rithm, and second, a lower bound on the energy con-
sumption for all classical algorithms for solving the same
problem.

As for the former, previous works mostly investigate
energy consumption in implementing a single quantum
gate [28-35], but the analysis of the quantum advantage
requires an upper bound of energy consumption of the
overall quantum computation composed of many quan-
tum operations. Such an analysis has been challenging
because, to account for the energy consumption of quan-
tum computation, we need to take into account all the
operations included in the computation, e.g., not only the
gates but also the cost of initializing qubits and perform-

ing quantum error correction. A challenge here arises
since, unlike quantum gates, some other quantum opera-
tions, such as measurements and initialization, may con-
sume an infinitely large amount of energy as we increase
the accuracy in their implementation [16, 36]. Thus, we
need to formulate the framework of quantum computa-
tion properly to avoid the operations requiring infinite
energy consumption and to establish finite achievability
results of energy consumption for all the operations used
for the quantum computation within the framework.

The latter is even more challenging since it is, in gen-
eral, hard to derive a lower bound of energy consump-
tion of overall computation from the lower bound of each
individual operation; after all, we may be able to per-
form multiple operations in the computation collectively
to save energy consumption. In the first place, the en-
ergetic cost of performing reversible operations, be it on
a quantum or classical computer, can be either positive
or negative. To see this fact, consider the following illus-
trative example: what is the lower bound of performing
a bit-flip operation? The answer may depend on the im-
plementation and the initial state. Let us choose, for
example, a two-level system with states 0 and 1 and en-
ergies Fy < Fj. If the bit initially starts in the state
0, then we need to invest a positive amount of energy
E; — Ey > 0 to obtain 1 by the bit-flip gate. By con-
trast, at best, one can also gain energy F, — Ey from
the bit-flip gate, if the bit initially starts in the state 1
and is flipped into 0; in other words, the energetic cost
of performing a reversible operation can be negative in
general. Thus, for the initial input state 1, the oper-
ation could even extract work because energy-efficient
gate implementations are possible in principle, especially
for macroscopic physical systems.! Apart from this en-
ergetic cost, the implementation of the bit-flip gate may
also require an additional control cost arising from heat
dissipation, which is caused by, e.g., friction and electri-
cal resistance. The control cost may be positive in reality,
but in the limit of energy-efficient implementation, it is
hard to rule out the possibility that the control cost may
be negligibly small; in particular, it is unknown whether
the infimum of the control cost over any possible imple-
mentation of computation can still be lower bounded by
a strictly positive constant gapped away from zero.

As far as the energetic and control costs are concerned,
it is challenging to rule out the possibility that an energy-
efficient implementation would achieve zero work cost (or

1 Two concrete examples would be the Japanese Soroban and the
Abacus. Suppose that these devices are standing upright in the
earth’s gravitational field, and the external agent keeps the loca-
tions of the marbles of these devices fixed by some means. The
locations of the marbles are used for representing states of bits,
and bit-flip gates can be applied by physically moving the mar-
bles. In this case, the information-bearing degrees of freedom
carry potential energy. Moving up a marble requires an invest-
ment of work. On the other hand, moving down the marble
yields a gain of energy, i.e., the extraction of the work.



arbitrarily small work cost) per gate even in the worst
case over all possible input states. For example, in the
limit of realizing 0 and 1 with degenerate energy levels
Ey = E4, the bit-flip gate does not come at a funda-
mentally positive energetic cost. Another example may
exist in the limit of ideal implementation where friction,
electrical resistance, and other sources of energy loss are
negligible, and if this is the case, the control cost also
becomes negligibly small. As long as one considers these
costs of an individual gate, it is hard to argue that each
gate requires a positive work cost. Thus, the analysis
requires a novel technique for deriving a nonzero lower
bound of energy consumption of the overall computation,
which needs to be applied independently of the detail of
the implementation; in our case, we derive such a nonzero
lower bound based on taking into account the initializa-
tion cost, energy consumption for erasing the state of the
computer at the end of the computation into the fixed
initial state 0.

Model. In particular, to establish the framework for
studying energy consumption, we view quantum and clas-
sical computation as thermodynamic processes on their
respective physical implementation platforms, as shown
in Fig. 1. We here describe our model in detail. The
agent uses a computer to carry out the main part of the
computation to solve a decision problem. Performing
the operations that make up an algorithm comes at a
work cost for this external agent, which we summarize
as Weates- This cost includes, on the one hand, energetic
costs arising from the change of energy of the internal
states of the computer and, on the other hand, control
costs caused by energetic losses in implementing these
operations due to heat dissipation.

As in a conventional setting of studying query com-
plexity to separate the complexity of quantum and clas-
sical computation [4, 9, 10], we use an oracle as an in-
put model, which provides the input to the computer
via oracle queries. In our model, the oracle is a black
box outside the computer whose internals are unknown
to the agent performing the computation, as we will de-
fine more precisely in Sec. II B. There is some transfer
of energy between the oracle and the computer, namely
AE([) due to the states the oracle generates and inputs
into the computer.

On the other hand, working on decision problems
means that the output is a two-level system where the de-
cision is stored as either 0 or 1. Generating this single-bit
output comes at an energy exchange of AF(©) = 0(1)
and is practically negligible compared to the growing
sizes of the computer, the input, and the thermal en-
vironment surrounding around the computer, which may
usually scale polynomially (or can scale even exponen-
tially in our framework) as the problem size increases.

Throughout the computation, the energy correspond-
ing to the control cost may flow into the environment,
which in parts contributes to the heat Q dissipated to
the environment. The other contribution to Q arises from
reinitializing the internal state of the computer at the end

of the computation into the fixed initial state as it was
before performing the computation. The resetting of the
memory after the computation is necessary because we
demand that the computation is cyclic on the computer
so that this computer can be used for solving another
task after conducting the current computation. In con-
trast to the control cost that may approach zero in the
limit of energy-efficient implementation, the energy con-
sumption in reinitializing the computer may be nonzero
due to Landauer’s principle [11] if part of the computa-
tion is irreversible, as is the case for the oracle queries in
classical computation.

With this model, we define the energy consumption
W of the computer as the sum of all the contributions of
the external agent, the input, and the output in Fig. 1, as
presented in the following definition. The energetic con-
tributions to W will be detailed further for our framework
(Fig. 3) introduced in Sec. II C.

Definition 1 (Energy consumption). We define the en-
ergy consumption of computation modeled in Fig. 1 as

W = Waates + AEE — AR, (2)

The demand of the computation being cyclic is critical
to energy conservation; i.e., in the limit of closing this
thermodynamic cycle ideally without error?, the energy
conservation demands

W= 0. (3)

The energy consumption W is the sum of the non-
dissipative energy exchanges between external systems
and the computer, which can be understood as the work
cost of performing the computation. On one hand, we
will analyze all the contributions to W to identify an
upper bound of energy consumption of quantum com-
putation. On the other hand, the formulation (3) of
energy conservation will be the basis for proving the
implementation-independent lower bound on the energy
consumption of classical computation by analyzing Q.

2 One might think that with a nonzero error € in reinitialization
after a round of computation, it would be possible that the fi-
nal state after the reinitialization might have lower energy than
the initial state of the computer’s memory since the initial state
in our framework is not assumed to be a ground state; thus,
one could extract energy using the e-difference between the ini-
tial and final states after one round of the computation. This
reasoning, however, does not capture the fact that this energy
is borrowed from the computer’s memory only temporarily in
this single round. After all, the initial state of the computer
in the second round of the computation is then no longer ex-
actly equal to the initial state of the first round, but also, in
this second round, we still need to close the thermodynamic cy-
cle by approximately reinitializing the computer’s memory state.
When averaging over many rounds of the computation using the
same computer’s memory, the energy extraction must perish. To
capture this, our analysis deals with the energy conservation on
average in the limit of € — 0.



B. Computational framework

Based on the model in the query-complexity setting
(Fig. 1) that we conceptualized in the previous section,
we here proceed to describe the explicit computational
framework that represents the computation in terms of
(quantum and classical) circuits, so that we can analyze
all the contributions to the energy consumption therein.
The significance of the computational framework that
we will formulate here is that it makes it possible to
quantitatively study bounds of energy consumption in
the computation, especially, achievable upper bounds for
quantum computation and fundamental lower bounds for
classical computation. In the following, we discuss our
core idea to obtain such bounds by presenting the def-
inition of classical and quantum oracles as in the con-
ventional query-complexity setting (Fig. 2), followed by
formulating the full detail of the computational frame-
work (Fig. 3) for our analysis.

Oracle in the classical case. To derive a fundamen-
tal nonzero lower bound of energy consumption of clas-
sical computation, our idea here is to formulate the
framework in such a way that we can study the energy-
consumption requirement for solving the computational
task as a whole rather than implementing each gate.
Conventionally, any classical computation can be rewrit-
ten as a classical circuit in a reversible way [37]. Formu-
lating a computational task as a decision problem reduces
the number of bits to output at the end of the compu-
tation to one bit. All other bits are to be reset to their
initial state at the end of the computation. But if the
original computation is written as a reversible circuit, it
is possible in principle to uncompute the original circuit
and get all the energy back that was invested into the
computer to obtain the output, up to negligible O(1) en-
ergy consumption to output the single bit, as established
by Bennett in Refs. [37, 38]. A nonzero lower bound
on the energy consumption can, therefore, arise only if
uncomputation is impossible due to some additional re-
striction in the setting. A setting where this happens is
when the computation is structured with oracles as in
the query-complexity setting.

In this setting, the input to the computation is given
via queries to an oracle that computes some function

f:{0, 13N — {0,137, (4)

where we let N be the number of bits of f’s input (which
is the size of the computational problems in the query-
complexity setting), and

Wy = O(poly(N)) (5)
is the number of bits of f’s output. For example, Simon’s
problem [12, 13] is defined for f: {0,1} — {0,1}V, i.e.,

Wy = N. (6)
In the classical case, for an input string € {0,1}%,

the classical oracle lets the computer know the corre-
sponding output string f(z) € {0,1}"¢ of the function

(a) computer
a
g
f(@)
<
O]
0
if in =0
otherwise
(b) computer
)
1
1
. : ly & f(2))
=]
2
5]
a
=
lox

[0)

FIG. 2. A classical oracle (a) and a quantum oracle (b) in
our computational framework of classical and quantum com-
putation, respectively. (a) In the classical case, the computer
sends a copy of the input bitstring x to the oracle. The oracle
then allocates an output memory region in the computer (ini-
tialized in 00---0 by the computer). In the allocated mem-
ory, the oracle writes out the corresponding output bitstring
f(x). As a result, each query to the oracle increases the in-
formation about the input-output relation x — f(z) of the
function f, which is to be stored in the computer until erased
irreversibly. The oracle does nothing if there is no more mem-
ory in the computer to allocate. (b) In the quantum case, by
convention, the oracle is implemented as a unitary map as
defined in (8). The computer performs swap gates to set the
input state into the input register for the oracle. After the
oracle transforms the input state into the output state, the
computer performs swap gates to receive this output state.

f, where the oracle internally computes a map

(©)

More precisely, as visualized in Fig. 2(a), the classical or-
acle receives a copy of the N-bit input string x from the
computer, allocates an output memory region in the com-
puter (which is initialized by the computer as 00---0),
and writes out the corresponding output bitstring f(z) in
the allocated memory region. The classical algorithm is
then structured in such a way that the oracle queries are
carried out outside of the computer, and the agent carry-
ing out the algorithm on the computer is ignorant about
the internals of the oracle so as to compute and learn
a property of f from the information obtained via the
queries. Since the oracle is a black box, the computer’s
memory initially has no information about f. Each call
of the oracle for new z replaces 0 in an initialized mem-
ory region of the computer with f(z) and thus adds the
information about the input-output relation of f to the
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FIG. 3. A circuit representing our framework for implementing the thermodynamic cycle of computation in Fig. 1. The circuit
in the figure represents, ordered from top to bottom, the thermal environment, the W (qu)bits of the (quantum or classical)
computer, the outsourced oracle operation Oy for input, and finally the output (qu)bit. The computation starts with all W
(qu)bits initialized in a fixed state \O>®W. Then a sequence of M + 1 operations Uy is performed with oracle operations Oy
spaced in-between. Each operation Uy has a depth of Dy with respect to some gate set. Interaction between the computer
and the oracle (and that between the computer and the output) is performed as described in Fig. 2 (the figure describes the
quantum oracle, i.e., the case of Fig. 2(b)), while the internal implementation of the oracle is ignored by conversion of the
query-complexity setting. A single-(qu)bit measurement in the basis {|a) : a = 0, 1} of the output register is performed outside
the computer to obtain the output a € {0, 1} of the computation for a decision problem. At the end of the computation, the W
(qu)bits are reinitialized through the interaction £ with an environment F at inverse temperature 3. In an idealized scenario,
this would return each (qu)bit in the computer perfectly back to their initial state |0) so as to make the thermodynamic cycle
closed. To capture a more realistic scenario, our analysis may allow for some non-zero infidelity 0 < ¢ < 1, by which each
(qu)bit’s state after reinitialization can deviate from |0) by e at the end of a single round of the computation. The required
depth for this reinitialization is denoted by Dg. We also require that each set of qubits in the environment for initializing the
wth qubit (1 < w < W) should be disturbed at most by 7 from its initial thermal state Tg”) [4], as analyzed in Sec. IIT A.

computer’s memory. To remove this information about as [4, 9, 10]
f from the computer’s memory, we have to erase the
information in an irreversible way independently of f,
using the Laudauer erasure.® This non-invertibility is
what breaks Bennett’s uncomputing argument [4, 37-39]
in the classical case, which makes it possible to establish a
nonzero lower bound on the energy consumption for any
classical algorithm to solve a computational problem, as
will be shown in Sec. III B.

Oracle in the quantum case. As for the quantum
case, as described in Fig. 2(b), the quantum version of
the oracle for f in (4) conventionally implements a uni-
tary map that transforms each computational-basis state

0@

forall z € {0,1} and y, f(z) € {0, 1} with Wy in (5),
where @ is the bit-wise XOR operation. For the superpo-

s Q
sition states »_, gy |z, y), O} )
term of |x,y) as (8). Note that we do not need the non-
invertibility of the quantum oracle to derive the achiev-
able upper bound of energy consumption for quantum

computation, as we will show in Sec. III A.*

acts linearly on each

4 Since we follow the conventional definition (8) of quantum or-

3 Once the computer knows f(z), it is impossible to completely
acles in the query-complexity setting, unlike the classical case,

uncompute the information of f(z) unless the computer irre-

versibly erases f(z) by the Landauer erasure. If we were to allow
for calling the classical oracle for the same input x twice, then
the computer would obtain two copies of f(x) in the computer’s
memory, and in this case, by taking the bit-wise XOR operation,
one of the copies could be uncomputed; however, even in this
case, it is still impossible to reversibly uncompute both copies
completely as the circuit for uncomputing f requires knowledge
about f. For simplicity of analysis, we assume that the different
queries to the classical oracle use different inputs x since it is
useless to make more than one query for the same x.

the input f(z) can be uncomputed by calling the quantum oracle
twice; in particular, since f(z) @ f(x) = 0, the quantum oracle
is its own inverse (i.e., O;Q) o O(Q> is an identity map) and can,
in principle, be used to uncompute all the oracle outputs. Due
to this invertibility of the quantum oracle, it is a priori not clear
whether there exists a fundamental lower bound on the energy
consumption of the quantum computation in this setting. In
practice, however, one may encounter another situation where
the action of the quantum oracle except for y = 0 in (8) is unde-
fined. Simon’s problem can still be solved with such a quantum



Formulation of our computational framework based on
query-complexity setting. Using these oracles in both
classical and quantum cases, we here present the for-
mulation of our computational framework, as shown in
Fig. 3. While it is a standard setting in computational
complexity theory [4], oracle-based computation comes
with important assumptions that are worth being pointed
out. For one, even if the algorithm can be written as a
polynomial-size circuit with a polynomial number of or-
acle queries in terms of the problem size N, assuming a
black-box oracle generally does not guarantee that the in-
ternals of the oracle itself can be implemented efficiently
in polynomial time in N, which may be a usual criti-
cism in computational complexity theory for oracle-based
computation [10]. For another, similar to the time of im-
plementing the oracle, the required energy consumption
for implementing the internals of the oracle may not be
polynomial in NV in general either. For an actual imple-
mentation of the oracle, the bounds on the runtime and
the energy consumption eventually depend on its physical
details; however, we will propose how to make this ad-
ditional cost negligible in practice, which we will discuss
along with explaining the relevant energy consumption
of the oracles in Sec. IIC.

In the most general form, an oracle-based algorithm
based on Fig. 1 can be structured as the circuit shown in
Fig. 3, where the reinitialization of the computer’s state
is performed right after the output in an irreversible way
based on Landauer erasure [11]. In particular, given a
family of decision problems with problem size N for a
function f : {0,1} — {0,1}"s in (4), the algorithm is
described by the circuit with the number of oracle queries
M(N), the width W(N), and the depth Dy (N) for the
kth part (1 < k < M +1). The function f is unknown
at the beginning of the computation, and the knowledge
on f is input to the computer via multiple queries to the
oracle. Usually, the algorithm’s width and depth, as well
as the number of queries, monotonically increase as the
problem size N grows. For Simon’s problem, we will ex-
plicitly write out their dependence on N in Sec. IV. In
the following, we may omit the N dependency and write
M(N), W(N), and Dg(N) as M, W, and Dy, respec-
tively, for simplicity of presentation.

In Fig. 3, the computer is initialized in a fixed pure
state [0)®" of W (qu)bits, where the number of (qu)bits
should be at least the number of bits required for storing
the input and the output of the N-bit function f in (4),

oracle queried with y = 0. Then, it may be operationally infea-
—1
sible to implement the inverse (O;Q) by only calling O;Q)
with y = 0 with a reasonable number of queries. Still, in light of
recent findings showing protocols for reversing unknown unitary
operations [40-43], it is currently unknown how to rigorously
impose the non-invertibility to quantum oracles used in quan-
tum algorithms. Finding a provable lower bound for the energy
consumption of quantum computation in a variant of the query-

complexity setting is therefore left for future work.

i.e., with Wy in (5),
W >N+ Wf. (9)

Note that in the classical case, storing information ob-
tained from M queries to the classical oracle requires
W > (N+Wy)M, but our analysis of the lower bound of
energy consumption of classical computation does not ex-
plicitly use such requirements since the lower bound will
be derived from the amount of information (i.e. the en-
tropy) rather than the number of qubits, as will be shown
in Sec. IIIB. In both classical and quantum cases, (9)
holds true as the lower bound of W.

Then, a sequence of M + 1 unitary circuits U of com-
putational depth

Dy, >0 (10)

are performed, with the computational depth defined
with respect to the decomposition of those unitaries into
a product of gates selected from a finite gate set, such as
Clifford and T gates, where each gate in the gate set acts
on at most a constant number of (qu)bits.®

Between each operation Uy, the oracle O;C) in (7) for

the classical and O;Q) in (8) for the quantum case is
called in total M times. For simplicity of notation, we
may omit the superscripts of the classical and quantum
definitions of the oracles to simplity write Oy when it is
clear from the context. As shown in Fig. 2, upon each
query to Oy, the input state into Oy is pulled out of the
computer to an input register to the oracle; then, this
state of the input register goes through the oracle Oy, and
the state output from Oy is put into the computer. In our
analysis, the runtime of Oy is assumed to be negligible
by the convention of the query-complexity setting, so the
computer does not have to perform identity gates to wait
for the runtime of Oy. We let

Dy = O(1) (11)

denote the depth of each part of the circuit to make a
query to the oracle for the input (i.e., each of the red
parts in Figs. 2 and 3).

At the end of the computation, another swap gate (i.e.,
a green part in Fig. 3) is also performed to pull out an
output state from the computer to an output register,
which is a single (qu)bit for a decision problem. The

5 The particular choice of the gate set for quantum computation is
irrelevant for our main results due to the Solovay-Kitaev Theo-
rem [9, 44], as it would, at worst, contribute with a polylogarith-
mic correction to the circuit depth. For simplicity of the analysis,
we assume that we use a gate set such that the swap gate is im-
plementable within a constant depth; for example, if the gate set
includes the CNOT gate, the swap gate is implementable with
three CNOT gates [9]. For universal classical computation, the
classical Toffoli gate can be used.



depth of a circuit of this output part (i.e., the green part
of Fig. 3) is denoted by

Doyt = O(l) (12)

Reading the output register by the measurement in basis
{la) : @ = 0,1} yields the single-bit output a € {0,1} of
the algorithm.

Finally, the computer’s memory is reinitialized in the
part we label £ in Fig. 3, using an environment in a
thermal state at inverse temperature

B8 >0. (13)

In particular, let p’ denote the W-qubit state in the
computer just after the reinitialization; then, for each
w=1,..., W, we require that each single-qubit reduced
state for p’ of the wth qubit should be e-close to the
initial state |0) of the computer, i.e.,

(O trz[p']10) = 1 =€, (14)

where trz is the partial trace over all the W qubits but
the wth. We also require that during reinitializing the
state of the wth qubit, the environment, initially in the
Gibbs state Tgu) [8], should also be disturbed at most by
a small constant

n >0, (15)

as will be detailed more in (69) of Sec. IIT A. The depth
of this reinitialization part of the circuit is denoted by
Dg.

As a whole, the circuit depth of the circuit represented
in Fig. 3 is denoted by

M+1
D:= Y Di+ MDiy + Dot + Dg = Deomp + D,
k=1
(16)
where  we  collectively  represent  the  circuit

depths (10), (11), and (12) for the operations
Ui, ..., Upy1, the input, and the output as
M+1
Dcomp = Z Dk + MDin + Dout~ (17)
k=1

For quantum computation, the operations Uy are uni-
taries acting on the W qubits in the computer, and the
state of the qubits can be in a generic superposition. For
classical computation, the operations Uy may only be re-
versible classical logic operations, and the states of bits
are always dephased in their energy-eigenbasis; in other
words, the classical computer’s state is in a probabilistic
mixture of bit strings, which we may represent as diago-
nal density operators to use the same notation as those
in quantum computation.
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C. Energy consumption

Accounting for the energy consumption of quantum
computation in full depth requires considering both mi-
croscopic and macroscopic contributions. Macroscopic
contributions would be the energetic costs coming from
refrigerators, readout amplifiers, and other electronics
not directly involved in qubit control, as studied in, e.g.,
Ref. [8]. Under microscopic contributions, we understand
all energetics directly relevant to performing operations
on the qubits, which is what we are interested in for the
scope of this article. In Definition 1, we have already
given a high-level definition of what we refer to as the en-
ergy consumption of the computation in our framework.
Let us subdivide it further and explain the individual
contributions:

(i) Energetic cost: Any non-trivial operation chang-
ing the state of a memory system with non-
degenerate energy levels in the computer may cost
some energy due to the change of the energy of the
computer’s state. Per gate U, this cost is given, in
expectation, by

AEWYW) = w[H(UpUT - p)], (18)

where H is the Hamiltonian of the system, and p
is the state of the system before performing U.

(ii) Control cost: Implementing a desired unitary op-
eration U on a target quantum system by some
Hamiltonian dynamics generally requires an auxil-
iary system for the control to make the implementa-
tion energy-preserving as a whole. In general, this
implementation may change the state of the auxil-
iary system, and compensating for this change has
to require some thermodynamic control cost that
we label as

EY) >, (19)

ctrl.

which can be considered heat dissipation and is by
definition a nonnegative quantity. Note that we
here may not analyze model-specific control costs
but just write the control cost as Eégl) by abstract-
ing the details, to maintain the general applicability
of our analysis. See also Appendix B for a discus-
sion on model-specific instantiation of the control
cost.

(iii) Initialization cost: Landauer erasure (£ in
Fig. 3) to reinitialize the computer’s memory comes
at an additional work cost, bounded by the heat
dissipation Qg into the environment necessary for
erasure, as will be defined in more detail as (56).
Alternatively, we can think of this initialization cost
as the one from type (i), but not on the memory
register of the computer but on the environment.

When it comes to deriving an achievability result for
quantum computation, we account for the three types of



energy costs listed above: (i) energetic costs on the mem-
ory qubits, (ii) control costs, and (iii) initialization costs
that arise as heat dissipation into a thermal environment
when states in the computer are irreversibly erased into
a fixed pure state. In the following, we write out the de-
composition into these three costs individually for all the
gates in the framework of Fig. 3.

The energy Wsates that the agent invests into perform-
ing the computation in Fig. 1 can be decomposed into
contributions from all the gates listed in Fig. 3; that is,
all the operations for Uy, the operations for the input
from the oracles Oy and the output (the red and green
parts of Fig. 3, respectively), and the erasure £ come at
some work cost, which we write as

M+1
(U in,k) ut &
gates - Z at,ia) +Z Wéate Zte) +W(at)e ( )

In particular, for each k € {1,...,
of Uy, is given by

M}, the work cost

AEWD 4 g0 (21)

Uk)
Wgate ctrl. »

where AEWUr) = tr{H(Ukpk,lUg—pk,l)] is the

change of energy in the memory of the computer, H is
the Hamiltonian of the W qubits in the computer, and
pr—1 is the memory state just before application of Uy.

As for the energy consumption for the kth query to the
oracle for the input, we let AE(*) denote the change
of energy of states of the computer’s memory before and
after making the kth query, where the states before and
after each query are shown in Fig. 2. Note that the states
(and thus the energy) outside the computer in Fig. 2
remain unchanged. Apart from this energetic cost, the
rest of the cost for the kth query is

in,k) in,k
Wéate Eétrl )’ (22)

where E((frll ) is the control cost of performing a red part

of Figs. 2 and 3 for the kth query.® The total energy
transfer from the oracle into the computer’s memory
amounts to the contribution AE(™ in Fig. 1, given by

6 Due to the conceptual separation of computer and oracle, our
theoretical analysis does not count the control cost of performing
the oracle’s internal operations as part of the computer’s energy
consumption; however, in practical cases, it is indeed possible
to make this additional control cost negligible. For example,
while the computer is a universal machine, the oracle is a single-
purpose device for the input and thus may be made up of special-
ized parts with negligible energy loss compared to the computer.
In Sec. V, we also explicitly propose an experimental setup with
clarification on how the oracle can be implemented efficiently in
the case of Simon’s problem [12, 13], using a cryptographic prim-
itive. In this setup, the non-invertibility of the classical oracle
is justified by the computational hardness assumption on the se-
curity of the cryptographic primitive in practice, in place of the
black-box assumption in our theoretical analysis.
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the sum of the energy costs AE(™F) of all M queries,
ie.,

AE(™ = Z AR (23)

Similarly, we let
—~AECY e R (24)

denote the change of energy in the computer’s memory
before and after the output (which can be negative if
the output state has higher energy than the initial state
|0)). The negative sign in (24) follows from that in (2),
respecting the direction of the arrow in Fig. 1. Apart
from this energetic cost, the rest of the cost of outputting
the result of the algorithm is

wiom — plono), (25)

gate

where EC(;)ﬁt) is the control cost of performing a green
part of Fig. 3 for the output.”
Reinitializing the memory at the end of the computa-
tion also comes at a work cost given by
W — AE© 4

gate

E$) + Qp. (26)

The three terms account for the energy change of the
qubits AE®) = tr[H(p’ — p)], the control cost E®) and

the initialization cost Qg of the heat d1s31pat10nclt£1to the
environment, where p’ is the W-qubit state after erasure
and should satisfy (14), and p the state just before era-
sure.

Control costs in (quantum) computation arise because
performing a unitary operation U on a system usually
requires external control. The system itself generically
evolves according to its Hamiltonian, but if one desires
to perform some non-trivial operation U on this target
system, additional degrees of freedom of an auxiliary sys-
tem should be needed. For example, by means of some
external control field, an interaction Hamiltonian Hjy,
with the target system can be turned on for a duration
of time ¢, which then generates the unitary U = e~ intt,
In a simple model that we give in Appendix B as an
illustration, the state of the auxiliary system for the con-
trol degrades through the interaction. Reinitializing the
state of the auxiliary system then comes at some posi-
tive thermodynamic cost, whose precise form depends on

7 In our framework of Fig. 3, where the computer never performs
measurements, the measurement to read the output is performed
outside the computer. For decision problems, only a single
(qu)bit of information is output. The energy consumption of
performing the measurement of this (qu)bit with finite precision
is O(1) and does not grow with the problem size. Thus, the en-
ergy consumption of realizing this single-qubit measurement to a
finite precision is negligible, which is not counted in our analysis
to simplify the bounds.



the physical model of the actual system of interest. This
energy is dissipated into some environment E’, which we
do not specify further for the sake of the generality of
our analysis. Rather than specifying the model, we work
with generic positive constants for the control costs that
give the overall control dissipation after summing up, i.e.,

M+1
U in,k t
QE( Z Eétrllc) Z Ec(trl ) Eé:;; )+Ectrl
k=1

> 0. (27)

The environment E’ into which this energy is dissipated
is not explicitly illustrated in our computational frame-

J
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work of Fig. 3; there, only the initialization cost Qg ap-
pears. Adding these two terms together gives

Q=09p+Qp, (28)

as in the thermodynamic diagram of Fig. 1.

With these definitions at hand, we can make the sanity
check to verify that the energy conservation (3) is true
in the limit where the error ¢ in (14) is small enough to
close the thermodynamic cycle of the computation. In
particular, writing out (2) explicitly gives

M+1 M )
(z W z Wi zss>+wate)+(zmmvk>) N )
k=1

M+1 M+1
(ZAEM 30 ARG Apon) +AE<5>) (ZE ZEC::& C:;;tungg)wE 0

k=1 =1
-0+ Qp +Qr =09,

in the limit of ¢ — 0. In (29), following the definition (2)
of the energy consumption in Definition 1, we have repre-
sented the computer S energy consumption W as the sum

of all work costs W', ates and the energy exchanges with

the input AE( and output —AE®©")_ Then, in the
first term of (30), given € — 0, the qubit energy changes
of type (i) together sum to zero because the computa-
tion together with reinitialization is a cyclic process on
the computer. What is left is the second term, i.e., a
sum of all control costs (ii), and the third term, i.e., the
initialization cost (iii). Together, they yield energy con-
servation W = Q. This energy conservation is crucial
for our analysis of the upper and lower bounds of energy
consumption of computation in Sec. III B.

We also remark that, along the way of the analysis of
the achievable upper bound of the energy consumption of
quantum computation in Sec. IIT A, it is also important
to check that the work costs (which may include both the
energetic cost and the control cost as in (21) and (26)) are
feasibly bounded in every step of quantum computation,
whereas the energetic costs cancel out in evaluating the
net energy consumption W as shown in (30). To see the
importance, we recall, for example, that the work cost

Wégt’;) is the cost that the agent needs to invest at each
step Uy of the computation. For the implementability of
each step of the computation, the work cost for each step
should be bounded; otherwise, the agent would need to
invest too much energy to run an intermediate step of the
quantum algorithm. For this reason, in Sec. IIT A, we will
provide achievable upper bounds of both the work costs
and the control costs along the way of our analysis while

using the control costs to present theorems on the upper

(31)

(

bounds of the net energy consumption.

III. GENERAL BOUNDS ON ENERGY
CONSUMPTION OF COMPUTATION

In this section, we derive general upper and lower
bounds of energy consumption of conducting quantum
and classical computation, respectively, in the framework
formulated in Sec. II. First, in Sec. III A, we provide a
detailed analysis of the achievable energy consumption,
accounting in particular for finite-fidelity and finite-step
Landauer erasure for reinitialization and quantum error
correction. Second, in Sec. ITI B, we derive a fundamental
lower bound on the energy consumption.

A. Upper bound on energy consumption for
quantum computation

In this section, we derive a general upper bound
w < wQ (32)

of energy consumption that is achievable by quantum
computation within the framework of Fig. 3. The general
idea for estimating W(®) is to break down the budget (29)
of energy consumption into the contributions from the
individual elementary gates and bound each contribution
from above. The achievable upper bound of the energy
consumption of quantum computation is determined not
only by the query complexity; the total volume (width



times depth) of the quantum circuit for implementing the
quantum algorithm is also crucial.®

In the following analysis, we begin with introducing the
maximum work cost Wiax,el. per qubit for implementing
an elementary gate in the gate set. Using Wiax,el., We
will bound the work costs and the energy transfers be-
tween the oracle and the computer, i.e., each term in (29),
as Whax.el. times the volume (i.e., width times depth) of
the part of the circuit in Fig. 3 corresponding to each
term. At the same time, to estimate the overall energy
consumption W, we will also bound the control costs and
the initialization cost appearing in (30). Our analysis of
these bounds consisted of the following three steps, where
we do a preliminary idealized estimate without consider-
ing gate errors in the first two steps, and then we account
a posteriori for the overheads of quantum error correc-
tion in the third step.

(1) Contributions from gates, input, and output. We

estimate the contributions Wéggﬁ, Wg(f;;;k), Wézr?,

AE™R) and AE©W for generic input sizes,
widths, and depths.

(2) Contribution from reinitialization by finite Lau-
dauer erasure. We bound the cost Wgate of reini-
tializing the qubits, for which we derive a bound

for finite Landauer erasure.

(3) Contribution from quantum error correction.
Lastly, we correct for the space and time overhead
coming from quantum error correction.

Mazimum work cost for implementing an elementary
gate. We here analyze the work cost per qubit for per-
forming each elementary quantum gate in the gate set,
which is to be bounded by a constant independent of the
size of the problem the gates are used to solve.

The work cost of each gate is determined as follows. In
degenerate quantum computing, that is, when all compu-
tational basis states are energy-degenerate, unitary op-
erations would be free in terms of the energetic cost [45-
47]. Any implementation of a quantum computer on a
physical platform inherently requires some energy split-
ting of the qubits in order to control their state. Sev-
eral works have been investigating the fundamental lower
and achievable energy cost of performing unitary opera-
tions [32, 48, 49], often with the goal to estimate control
costs to achieve a certain target fidelity in implement-
ing a given unitary gate. Physical realizations of the
quantum gate are never perfect, but the requirement of
the threshold theorem for fault-tolerant quantum com-
putation (FTQC) is that the physical error rate of the

8 Indeed, there are edge cases where even if the query complex-
ity scales polynomially, the quantum algorithm may require an
exponential runtime to process the polynomial amount of infor-
mation obtained from the queries. In such a case, the quantum
algorithm may require exponentially large energy consumption
due to the exponential runtime.
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elementary gates should be below a certain threshold
constant [50-61]. The existence of a finite threshold for
FTQC implies that the work cost of performing a unitary
operation within a better fidelity than the threshold can
also be bounded. We can, therefore, take the maximum
work cost per qubit over the gates in the universal gate
set as
Wrnax,el‘ ‘= Lqubit + Ectrl.7 (33)

which splits into a contribution from the single-qubit en-
ergy change FEqunit and the remaining contribution Eety.
representing the control cost per qubit. The universal
gate set includes multiqubit gates such as CNOT gates,
and for a multiqubit gate, the per-qubit work cost in (33)
represents the total work cost divided by the number of
qubits involved in the gate. We will explain Fqupis and
Ety1. in the following.

In (33), Equbit is the maximum single-(qu)bit energy
over all the (qu)bits in the computer, where

Equbit = 0. (34)

To be more specific, for the wth (qu)bit out of the W
(qu)bits (w € {1,2,...,W}), let H™ > 0be the single-

qubit
(qu)bit Hamiltonian characterizing the energy of the wth
(qu)bit, scaled appropriately so that its ground-state en-

ergy should be non-negative; in this case, we can take

Equoie = max { [ H03 | (35)

qubit

where || - ||oo is the operator norm. To ensure the gen-
erality of our analysis, we will keep Fqubit as a general
variable, which may depend on the circuit size and scale,
at most, polynomially with N. As for the control cost
Eetn. in (33), our analysis also keeps Fci;1. as a general
variable, which may also grow, at most, polynomially
with N. To summarize, the assumption on Egupir and
Ety1. for our analysis is

Equbit = O(pOIY(N))7 (36)
Eetn1. = O(poly(N)), (37)

while these may have much smaller, constant order O(1)
in conventional settings. This general setting allows us to
account for the possibility that as the problem size grows,
qubit crosstalk in a large quantum device may lead to a
higher control cost per qubit. As shown in Ref. [32] (also
see Appendix B), the variable F.,). is conventionally re-
lated to Equbit as

Ectrl. - O(Equbit)~ (38)

As a whole, we have a maximal work cost Whax., el.
per qubit in (33) to perform any elementary gate in the
gate set, regardless of the initial state of the qubits be-
fore applying the gate. This upper bound Wiax,cl. may
be a loose worst-case estimate to cover the case where
an elementary gate rotates the qubits it acts on from the



ground state to the excited state with the energy change
of Equbit- Note that some operations, e.g., a gate trans-
forming the excited state to the ground state, may allow
us to extract energy; also, the overall energetic cost sums
up to zero as in (30). Still, it is important to bound
the worst-case contributions of the work cost in terms of
Whnax., el., rather than only bounding the contributions
of Ecty1. in (33), for implementability of every step of the
computation.

Step (1): Contributions from gates, input, and output.
Using Wiax.el. in (33), we estimate the energy consump-
tion for each part of the circuit in Fig. 3.

To estimate the cost of the unitaries Uy, we use the
fact that the unitary acts on W qubits, and also each of
these unitaries has depth Dj. Thus, the cost of ngt’;)
applying Uy, in (21) is bounded by

Wg(al{t’z:) < W max., el. X WDk (39)
- O(( qubit + Ectrl.) X WDk)v (40)

where W Dy, is the volume of this part of the circuit, and

the second line follows from (33). Due to (21), Wégtz)
in (40) is decomposed into

AE(UR) = O(Equbit X WD;C), (41)

Eétlilf) = O(Ectrl. X WDk) (42)

In each red part of calling the oracle between Uy and
Ukt1 (k=1,...,M) in Fig. 3, we account for the control
cost in swapping the states between the computer and
the input register for the quantum oracle back and forth
as in Fig. 2(b). In this part, i.e., the kth query to the

J

As a whole, due to (40), (44), (45), (47), and (48

14

oracle with input size N + Wy as in (8), we have N + Wy
auxiliary qubits for the input register in addition to the
W qubits in the computer; i.e., the width of this part
of the circuit in Fig. 3 is W + N + Wy. Therefore, the

control cost Wg(lftlek) of the kth-query part for the input

in (22) is given by
WEE) < Bt x (W + N +Wy)Dyy  (43)
= O<Ectrl. X WDin)a (44)
where Dy, is given by (11), and we use (9) in the last

line. Also, using Equpit in (34), we bound the energetic
cost for the kth query by
AE(in’k) < Equbit(N -+ Wf) = O(Equbit X VV)7 (45)

where we use (9).
In the same way, in the green part of Fig. 3, the control

cost Wgzte of outputting the result of the computation
n (25) is at most

W) < Eegrt. % (W + 1) Doy (46)

- O( ctrl. X WDout)a (47)

where Doyt is given by (12), the factor W41 is composed
of the W qubits in the computer and another single qubit
for the output register. Moreover, using the upper bound
Equbit of the single-qubit energy in (34), we bound the
energetic cost of the output by

IAECY| < Byt (48)

), the work cost and the energy transfer between the computer

and the oracle in the part of the circuit in Fig. 3 for the computation (i.e., the parts except for £ in Fig. 3) is at most

M+1

M
U, in,k u in ou
Z éatke) Z Wéate ) g((;tet) + Z AE( ) AE( tk)
k=1 k=1
M+1
=0 <(Equbit + Ectrl.) x W < Z Dk + MDin + Dout)) (49)
k=1
= O(Wmax,el. X WDcomp)7 (50)

where Deomp is given by (17), and Whaxel. by (33). In words, the work cost scales at most with the volume of the
circuit for implementing the algorithm, i.e., the product of total width and depth of the circuit for implementing
the algorithm (complexity-theoretic contribution) times the parameter Wiax., . inn (33) representing the maximum

work cost per qubit of gates (energetic contribution). Also, as shown in (30), the relevant contribution to the energy

consumption W is the control cost, which is a part of the work cost and bounded, due to (42), (44), and (47), by
M+1 M M+1
Z ESH + 3 EGY + EQY =0 (Eml, x W < > Dy + MDiy + Dout>> (51)
k=1 k=1
= O(Ectrl. X WDcomp)- (52)

(

Step (2): Contribution from reinitialization by finite
Laudauer erasure. To close the thermodynamic cycle on

the computer’s memory, the qubits in the computer are



reinitialized by the end of the computation as shown by
the part &£ of the circuit in Fig. 3. The research field of
algorithmic cooling [62-65] studies algorithms that cool
down a mixed state of qubits in a quantum computer
into a pure state to reset the qubits’ state, but these re-
sults do not straightforwardly apply to our framework
due to the difference in settings from ours. Protocols
for Landauer erasure [11] can be used for the reinitial-
ization in our framework. Existing results on Laudauer
erasure use either a sequence of unitary operations as in
Refs. [16, 23] or finite-time relaxation [24-26], but these
works mostly provide lower bounds of the heat dissipa-
tion. Reference [23] also provides an upper bound of heat
dissipation, but the protocol to achieve this upper bound
requires an infinite number of steps. By contrast, what
we need is an achievable upper bound of the energy con-
sumption for erasing a given mixed state to a pure state
up to finite precision ¢ within a finite number of steps.
To obtain such a bound, we work on protocols using a
sequence of unitary operations as in Ref. [23] (also called
a collision model [66]), which are more suitable to ob-
tain a finite bound of steps than those using finite-time
relaxation.

Our goal here is to find an upper bound of the achiev-
able cost ngate in this finite setting of reinitialization for
our framework. We note that in Sec. III B, we will also
clarify a lower bound of the required energy for this ini-
tialization by a Landauer-erasure protocol, which will be
given by the required amount of heat Qp dissipated into
the environment in the initialization (i.e., the initializa-
tion cost as defined in Sec. IIC). By contrast, we here
bound ngate from above, not from below, especially in
the setting where we take into account all possible con-
tributions including the control cost as well as the ener-
getic cost. In principle, a part of the achievable cost of
the Landauer-erasure protocol may be made as close to
its lower bound Qp as possible [23], which is in part true,
but only if we focus on the energetic cost and ignore the
control cost. Problematically, exactly achieving Qr may
require infinite time steps, and the control cost required
for these infinite time steps may also diverge; indeed,
based on the third law of thermodynamics in the formula-
tion of Nernst’s unattainability principle [15], it is gener-
ally agreed upon that cooling a (quantum) state to abso-
lute zero and thereby erasing its previous state inevitably
comes at divergent resource costs in some form [16, 67—
69].

To obtain the upper bound including the control cost
in addition to the energetic cost, we need a finite upper
bound on the number of steps (depths) for achieving fi-
nite infidelity € in the Laundauer-erasure protocol, which
is where Theorem 2 below steps in. The setting of the
Landauer-erasure protocol starts with the initial state
ps of the target system S of interest and an environment
available in a thermal state at inverse temperature g > 0

e~ BHE

e8] = tr[e PH=]’ (53)
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where Hg is the Hamiltonian of the environment. Note
that S will be each qubit in the computer in our analysis,
but we here present a general result on a d-dimensional
target system. The goal of the Landauer-erasure protocol
is to transform the state

ps = pls = trelpsp] = tre[U(ps @ Te[B])UT]  (54)
by some unitary U, so that it should hold that
(01ps]0) = 1 —e, (55)

where |0) can be any pure state of the target system in
the same way as the requirement (14) in our framework.
In the Landauer-erasure protocol, energy is dissipated
into the environment F as heat

Qp = tr[Hp(py — pE)|. (56)

where we write

Pr = trslpsel (57)

One can always write this increase in the environment’s
energy as [23]

8Qp = AS+ D(E'|E) + I(E': §'), (58)

where E, E’' are the environment before and after the
Landauer erasure, S’ is the target system after the era-
sure,

AS = S(ps) = S(ps) (59)
is called Landauer’s bound [11],
S(p) = —tr[plnp] (60)
is the von Neumann entropy,
D(E'||E) = tr[pp(In plg — In7i[])] (61)
is the quantum relative entropy, and
I(E': 8") = S(pp) + S(ps) = S(psm) (62

is the quantum mutual information. Using (58) together
with I(E’ : §") > 0, we can bound the relative entropy
for the states of the environment after the erasure versus
before as

D(E'||E) < BQE — AS. (63)
Due to D(E’||E) > 0, it always holds that

> —.
Qp > 3 (64)
The quantity SQr — AS > 0 on the right-hand side
of (63) represents the excess of the protocol’s heat Qg
dissipated to the environment over that given by the Lau-
dauer’s bound AS, which is also an upper bound of how
different the environment’s initial state 7g[3] is from its



final state p’; after the erasure; as the condition on the
environment to be specified by the constant 7 in (15), we
require

BQp — AS <. (65)

With these notations, we obtain the following finite
bounds.

Theorem 2 (Finite Landauer-erasure bound). Given a
quantum state ps of a d-dimensional target system for
any d > 2 and any constants € € (0,1/2] and n € (0,1],
let T be

T:{@+1hn<@+ixd_ly>w:O<1bg¥>,

en en

where [---] is the ceiling function, and e is the Euler
constant. Then, a T-step Landauer-erasure protocol can
transform pg into a final state p'y with infidelity to a pure
state |0) satisfying (0|p|0) > 1 — ¢ in (55) by using an
environment at inverse temperature § > 0, in such a way
that the heat Qg in (56) dissipated into the environment
differs from Laundauer’s bound AS in (59) at most by

BQr — AS <, (67)
as required in (65).
Proof. The proof can be found in Appendix A 1. O

For our analysis of the framework in Fig. 3, this result
on the finite erasure is now applied qubit-wise, i.e., d = 2
in Theorem 2, to the computer’s state after the agent
has obtained output from the computer. In particular,
for each qubit of the computer, we run the erasure proto-
col in Theorem 2 in total W times in parallel to erase all
the W qubits, using W sets of T" auxiliary qubits of the
environment E for an appropriate choice of Hg as shown
in (A2) of Appendix A1, where each of the W sets is
used for erasing one of the W qubits in the computer.
In this case, as described in Appendix A1, the erasure
protocol is composed of T steps (labeled t € {1,...,T})
of swap gates, where the tth swap gate is applied be-
tween the qubit to be erased in the computer and the tth
auxiliary qubit in the set of T auxiliary qubits of the en-
vironment to erase this qubit of the computer. Note that
applying the qubit-wise erasure to each of the W qubits
in total W times may be more costly as a whole than
erasing the state of all W qubits in the computer simul-
taneously [70, 71] but provides a simpler upper bound
of the work cost; remarkably, it suffices to use this po-
tentially suboptimal Landauer-erasure protocol to prove
the exponential quantum advantage in Sec. IV. On the
other hand, for the analysis of the lower bound of the
work cost in Sec. III B, we will analyze the efficient era-
sure protocol applied to all qubits simultaneously at the
end of the computation to obtain a general lower bound.
We also remark that since the analysis here deals with
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the qubit-wise erasure, we indeed do not have to apply
the erasure collectively at the end of the computation but
can also initialize each qubit in the middle of the com-
putation as long as the initialized qubit is no longer used
for the rest of the computation. Later in our analysis of
step (3), we will make a minor modification to the proto-
col in Fig. 3, so that we may initialize each qubit in the
middle for quantum error correction rather than erasing
all the qubits at the end. The following analysis of the
upper bound of the work cost for the qubit-wise erasure
is still applicable with this modification.

For the erasure protocol in Theorem 2 applied to our
framework, the constant £ > 0 is to be determined by the
threshold for FTQC, and n > 0 by the amount of ther-
mal fluctuation of the environment. In particular, FTQC
can be performed if every qubit is reinitialized to a fixed
pure state |0) within constant infidelity e satisfying the
threshold theorem, i.e., (14). Moreover, we demand that
the environment changes little in this process of reinitial-
izing each qubit in the computer compared to a constant
amount of inherent thermal fluctuation of the environ-
ment. To state this littleness quantitatively, we require
for each single-qubit erasure that

ol — AS™) <, (68)

where Q%”) and AS® are Qp and AS in Theorem 2
applied to erase the wth qubit in the computer (1 <
w < W). Due to (63), this inequality implies that, for
each qubit of the computer that is erased separately, the
quantum relative entropy between the states of the cor-
responding environment E’(*) after the erasure protocol
and E(™) before (in the thermal state T](Ew)[ﬁ} as shown
in Fig. 3) is bounded by

D(E'™||E™) < (69)

for some small constant 77 > 0. The choice of 7 is inde-
pendent of that of ¢.

For each qubit, both requirements for ¢ and 7, i.e., (14)
and (68), can be satisfied simultaneously if we choose the
number of steps T large enough, but how large T should
be was unclear in the existing asymptotic results [16, 23—
26]. By contrast, Theorem 2 shows in more detail that if
we choose (for fixed dimension d = 2)

T= O(llog 1), (70)
n en

we can satisfy the above requirements at the same time

for any € € (0,1/2] and n € (0,1]. Using a gate set that

can implement a swap gate within a constant depth, the

depth of the erasure part £ in Fig. 3 is bounded by

D¢ <O(T). (71)
Also, due to (68), if we sum together the heat dissipation
for all W qubits, the protocol achieves

w

(w)
e LS UERS N

w=1



where the last inequality follows from the upper-bound
estimate AS™) < In2 that holds for each qubit.

Apart from the energetic cost Qp in the environment,
for each of the W qubits in the computer, the energetic
cost per qubit per single-depth part of the circuit for the
erasure is bounded by the maximum energetic cost Equpit
in (34). Thus, similar to step (1), the energy change
in the computer’s memory due to the erasure is upper
bounded by

AE®) < Equpic x WDg. (73)

As for the control cost, we can divide the control cost
of erasure into a product of the maximum control cost
per single-depth part of the circuit for the erasure and
the depth D¢ of the circuit in (71), in the same way
as step (1). To bound the maximum control cost per
single-depth part of the erasure, as in (53), let Hg de-
note the overall Hamiltonian Hg of the environment used
for the single-qubit erasure protocol, which decomposes
into the sum over the single-qubit Hamiltonians Hg) of
the tth auxiliary qubit of the environment used at the
tth time step in the protocol (1 <t < T). The control
cost per single-depth part of the circuit depends on the
energy scale of the qubit to be controlled, i.e., Equpbit for a
qubit in the computer and ||Hg|o for the environment
to reinitialize the qubit by the Landauer erasure (note
that Hg > 0 holds for the Landauer-erasure protocol
here, as shown in (A2) of Appendix A 1). To avoid fixing
the specifics of the control system, we here recall the con-
ventional scaling of the control cost Ft,1. of the qubit in
the computer in (38); following this conventional scaling,

J

17

we here assume that the control cost in the environment
per single-depth part of the circuit depends linearly on
the energy scale of the environment Hamiltonian, i.e.,

B = O(|Hgl|),

ctrl. =

(74)

as shown for the conventional models in, e.g., Ref. [32]
(see also Appendix B). We calculate in Proposition 11
(Appendix A1) how the largest energy eigenvalue
|HE || of the environment Hamiltonian scales as a func-
tion of T'— oo and € — 0, for fixed inverse temperature
B. This calculation allows us to estimate the per-depth
control cost of all the T" auxiliary qubits in the environ-
ment for erasing each of the W qubits in the computer
(for fixed dimension d = 2) by

. T o1
E(Etrl). = O(ﬂ log 8).

Consequently, the control cost of erasure for the W qubits
in the computer and the corresponding W sets of the
auxiliary qubits in the environments for the Laudauer
erasure protocol is bounded by

(75)

EE) < (Em +E<E>) « W Ds.

ctrl. — ctrl.

(76)

If E¢ty. is independent of IV, then E,. may be negligible
compared to the control cost Ec(tb;f of the environment, in
the limit of 1, — 0 due to (70) and (75); however, in the
general case where the control cost E¢1. of the computer

may grow in the problem size N and is not negligible, we
keep both E.,1. and EE)

ctrl.

separately in (76).

As a whole, by combining (70) — (76) together to bound the work cost for the erasure, we obtain

Wikte = AB® + E) + Qp (77)
(B) w
< (Equbit + Ectrl. + Ectrl.) X WD€ + F(lnz + 77) (78)
1 w 1
=0 ((Equbit + Ectrl. + ) X pOlleg) (79)
Bn n en
1 w 1
= O ((Wmax,el. + ) X p01y10g> ) (80)
Bn U en

where Winax,el. is given by (33). Also, as shown in (30), the relevant contribution to the energy consumption W is
the control cost, which is bounded, due to (70), (72), (75), and (76), by

%
ESL + Qp < (Ban. + B ) % WDe + 5 (n2+)

1 w 1
=0 ((Ecm_ + ) X polylog) .
Bn n en

To summarize the argument on the achievable upper bound of the energy consumption of the quantum computation
in Fig. 3, in the case without gate errors, the energy consumption can be given by Theorem 3 shown in the following.
The derivation is based on the expressions in (52) and (82); in particular, we use (30) to make all the energetic costs
(i.e., the terms involving Equpit in (34)) cancel out, and thus, only the control and initialization costs remain.

(81)

(82)
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Theorem 3 (An upper bound of energy consumption in ideal case without gate errors). Given constants Eegy,
n (38) and B in (13), working in an idealized case without gate errors, computation in the framework of Fig. 3 can
be performed with an energy consumption W (Definition 1) bounded, as the problem size N goes to infinity, and the

infidelities €,m > 0 vanish, by

1 w 1
w S W(Q) =0 (Ectrl. X WDcomp + (Ectrl. + ) X p01y10g<€n)) ) (83)
n

Bn

where the width W of the circuit in (9) and the depth Deomp given by (17) are the parameters depending on the

problem size N.

Proof. The proof can be found in Appendix A 2. O

Step (3): Contribution from quantum error correction.
The discussion so far has not taken into account imper-
fections in carrying out the unitary operations Uy and
swap gates for input and output, which are necessary for
realizing quantum computation. Any unitary gate car-
ried out on an actual physical platform will inherently
be imperfect, be it through unavoidable noise [72], non-
ideal control parameters [73], or timing errors [74, 75].
Quantum error correction is a way to suppress the effect
of these errors given that the rate at which these errors
occur is below a certain threshold value, a result that is
known as the threshold theorem [50-61]. The main prin-
ciple of quantum error correction is to use a quantum
error-correcting code of multiple physical qubits to re-
dundantly represent a logical qubit on which the unitary
operations are carried out. In this way, we, in principle,
have protocols for FTQC. However, such fault-tolerant
protocols to simulate the given original circuit by running
the corresponding fault-tolerant circuit may incur space
and time overheads, i.e., the overheads in terms of the
number of qubits and the circuit depth, respectively, of
the fault-tolerant circuit compared to the original circuit.

In the computational model herein presented, the
space is quantified through the number of qubits W
in (9), and the time through the circuit depth D in (90),
as shown in Fig. 3. With a fault-tolerant protocol using
measurements and classical post-processing, one could
convert the original circuit in Fig. 3 into a fault-tolerant
circuit with only polylogarithmic overheads in width and
depth; in particular, to simulate a given W-width D-
depth circuit, the fault-tolerant circuit can have [72]

Wgr = W X polylog(WD), (84)
Drr = D X polylog(WD), (85)

where WgT and Dpr are the width and depth of the fault-
tolerant circuit, respectively. This choice is not unique
but depends on the construction of the fault-tolerant pro-
tocol to achieve FTQC. For example, advances have
been made to achieve a constant space overhead Wgt =
W x O(1) and a quasi-polylogarithmic time overhead
Drr = D x exp(polylog(log(WD))) [61]; more recently,
Ref. [76] has proven that a fault-tolerant protocol can
achieve a constant space overhead Wrpr = WxO(1) and a
polylogarithmic time overhead Dpr = D X polylog(W D).

To analyze the upper bound of the achievable quantum
cost W(Q) of energy consumption with the fault-tolerant
protocol in (84) and (85), one has to modify the analysis
in steps (1) and (2), so as to allow initializing qubits in
the middle of the computation rather than at the end
and to include costs of measurements and classical post-
processing present in the fault-tolerant protocol. The
qubit initialization in the middle of computation is in-
dispensable for performing quantum error correction to
achieve FTQC; in the presence of noise, if the initializa-
tion were allowed only at the beginning or at the end,
the class of problems that noisy quantum computation
can solve would be significantly limited [77]. Regarding
the initialization, as discussed in step (2), the same up-
per bound on the work cost of each qubit-wise erasure
remains to hold even if we initialize each qubit in the
middle rather than at the end. As for the measurement,
an ideal projective measurement would come at a diver-
gent resource cost as explored in Ref. [36], but for the
quantum error correction, measurements with a finite fi-
delity above a certain constant threshold are sufficient.
The costs of these finite-fidelity measurements may still
be non-negligible, and their exact value is still subject to
research [31, 78, 79]; however, in principle, this cost can
also be bounded by a constant that is independent of the
algorithm’s other parameters such as the problem size IV,
similar to the cost of each gate in (33). The cost of clas-
sical post-processing can also be evaluated by writing the
classical computation in terms of reversible classical logic
circuits and bounding the cost of each classical logic gate
by a constant, similar to (33). In this way, the increase of
the work cost arising from quantum error correction can
be taken into account in principle by setting ¢ in step (2)
as a constant below the threshold and multiplying poly-
logarithmic factors to W, Dy, and D¢ as shown in (84)
and (85).

On top of this, to solidify our analysis, we further
employ the fact that measurements and classical post-
processing are not fundamentally necessary for FTQC;
in particular, instead of performing the syndrome mea-
surement and classical post-processing for decoding in
FTQC, it is possible to implement the decoding by quan-
tum circuits and perform the correction by the controlled
Pauli gates in place of applying Pauli gates conditioned
on the output of the classical post-processing [80, 81].
In the fault-tolerant protocol with measurements, each



measured qubit can be reinitialized and reused in the
rest of the computation, where a single qubit may be
initialized multiple times in implementing the computa-
tion. By contrast, we here allow initializing each qubit
only once in the middle of the computation, so as to
apply the same upper bound of the work cost as that
obtained in step (2); that is, the fault-tolerant proto-
col without measurements here never traces out each of
these qubits, and furthermore, instead of reinitializing
the same qubit multiple times, another auxiliary qubit
is initialized by the finite erasure protocol in the mid-
dle of the computation. The fault-tolerant circuit with
measurements has the depth of D x polylog(W D), and
thus, each of the W X polylog(W D) qubits in this fault-
tolerant circuit may have at most D X polylog(W D) mea-
surements. To simulate these measurements and classi-
cal post-processing in the above way, it suffices to use
at most D x polylog(W D) auxiliary qubits for each of
the W x polylog(W D) qubits in the protocol without the
measurements. Consequently, sacrificing the efficiency
in the circuit width W (i.e., introducing a polynomial
factor in D to W), we implement the original circuit in
Fig. 3 by a fault-tolerant protocol without measurements,
which achieves

Wpgr = WD x polylog(W D), (86)
Dt = D x polylog(WD), (87)
|
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in simulating a W-width D-depth original circuit. While
whether we should completely avoid the measurements
in implementing quantum computation may be of ques-
tionable practical relevance, these results show that the
measurement and post-processing costs are not a funda-
mental restriction toward bounding the energy consump-
tion of quantum computing.

As a whole, we conclude this section by summarizing
all the costs in one theorem including those of quantum
error correction. Recall that the depth of the circuit in
Fig. 3 is, according to (16),

D = Deomp + De (88)
1 1
—0|(D “log [ —

o ( comp 7108 (m)) (89)

= 6 (Dcomp + 3:]) 3 (90)

where the second line follows from (70) and (71), and
with the big—a notation, we may ignore polylogarithmic
factors. Thus, with D in (90), adding D auxiliary qubits
for each of the W qubits in Fig. 3, up to polylogarithmic
factors, we can use the fault-tolerant protocol without
measurements in (86) and (87) to obtain the following
theorem.

Theorem 4 (An upper bound of energy consumption including the cost of quantum error correction). Given constants
Ectn. in (38) and B in (13), quantum computation in the framework of Fig. 8 can be performed in a fault-tolerant way
with an energy consumption W) (Definition 1) bounded, as the problem size N goes to infinity, and the infidelities
e,n > 0 vanish, by

@_5 ! 1y, W (Do +5)
w < w =0 Ectrl. x W Dcomp + H Dcomp + Ectrl. + F'f'] X ﬁ ) (91)

where the width W of the circuit in (9) and the depth Deomp given by (17) are the parameters depending on the

problem size N, and with O, we may ignore polylogarithmic factors in W, D, 1/e, and 1/7.

B. Lower bound on energy consumption of classical
computation

In this section, we derive a general lower bound
w > w© (92)

of energy consumption required for classical computation
in the framework of Fig. 3. The techniques for finding an
achievable upper bound in Sec. IIT A are not applicable to
finding a fundamental lower bound of energy consump-
tion. After all, in the limit of energy-efficient implemen-
tation, a single elementary gate may be performed at as
close to zero control cost as possible, as we have pointed
out in Sec. IT A. Rather, the essential technique here for

(

deriving the nonzero fundamental lower bound is to use
the non-invertibility of the classical oracle. Due to the
non-invertibility of the classical oracle, to reset the com-
puter’s memory at the end of the computation, we need
to perform the Landauer erasure of information obtained
from the queries to the oracle, which inevitably consumes
energy.

Using energy conservation in (3) together with the heat
dissipation in the Landauer erasure, we obtain a general
lower bound on the energy consumption of classical com-
putation in the framework of Fig. 3, as shown by The-
orem 5 below. In this theorem, we identify an entropic
quantity %S (Cla) as a lower bound of energy consump-
tion, which falls into the category of the initialization cost



that is derived in an information-theoretic way and is
thus implementation-independent.® Even more notably,
since we work on the query-complexity setting with the
classical oracle, we can employ the techniques for deriving
the lower bound of query complexity to prove rigorously
that the required energy consumption for any classical al-
gorithm to solve the problem can also be strictly gapped
away from zero, even without complexity-theoretical as-
sumptions on the hardness of the problems, such as the
hardness of integer factoring for classical computation.
Yet we remark that, as we will see in Corollary 9 of
Sec. III B, the query complexity and the entropic lower
bound of the energy consumption do not necessarily co-
incide in general up to constant factors.

Theorem 5 (A lower bound of energy consumption). If
the classical computer in Fig. 3 is allowed to interact with
an environment at inverse temperature 8 > 0 for memory
reinitialization, any computation in Fig. 3 requires an
average energy consumption of at least

5(Cla)

/3 )
in the limit of closing the thermodynamic cycle € — 0,
where S(Cla) =" ,_o,p(a)S(pS) is the conditional en-
tropy of the classical-quantum state for the computer’s
state pC before the erasure € conditioned on the measure-
ment outcome a € {0,1} of the output register, p(a) is
the probability distribution of the measurement outcome,

and S(p) = —tr[plnp].

sz(C) —

(93)

To prove the lower bound in Theorem 5, we have al-
ready introduced most of the essential techniques in for-
mulating the framework of computation in Sec. II. What
remains for completing the proof is to assemble these
techniques, which yields the following concise proof.

Proof of Theorem 5. We prove Theorem 5 by starting
with some general energetic considerations along the lines
of the thermodynamic diagram in Fig. 1. As introduced
in Definition 1, W is the energy consumption of the com-
puter including reinitialization at the end. Together with
the heat dissipation into the environment Q, we have en-
ergy conservation in (3), i.e.,

W=0Q0=0p+Qp, (94)

9 In our analysis of the lower bound of energy consumption of
classical computation, we do not only analyze the scaling but
provide the lower bound %S(C’\a) explicitly, i.e., including the
constant factors, which is important for explicitly providing the
goals of the experimental demonstrations shown by Table I of
Sec. V. The agent’s knowledge of the 1-bit information a of the
result of the computation may be asymptotically negligible, but
our analysis explicitly takes a into account to provide the lower
bound including the constant factors.
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where the second equality is given by (28). Recall that
the heat dissipation Qg due to control costs is by defi-
nition non-negative as shown in (27), and thus, the ini-
tialization cost Qg provides a lower bound

W > Qg. (95)

As shown in (58), Landauer’s principle [11, 23, 82] guar-
antees that, for reinitialization of the computer’s memory
using a heat bath at inverse temperature 8 > 0, the heat
dissipation Qp into the environment is bounded by

BOr =AS+ D(E'||[E)+I(E": S") > AS,  (96)

where we use D(F'||E) > 0 and I(E’ : S") > 0. Note
that AS is the change in entropy of the state of all the
W bits in the computer to be erased; as discussed in
Sec. IIT A, repeating the single-bit Landauer-erasure pro-
tocol W times in total (analyzed for deriving the upper
bound) may be more costly as a whole than the erasure
of all the W bits collectively [70, 71]. Thus, the simulta-
neous erasure of all W bits is analyzed here to derive the
general lower bound based on Landauer’s principle.

To write down AS more explicitly, we recall the fact
that the agent has access to the output a € {0, 1} stored
in the output register before performing the erasure £ in
Fig. 3, where a may, in general, be correlated with the
computer’s state p¢ before the erasure conditioned on a.
Even though the single-bit information in the output may
not affect the asymptotic scaling, it is still necessary to
take it into account to ensure that we bound the required
energy consumption from below. Thus, AS on average
is written as the conditional entropy

AS > S(Cla) — S(C'|a) — S(Cla) ase—0, (97)
where S(C’|a) is the conditional entropy of the classical-
quantum state for the computer’s state after the erasure
& conditioned on a, and we have S(C’la) - 0ase — 0
since the computer’s state after the erasure in (55) is a
fixed pure state in the limit. These bounds yield

AS _ S(Cla)
Qp > —/— > ———, 98
B2 5 (98)
which, together with (95), implies the energy-
consumption inequality
S(C
to prove Theorem 5. O

One may wonder under which circumstances the bound
provided by Theorem 5 on the energy consumption is
strictly gapped away from zero, i.e., where the non-
zero entropy comes from. The origin lies in the query-
complexity setting, where usually, the oracle Oy is drawn
randomly from some set of functions f specified by the
problem to be solved. Then, the agent performs compu-
tation to learn some property of f via the queries to Oy,



but it is not necessarily required to specify the function
f itself in full detail. Conditioned on the algorithm’s
output a, we have a probability distribution p(f|a) ac-
cording to which the function f (i.e., the oracle Oy) is
chosen. A nonzero entropy of this probability distribu-
tion p(fla) leaves a nonzero entropy S(C|a) in the com-
puter’s memory. Then, to erase this information obtained
from the (randomly chosen) oracle, nonzero energy con-
sumption is inevitably required due to Laudauer’s princi-
ple. This analysis indicates that the entropic lower bound
S(Cla)/B of energy consumption in Theorem 5 is deter-
mined not only by the lower bound of query complexity
but also by the probability distribution p(f|a) for the
oracle.

In Sec. IV, we will derive how the entropy arises and
where the connection to p(f|a) lies. Then, we employ the
bound in Theorem 5 to prove the exponential energy-
consumption advantage of quantum computation over
classical computation in solving a computational task,
in particular, Simon’s problem [12, 13].

IV. EXPONENTIAL QUANTUM ADVANTAGE
IN ENERGY CONSUMPTION

In this section, using the upper and lower bounds on
energy consumption shown in Sec. III, we prove that
the energy consumption of quantum computation can
be exponentially smaller than that of classical compu-
tation within our framework. In Sec. IV A, we recall
the standard formulation for Simon’s problem given in
Refs. [12, 13]. In Sec. IV B, we apply Theorems 3 and 4
to show that the energy consumption of quantum com-
putation to solve Simon’s problem scales polynomially
with the problem size, and in Sec. IV C, we use Theo-
rem 5 to prove that any classical algorithm for solving
the same problem requires an energy consumption that
scales exponentially in the problem size.

A. Definition of Simon’s problem

Simon’s problem [12, 13] is an exemplary case where
the query complexity in quantum computation is expo-
nentially separated from any classical computation. The
structure of the quantum algorithm to solve Simon’s
problem is closely related to the ones to solve the non-
oracle-based (i.e., non-relativized) problems of the dis-
crete logarithm and the integer factorization [83]. The is-
sue with the latter non-relativized problems is that lower
bounds on the complexity of classical algorithms to solve
them are notoriously hard to show in general because
they mainly boil down to the open question of whether
there exists a classical polynomial-time algorithm to solve
the integer-factorization problem [84, 85]. Studying Si-
mon’s problem allows for a robust analysis, where lower
bounds on the complexity of classical algorithms do not
depend on the conjectured difficulty of a computational
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task. Our analysis, therefore, will lay the groundwork for
studying the other problems on a case-by-case basis.
Simon’s problem [12, 13] may be posed as the computa-
tional task to search for an unknown bit string or, in the
way we will define it in Problem 6, as the task of decid-
ing whether an unknown function f : {0, 1}" — {0,1}¥
with N-bit input and N-bit output is 1-to-1 or 2-to-1
mapping. The computer solving the problem has access
to an oracle Oy, to obtain the output of f for a given
input x. For the classical algorithm, the oracle is defined
as a map in (7) and Fig. 2(a), i.e.,
0% (2,0) = (. f(x)) (100)
f ) 9 9
for all inputs x € {0,1}"V on the first N bits, with the
second N bits initialized in 0. When it comes to the
quantum oracle, on the other hand, the conventional pre-
scription of the oracle is a unitary map that transforms
each computational-basis state |x,y) as

OF(|z.9)) = .y & f()) (101)
as shown in (8) and Fig. 2(b). For superposition states
of >, , ®y|2,y), the quantum oracle acts linearly on
each term of |z, y).

Without further ado, we present the definition of Si-
mon’s problem as follows.

Problem 6 (Simon’s problem [12, 13]). Let N > 0
be the problem size and Oy the oracle for a function
f:{0,1}N — {0,1}Y constructed in the following way:
choose an N-bit string s € {0,1}¥ \ {0} and a single-bit
state b € {0, 1} uniformly at random. If b =0, then f is
a uniformly randomly chosen 1-to-1 function. If b =1,
then f is a uniformly randomly chosen 2-to-1 function
satisfying, for all x € {0,1}V,
f(x)=flz®s), (102)
where @ is the bitwise exclusive OR. The goal is to output
a € {0,1} that estimates b correctly, i.e., a = b, with
a high probability greater than 2/3 on average, using as
few calls to the oracle Oy as possible, where the average
success probability is taken over the choices of s, b, and

1.

In the following, we will apply the techniques devel-
oped in Sec. III to show that there exists a quantum
algorithm for solving Problem 6 whose energy consump-
tion is exponentially smaller than that required for any
classical algorithm. In particular, we use Theorem 4 to
show that a quantum computer can solve Simon’s prob-
lem at an energy consumption W < W(Q) = O(poly(N))
as the problem size N grows (Corollary 7), and we ap-
ply Theorem 5 to show that all classical algorithms solv-
ing the same problem consume the energy of at least
W > WE) = Q(2N/2N) (Corollary 9).



B. Quantum upper bound on energy consumption
for solving Simon’s problem

In this section, we analyze the energy consumption of
a quantum algorithm that solves Simon’s problem as de-
fined in Problem 6 in Sec. IV A. In particular, as a corol-
lary of Theorem 4, we show in Corollary 7 by summing up
all the contributions of the upper bound of energy con-
sumption in Theorem 4, that a fault-tolerant quantum
computer can solve Simon’s problem with only a polyno-
mial amount of energy consumption in the problem size
N. We also remark that the result shows that the poly-
nomial amount of energy consumption in NV is achievable
for quantum computation solving Simon’s problem even
if the parameter E, . for the control cost in (38) grows
polynomially in V.

Corollary 7 (Upper bound of energy consumption for
quantum algorithm to solve Simon’s problem). Let N >
0 be the problem size and the oracle Oy be chosen accord-
ing to the probability distribution for Simon’s problem in
Problem 6. Then, there exists a fault-tolerant quantum
algorithm for solving Simon’s problem with energy con-
sumption bounded by

W < WQ = O (E.n. x poly(N)). (103)

Proof. In deriving the general upper bound of energy
consumption of quantum computation in Theorem 4 of
Sec. ITIT A, we have accounted for all the contributions to
the work cost of performing a general quantum computa-
tion according to the framework in Fig. 3. For the proof
here, the remaining point to be done is to translate the
algorithm presented in Refs. [12, 13] (for introductory ex-
planations, see also Refs. [86, 87]) to our computational
framework, so as to calculate the bound in W and Dcomp
(i.e., Dy, and M in the definition (17) of Deomp) accord-
ingly.

In the quantum algorithm for solving Simon’s problem
in Refs. [12, 13], a quantum subroutine Fourier-twice is
repeatedly used. This quantum subroutine acts on 2N
qubits initialized as |0)®* with the operations in the
following order: (i) N parallel Hadamard gates act on
the first N bits, i.e., V = H®N @ 19V with circuit depth
O(1), then, (ii) the oracle Oy acts on all 2N qubits simul-
taneously and finally, (iii) N parallel Hadamard gates V'
are again applied on the first N qubits. In the overall
quantum algorithm, this subroutine is carried out O(N)
times; that is, the oracle Oy (called once in (ii) per per-
forming this subroutine) is called in total M times with

M = O(N). (104)

In fact, it has been shown that this is also the best a
quantum algorithm can do; i.e., any quantum algorithm
solving Simon’s problem has to query Oy at least O(N)
times [88].

In the algorithm as structured in Fig. 3, M sets of 2N
qubits are initialized at first, i.e.,

W =2N x M = O(N?), (105)
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and the subroutine is sequentially applied to the mth set
of the 2V qubits for 1 < m < M. In this case, U; is of
the form

Uy =V ®1®92NM-1) (106)
and all remaining U}, for 2 < k < M are of the form
Up =192N¢E-2) oy oV @ 192N M —k) (107)

where 1%° = 1. The last unitary Uy, 1 equals the oper-
ation 1®2NM-1) @ V/ followed by a quantum implemen-
tation Upost—processing Of the classical post-processing of
the resulting state obtained from M repetitions of the
subroutine, i.e.,

UM+1 = Upost—processing(]1®2N(M_1) & V), (108)

where Ups41 can be performed within time complexity
O(N?3) [87]. Therefore, using, e.g., the Clifford+T uni-
versal gate set, each of these unitaries can be imple-
mented efficiently with circuit depths, for all 1 < k < M,

Dy, = 0(1), (109)
and
D1 = O(N?). (110)

Note that the classical post-processing in Uprqq can be
represented by a reversible classical logic circuit, e.g.,
written in terms of the classical Toffoli gate, and by
replacing each classical Toffoli gate with the quantum
Toffoli gate (and further rewrite each quantum Toffoli
gate in Clifford and T gates if we use the Clifford+T
universal gate set), we obtain the quantum circuit of
Upostfprocessing of depth O(NS)

Therefore, in the ideal case without gate error, insert-
ing the explicit numbers in (104), (105), (109), and (110)
into the upper bound of the energy consumption in The-
orem 3, we find that the energy consumption in the
quantum algorithm in Fig. 3 to solve Simon’s problem
is bounded by

w S W(Q) =0 (Ectrl.NS) ) (111)

where the dominant part is the one for implementing
Unm+1 by a circuit of volume WDy = O(N®), and
B, n, and € are set as constants. Even in the case where
we implement this quantum algorithm by a fault-tolerant
protocol without measurement in Theorem 4, the energy
consumption in implementing the quantum algorithm to
solve Simon’s problem in a fault-tolerant way is bounded
by

W <WQ =0 (B N®) (112)
where the dominant part is the ome for implement-
ing Upr4+1 by a circuit of volume O(WDpr1Dpry1) =
5(1\7 8), and O may ignore polylogarithmic factors. In
any of these cases, we obtain

w < W(Q) = O(Ectrl. X pOIY(N))7 (113)

which scales polynomially in N so long as the parameter
E.t1. for the control cost also scales polynomially in N.
O



C. Classical lower bound on energy consumption
for solving Simon’s problem

In this section, we use the lower bound of energy con-
sumption in Theorem 5 to prove that any classical com-
putation that can solve Simon’s problem (Problem 6)
should require an exponentially large energy consump-
tion in the problem size N, no matter how energy-
efficiently the algorithm is implemented, as shown in
Corollary 9 below.

The essential idea for deriving this lower bound of
the energy consumption is to establish a connection be-
tween the conventional argument for a lower bound of
query complexity of classical algorithms for solving Si-
mon’s problem [12, 13] and the entropic lower bound of
the energy consumption that we derived in Theorem 5.
In Problem 6, s € {0,1}¥ \ {0}, b € {0,1}, and f are
chosen uniformly at random, and the classical algorithm
makes M queries to the oracle O using M different clas-
sical inputs x1,...,za € {0,1}Y to estimate b, i.e., to
output a € {0, 1} satisfying a = b, with a high proba-
bility greater than 2/3. We write these M inputs to Oy
collectively as

—

Z=(x1,...,TMm). (114)

Note that a random guess of b would only achieve the av-
erage success probability of 1/2; but Problem 6 requires a
strictly better average success probability 2/3 =1/2+ A
for A =1/6.

We here provide a necessary condition on M for achiev-
ing the average success probability 2/3 in Simon’s prob-
lem as required in Problem 6. In Refs. [12, 13], it has been
shown that, in order to have the average success prob-
ability 1/2 + 2-N/2 it is necessary to make M queries
with at least M > 2V/4; later in Refs. [86, 87], this lower
bound has been improved by proving that a larger lower
bound M = Q(2/2) should be necessary for achieving
the average success probability 1/2 + €2(1), but the con-
stant factors of the lower bounds were not explicitly pre-
sented. Refining these analyses, we here show that, for
any problem size N and required average success prob-
ability 1/2 + A, we have a lower bound of the query
complexity of Simon’s problem with an explicit constant

ﬁ_—AA X 2N/ﬂ’ where A € (0,1/2) is an
arbitrary constant in this parameter region and is suit-
ably tunable for our analysis. In particular, we prove the

following proposition, where the proof is given in Ap-
pendix A 3.

factor given by

Proposition 8 (Refined analysis of lower bound of query
complexity of Simon’s problem for classical algorithms).
For any parameter A € (0,1/2), if we have

2A

M<MN’A::’V 1—|—7A

X 2N/ﬂ , (115)

the average success probability of any probabilistic classi-
cal algorithm with at most M queries for Simon’s problem
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in Problem 6 is upper bounded by

E + A. (116)
2

Due to this proposition, the required number M of the
oracle queries for the classical algorithms to solve Simon’s
problem is lower bounded, for any N and any choice of
A € (0,1/2) in Proposition 8, by

M > My a =Q(2V/?) (117)
with a high probability, where we quantify this probabil-
ity more precisely in Lemma 12 of Appendix A 3.

In the following corollary on the lower bound of energy
consumption, we argue that the above query-complexity
bound can be used for evaluating a dominant contribu-
tion to the entropy of the state of the computer. Thus,
as the corollary of Theorem 5, we have the lower bound
of the energy consumption of classical computation. Our
lower bound of the energy consumption for any classical
algorithm for solving Simon’s problem scales Q(2V/2N)
(with explicit constant factors derived in (146) and (149)
in the proof), which is different from that of the query
complexity Q(27V/2) for the same problem (i.e., those in
Refs. [86, 87] and Proposition 8). Indeed, as we will show
later in Proposition 10, the upper bound of query com-
plexity of Simon’s problem for classical computation is
also O(2V/2) and thus is strictly smaller than the lower
bound of energy consumption Q(2V/2N). As we have
argued in Sec. III B, this difference arises because the
query complexity only counts the number of queries, but
the lower bound of the energy consumption of classical
computation is determined by the amount of information
(i.e., entropy) obtained from the queries, depending also
on the probability distribution of the oracle.'® In this
regard, the difference in the scaling of the energy con-
sumption and the query complexity of classical compu-
tation solving Simon’s problem quantitatively illustrates
the fact that the energy consumption and the number of
queries are different computational resources despite the
resemblance in the proof techniques.

Corollary 9 (Lower bound of energy consumption for all
classical algorithms to solve Simon’s problem). Let N >
0 be the problem size of Simon’s problem in Problem 6.

10 If one divides the entropy by the number of queries, one may
be able to define the entropy per query, but it still remains un-
clear whether one could directly evaluate a lower bound of the
entropy per query without analyzing the overall entropy for all
the queries. In the case of Simon’s problem, the entropy per
query scales linearly with the problem size IN; however, this scal-
ing depends on the probability distributions of the oracles used
in the computational problems and thus may differ in general.
Therefore, we need to evaluate a lower bound of the overall en-
tropy, not just the query-complexity lower bound, to derive a
lower bound of energy consumption.



Any probabilistic and adaptive classical algorithm to solve
Simon’s problem has an energy consumption of at least

2N2N
Q :
)

Proof. As formulated in Sec. II, the crucial assumption
for our analysis is that the knowledge on the input-output
relations for f obtained from the oracle queries in the
classical computation remains in the computer, up to
possible reversible transformations Uy, until erased with
the thermodynamical work cost. As for the choice of the
input sequence Z in (114), the classical algorithm can
be probabilistic and adaptive in general. For our anal-
ysis to cover these general cases, we consider the clas-
sical algorithms where the classical input xg4; to the
oracle O¢ is sampled probabilistically and can depend
on the previous inputs x1,...,x; and the oracle outputs
f(x1),..., f(zr). Moreover, after each query to the or-
acle, the algorithm may probabilistically decide to stop
or to continue further querying the oracle. In partic-
ular, let ¢;(z1) denote the probability distribution on
the choice of x7, and for each k& > 1, conditioned on
the previous oracle calls with input x, and output func-
tion value f(xp) for 1 < ¢ < k, we write the condi-
tional probability distribution on the next choice of xj
as qr(xg|{(xe, f(ze)) : 1 < £ < k}). The algorithm uses
M different inputs, and thus, if z; has already appeared

J

w > w©)

(118)
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previously in 1,...,Tk_1, i.€., T € {z¢ : 1 < € < k},
then we have gy (@ |{(z¢, f(z¢)) : 1 < € < k}) = 0. For
a given sequence ((z1, f(z1), ..., (zk, f(zr)) of k queries,
the algorithm stops with probability

q(stop|{(ze, f(ze)) : 1 <L < k}), (119)

or continues for the (k + 1)th query with probability

1<e<k})
x0)): 1 <L <k}).

q(continue|{(x¢, f(x¢)) :
=1 — glstop|{(z2, /( (120)
Since we require that z1,..., 2, € {0,1}" should be k
different inputs among 2%V elements, it holds by construc-
tion that
q(continue|{(z¢, f(z¢)) : 1 <€ <2V}) =0, (121)
which is the requirement that the algorithm must even-
tually terminate with at most 2V queries. The overall
strategy of the classical algorithm is determined by the
strategy for choosing ¥, i.e., q1,¢q2, ..., and that for stop-
ping, i.e., g(stop|...) and g(continue|...). Given this
general formulation of strategies in choosing the input
sequence T to the oracle, we can write the computer’s
memory state before outputting a in Fig. 3, conditioned
on having queried the function oracle exactly M times,
up to reversible transformation, as

prM = pf(lM) Z(q (stopl{ (e, f(ze)) h<e<nr) qur(war{ (e, fze)) hi<e<ri—1)
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M-1
H gq(continue|{(z, f(

k=1

where py(M) is the probability of the strategy yielding
exactly M queries defined via normalization trpy ] = 1,
we may write ¢1 (1) as gk (x| ...) with k = 1 for simplic-
ity of notation,

M
pra = Q) |wk, f(@r) (e, (@) (123)
k=1

is a (2N x M)-bit classical state, i.e., a diagonal density
operator, representing the M different input-output rela-
tions, and we here write only the relevant (2N x M)-bit
part of the state depending on f and & out of the W bits
in the computer.

In general, for fixed s, b, and f in Problem 6, the re-
quired number of queries M for the algorithm to suc-
ceed in estimating b may change probabilistically, de-
pending on the strategy of the algorithm, i.e., q1,¢o, ...,
g(stop|...), and g(continue|...). We write the average

xe>>}1<e<k>qk<xk|{<m,f<u>>}1<e<kn)pm-

(122)

(

state before the output, in expectation taken over all pos-
sible number of queries M > 1, as

pr=Y_ pr(M)psur (124)

M>1

For the agent before seeing any output from the com-
puter, this state is further averaged over the uniform
probability distributions p(s), p(b), p(f|s,b) as described
in Problem 6, i.e., up to reversible transformation,

ZZP p(f]s,b)py (125)
Z ZZP p(fls,0)pr(M)psar (126)
M>1 s,b

= Z p(M)PM, (127)



where we write in the last line

Zzp p(fls,b)ps (M),
ZZP

(128)

p(fls, 0)ps(M)psnr.
(129)

In this notation, p(M) represents the probability of the
algorithm stopping exactly after M queries on average
over the choices of s, b, and f, and py; is the state of
the computer’s memory before the output, conditioned
on the algorithm stopping exactly after M queries, on
average over s, b, and f.

To output a in Fig. 3, the agent uses the output reg-
ister prepared in |0) and performs a swap gate to pull
out one of the W bits from the computer to the output
register, where the state of the bit in the computer on
which the swap gate acts becomes |0) after these output
operations. After the swap gate, the (W + 1)-bit state
of the computer and the output register is equivalent to
p¢ ®10) (0] up to reversible transformation. A measure-
ment of the output register is then performed to obtain
the single-bit output a € {0,1} with probability pout(a).
For the agent who knows the output a of the compu-
tation, before performing the erasure £ conditioned on
a, the computer’s state is in a W-qubit mixed state p¢,
which is a classical state represented by a diagonal den-
sity operator obtained by measuring one of the W + 1
qubits in the basis {|a) : @ = 0,1}. As a result, for
any agent erasing the computer’s state, the probabilis-
tic state of the computer’s memory has the conditional
entropy S(Cla) of the state

Z pout

Since the entropy is invariant under the reversible trans-
formation, we have

S(p” ®10) 0f) = S(p°).

Thus, by definition of the conditional entropy, it holds
that

) la) (al @ pg. (130)

(131)

S(Cla) = S(p° ®10) (0]) = S(a) (132)
> S(p%) —In2 (133)
> > p(M)S(par) —In2, (134)

M>1

where the In2 comes from S(a) < In2 for a single-bit
state, and the last line is due to (127) and the concavity
of the entropy [9].

With the bound (134), we evaluate the entropic lower
bound in Theorem 5, by taking into account the assump-
tion that the algorithm should stop successfully. We are
proving the entropic lower bound for all classical algo-
rithms with success probability greater than 2/3, and
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importantly, our analysis takes into account all possi-
ble classical algorithms that try to minimize energy con-
sumption at their best. For example, if the input se-
quence & = (x1,...,2z)) obtained from M queries in-
cludes some pair (2, ., ) satisfying f(zx) = f(2,), then
the algorithm can know that f is a 2-to-1 function with
s = ) D x,. But even in such a case, the algorithm
does not have to stop immediately but is still allowed
to continue queries and computation, e.g., for trying to
uncompute some part of the computer’s memory so as
to reduce the overall energy consumption at best. On
the other hand, as long as the overall success probability
is greater than 2/3, the algorithm may stop even before
making the My A queries with some small probabilities
to save the energy consumption (we allow such stops even
if the input sequence & with M < My a does not contain
any pair satisfying f(x) = f(zm)). Our proof covers all
these cases, to find the fundamental lower bound on en-
ergy consumption for all possible classical algorithms to
solve Simon’s problem 6.

To arrive at a lower bound on the entropy of the com-
puter’s state, we have to constrain the possible probabil-
ity distributions p(M) and the entropy S(par) in (134).
To bound p(M) in (134), we use the requirement in Prob-
lem 6 that the overall success probability of the algo-
rithm should be greater than 2/3. Indeed, as we show
in Lemma 12 in Appendix A 3, if the success probability
is greater than or equal to 1/2 + A for any parameter
A € (0,1/2), the probability of making at least My a
queries is bounded from Proposition 8 by

1-6A
> p(M) > oA
M>My a

(135)

The lower bound on the right-hand side depends on the
choice of A. In Problem 6, we demand that the algorithm
for solving this problem must have a success probability
greater than 2/3. Any such algorithm will also have a
success probability greater than 1/2 + A if the choice of
A is in the range

1
A€ <O, 6) , (136)
ie.,
1 2
3 + A< 3" (137)

With A in this range, the lower bound on the right-hand
side of (135) applies to all the algorithms solving Prob-
lem 6 with a success probability greater than 2/3; also, in
this range, the right-hand side of (135) indeed becomes
positive.

As for the bound of S(pps) in (134), in Proposition 13
of Appendix A 3, we show explicitly that, for any M, the
entropy of pjs is bounded by

—_

2N
S(pm) = 5n

2 M @N — M) (138)
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regardless of whether p,; consists of good or bad input se-
quences T; in particular, since the right-hand side of (138)
is monotonously increasing in M = 1,2, ..., we can write,

for all M > My a,

21

1 !
>-ln————. 1
S(pm) = 2N = My ) (139)
Inserting (135) and (138) into (134), we obtain
S p(M)S(pa) = > pM)S(par)+ Y. p(M)S(par) (140)
M>1 M<Mny,a M>My,a
0 1 1 2 M 141
> “In—= -
20+ 5 In g > p() (141)
) M>Mpy,a
1 2N 1—-6A
> -
Z g gN - Mya)!  3-6A (142)
— Ny
_1-6A oM (143)

6—12A (2N — Mya)!

Furthermore, as we show in Lemma 14 of Appendix A 3, for My a in (115), a variant of Stirling’s approximation [89]
yields

2N 2A
> 2N2NIn2 - 3. (144)

| !
PN My VI A

Combining the results from (134), (143) and (144), for all classical algorithms that solve Simon’s problem in our
framework, we have

1-6A 2A N
> /2 _ _ _ N/2
S(Cla) > 6 19A ( 1+A2 Nln2 3) In2 =Q(2"/*N), (145)

which is gapped away from zero independently of how energy-efficiently the classical algorithm is implemented, as
long as the algorithm solves Simon’s problem.

Therefore, for any choice of the constant parameter A € (0,1/6) in (136), applying Theorem 5 yields a lower bound
of the energy consumption

1 1 1 —6A 2A & N2 N
> = > = /2 —3| - — )
w > ﬂS(C|a) > 5 % (6_ T ( A2 *Nn2 3) 1n2> Q< 3 ) (146)

In particular, the maximum of the constant factor
1-6A [ 2A
14
6—-12AV 1+ A (147)
of the leading order in (146) is achieved with the choice of

1 1
A_Q—\/f_o.0635-~-e(0,6>, (148)

and thus, we can explicitly obtain the tightest lower bound among the choices of A € (0,1/6) as

1 V15— 11 — 21
W > = x 3v18 8 D N2NIn2 -3 | —m2]. (149)
B 6115 — 18 6—+15
[
These lower bounds conclude the proof. O V. PROPOSAL ON EXPERIMENTAL
DEMONSTRATION

In this section, we propose an experimental scenario
for demonstrating the energy-consumption advantage of
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FIG. 4. A schematic depiction of the setup to experimen-
tally demonstrate the exponential energy-consumption ad-
vantage of quantum computation over classical computation
based on solving Simon’s problem. The setup is comprised
of two parties: B who keeps a bit b € {0,1} and an N-bit
string s € {0,1} \ {0} as B’s secret, and A who tries to
estimate B’s secret b, as in Simon’s problem in Problem 6.
With b and s chosen uniformly at random, B initially con-
structs a function f in such a way that B can implement the
oracle Oy feasibly within a polynomial time for quantum al-
gorithms to solve Simon’s problem, yet A cannot distinguish
f from the uniformly random choice as required for Simon’s
problem in Problem 6, using a cryptographic primitive as de-
scribed in the main text. To solve Simon’s problem, A runs
the quantum algorithm for solving Simon’s problem on A’s
quantum computer, and B acts as the oracle Oy. Through-
out the computation, B’s internal implementation of Oy is
never directly revealed to A; to estimate B’s secret b, A can
query B by sending a superposition of states |z,0) to B, and
B internally performs Oy and sends back the corresponding
superposition of |z, f(z)) to A. These queries provide the
only information A can access for guessing b, as in Simon’s
problem. What we care about in this experiment is the en-
ergy consumption. By measuring A’s energy consumption F4
and B’s energy consumption Eg in solving Simon’s problem,
we obtain an achievable energy consumption for the imple-
mented quantum computation from their sum F4 + Ep, as
shown in (153). In the main text, we also clarify how to es-
timate the energy consumption for classical computation to
solve the same problem, using extrapolation or the fundamen-
tal lower bound (Table I). The experimental demonstration of
the energy-consumption advantage of quantum computation
will be successful if E4 + Ep is smaller than the estimate of
energy consumption for classical computation.

quantum computation over classical computation in solv-
ing Simon’s problem analyzed in Sec. IV. In the following,
we begin by presenting a schematic setup for measuring
the energy consumption of quantum computation in ex-
periments. Then, we clarify the explicit polynomial-time
way of instantiating the oracle for Simon’s problem to
implement this setup. Finally, we also show approaches
to estimate the energy consumption for classical compu-
tation to solve the same problem, which yields criteria
to be compared with the results of the quantum experi-
ments.

Setup for measuring the energy consumption of
quantum computation in experiments. We propose a
schematic setup depicted in Fig. 4 to capture our frame-
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work in Fig. 3 and measure the energy consumption of
quantum computation therein. A challenge in the ex-
perimental realization of the framework in Fig. 3 is the
implementation of the oracle as required in Sec. II B. To
address this challenge, the setup in Fig. 4 consists of two
parties A and B with their quantum computers, in a
setup similar to that of a client and a server: A is where
the main computation is carried out, and B is where the
oracle is instantiated without revealing its internal to A.
Quantum communication between A and B in Fig. 4 im-
plements the query to the oracle in Fig. 3. For Simon’s
problem, i.e., Problem 6, B selects a bit b € {0,1} and
a bit string s € {0,1}" \ {0} of length N uniformly at
random. Based on b and s, B constructs an N-bit func-
tion f : {0,1} — {0,1}" in such a way that B can
internally implement the oracle Oy for f. The particular
choice of b, s, and f is kept as B’s secret so that A should
not be able to distinguish B’s construction of f from the
uniformly random choice of f as in Problem 6.

In this two-party setup, the task is for A to estimate
the bit b that B has internally. To achieve this task, A
performs the quantum algorithm for Simon’s algorithm,
i.e., that analyzed in Sec. IV B. One way to implement
the initialization £ in Fig. 3 is to use our finite-step
Laudauer-erasure protocol for Theorem 2, but one can
also use other initialization techniques available in the
experiments. Without the finite-step Laudauer-erasure
protocol, the upper bound of the achievable initialization
and control costs may not be theoretically guaranteed,
but the experiment will still be successful as long as the
energy consumption of the implementation of the quan-
tum algorithm is below an estimate of that of the clas-
sical algorithms. Each query to the oracle in the quan-
tum algorithm, implemented by a swap gate in Figs. 2(b)
and 3, is replaced with that implemented by (quantum)
communication between A and B, as shown in Fig. 4.
Throughout the experiment, B never directly reveals b
to A, but B only receives the input state for the query
from A and returns the corresponding output state of the
oracle Of to A by using B’s internal implementation of
Oy. In other words, in implementing this experiment in
a lab, imagine that the party A has some program to run
its computation, and also the party B has some program
to compute the function f of the oracle; then, in the lab,
we require that A’s program should not directly read b in
B’s internal program but should estimate b through the
queries. Thus, in the setup of Fig. 4, A can estimate B’s
secret b only from the input-output relations of Oy ob-
tained from the queries implemented by communication,
in the same way as estimating b from those obtained from
the oracle queries in Fig. 3.

To measure the achievable energy consumption of
quantum computation in this setup, i.e., Wsates +
AE®) — AF©u) in Definition 1, it suffices to measure
upper bounds of Weates — AE©W) and AE(™ o as to
sum them up. For this purpose, we keep track of the
amount of energy supply that is used for the implementa-
tion of A’s computation, and that for the implementation



on B’s side. For example, these amounts can be obtained
by reading the difference of the electricity meters before
and after conducting the computation, which shows the
electricity consumption. Also, on the output system in
the experiment, we set the state 0 as a low-energy state
and 1 as a high-energy state, so that it should hold that

AEC™Y >0 (150)
in the experiment. With this setup, the energy consump-
tion F4 on A’s side is, by construction,

EA = Wgates > Wgates - AE(OUt)- (151)

Similarly, the energy consumption Ep on B’s side is the
sum of the energetic cost AE(™) and the control cost of
implementing the oracle Oy. As explained in Sec. II B,
our theoretical analysis has ignored the control cost of
implementing the oracle by convention, but the control
cost is nonnegative by definition. Therefore, we have

Ep > AE™, (152)
Note that the implementation of communication between
A and B may also incur a non-negative control cost, but
we can include this control cost in E4 or Ep (e.g., by us-
ing the energy supply from A and B as the power source
for the communication devices). As a whole, the sum of
the measured energy consumption

E.+ Eg (153)

serves as an upper bound of the energy consumption
Wgates + AE(IH) _ AE(out)'

The experimental demonstration of the advantage of
quantum computation will be successful if the measured
upper bound of the energy consumption E4+ Ep in (153)
is smaller than an estimate of the energy consumption for
classical computation. Based on our results in Corollar-
ies 7 and 9, a separation of W(@) and W(©) will emerge.
If the experiment achieves

Ea+ Ep = O(poly(N)), (154)

then the advantage can be demonstrated for large N due
to the exponentially large energy consumption for the
classical computation to solve the same problem. In the
following, we will propose an explicit scheme according
to which B can construct Oy as required in our frame-
work yet still within a polynomial energy consumption to
achieve (154), followed by also clarifying how to explic-
itly evaluate the lower bound of the energy consumption
for the classical computation.

Construction of oracle for Simon’s problem. To real-
ize (154), it is necessary that the control cost of B’s im-
plementation of O should be bounded by O(poly(V)) so
that we should have Ep = O(poly(V)). Then, it is essen-
tial that B can compute f within a polynomial time (i.e.,
by a polynomial-size circuit) so that the oracle Oy can
also be implemented in a polynomial time (and a polyno-
mial control cost). The formulation of Simon’s problem
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in Problem 6, however, allows for random 1-to-1 and 2-
to-1 functions f on N bits, which may not be computable
within a polynomial time but take an exponential time
in general. Note that in Simon’s problem, the choice of
f is random, but once f is chosen, the oracle needs to
output the same f(x) for fixed input z, which is different
from producing random outputs conditioned on x. The
challenge here arises from the fact that, in general, im-
plementation of randomly chosen Boolean functions al-
most always requires an exponential-size circuit [90]. In
constructing f in the experiment, we, therefore, have to
accept an approximation to the uniformly random choice
of f required for Simon’s problem.

To overcome the challenge, we propose a construction
of f that can be implemented within a polynomial time
by B yet cannot be distinguished from the uniformly ran-
dom choice of f for A. To instantiate the random func-
tions f : {0,1}" — {0,1}" in Simon’s problem, we use a
pseudorandom permutation, a well-established primitive
of cryptography [91]. For some key bit string k € {0, 1}
of length L, a pseudorandom permutation fx can be com-
puted by a block-cipher algorithm such as Advanced En-
cryption Standard (AES) [92, 93], using a classical circuit
of a polynomial size in N and L. For a sufficiently large
fixed L, the key k € {0,1}" is selected uniformly at ran-
dom by B and kept as B’s secret in the same way as b
and s, so that k should be kept unknown to A. A crucial
property of the pseudorandom permutation is that what-
ever polynomial-time algorithm A performs in the experi-
ment, A cannot distinguish fj from a uniformly randomly
drawn 1-to-1 function unless A knows k. Conventionally,
this computational hardness assumption is justified for
a large key length L because no known polynomial-time
algorithm can distinguish fj from a truly random choice
of 1-to-1 functions. Note that multiple block-cipher al-
gorithms such as AES are believed to be secure against
attacks even by quantum computers as well as classical
computers as we increase the key length L [94-96], while
the detailed security analysis of the choice of L for the
computational hardness assumption is beyond the scope
of this paper and is left for future work.

In place of the uniformly random 1-to-1 function
fi-to-1, We propose to use the one-way permutation fj
as its replacement fy_¢,.1 in the experiment, i.e.,

frto1(z) = fu(z).

To construct a replacement fg_to_l for the uniformly
random 2-to-1 function fo o1 satisfying foio1(z) =
foto1(z @ ), we use the fact that for any a < b, the
probability of having

fito1(x) = a, frio1(z@s)=0b
and that of

(155)

(156)
fito1(z ®8) = a, fiio1(x) =b (157)

are exactly the same for the uniformly random choice of
f1-to-1- Thus, using a uniformly random choice of fi_to-1,



we can also construct a uniformly random 2-to-1 function
Jo-to-1 by

f2—t0—1(x) = fl—to—l(min{xv D 8})’ (158)
where the order between x and x @ s is defined as that
in terms of the binary integers. By replacing fi_to-1 with
fi-to-1 = fr in (155), we propose to use

forto1 () = fr(min{z, z & s}). (159)
With the definitions in (155) and (159), we have an in-
stantiation of the function f for Simon’s problem that is
indistinguishable from the uniformly random choice for
A under the computational hardness assumption on the
block cipher and is implementable within a polynomial
time for B. Note that a polynomial-size quantum circuit
for implementing the oracle Oy for the quantum compu-
tation can be obtained from the reversible classical logic
circuit for the instantiation of f, e.g., written in terms
of the classical Toffoli gate, by replacing each classical
Toffoli gate with the quantum Toffoli gate (and further
rewrite each quantum Toffoli gate into Clifford and T
gates if we use the Clifford4+T universal gate set).

Therefore, combining this instantiation of f with the
quantum algorithm analyzed in Corollary 7, we have an
explicit construction of the setup to demonstrate the
polynomial amount of energy consumption in quantum
computation for solving Simon’s problem, as described
in (154).

Estimation of energy consumption of classical com-
putation. Finally, we clarify how to estimate the en-
ergy consumption of classical computation for solving Si-
mon’s problem to be compared with the results of the
quantum experiments. With the above implementation,
the quantum experiment can demonstrate the energy-
consumption advantage of quantum computation if the
measured upper bound (153) of the energy consumption
for the quantum computation is smaller than an esti-
mate for the classical computation. However, classical
algorithms for solving the same problem cannot be real-
ized due to the exponential runtime and the exponential
energy consumption, and thus, the energy consumption
of the classical computation cannot be measured directly
unlike that of quantum computation; after all, the main
point of our analysis is that it is fundamentally infeasible
for any classical algorithm to solve this problem while the
quantum algorithm can. To overcome this difficulty, we
here propose two approaches for the estimation: one is
an extrapolation-based approach, which is more suitable
for the near-term demonstration in comparison with the
existing best-effort classical algorithm, and the other is
a fundamental approach based on our fundamental lower
bound in Corollary 9, which may be more demanding yet
can demonstrate the advantage for any possible classical
algorithm.

The extrapolation-based approach works for a partic-
ular choice of classical algorithm. For example, for fixed
N, we consider a classical algorithm with querying M
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different inputs & = (z1,...,zp) uniformly at random
to the oracle for Simon’s problem. The algorithm works
as follows:

e if at least one pair (zg,x,,) satisfying f(zy) =
f(zy,) for some xy, # x,, is found in the M queries,
the algorithm has an evidence that f is a 2-to-1
function and thus outputs a = 1;

e otherwise, the algorithm considers f to be 1-to-1
and outputs a = 0.

For fixed NV, we can conduct this classical algorithm for
any M € {1,...,2™}, but the success probability of find-
ing (xy, ., ) satisyfing f(x) = f(zm) may be low if M is
set to be too small. By contrast, Refs. [86, 87] have shown
that there exists M = O(2"/?) such that this algorithm
solves Simon’s problem from the uniformly random M
queries, i.e., achieves a = b with a high probability as
required in Problem 6. However, these existing analyses
only show the existence of M = O(2"/?) without explic-
itly clarifying the constant factors therein, and thus, it
was unknown how large we should set M in this classical
algorithm explicitly. To establish an explicit criterion on
the quantum advantage, we here provide the following
proposition with the explicit constant factor.

Proposition 10 (Refined analysis of upper bound of
query complexity of Simon’s problem for a classical algo-
rithm). Fiz any N. For any § > 0, if we have

M = E (8111(15) 2N+1+ﬂ =0(2N?),  (160)

the classical algorithm that makes the uniformly ran-
dom M (or more) queries for solving Simon’s problem
in Problem 6 achieves the following with a high probabil-
ity greater than 1 — §:

o if there exists any s € {0,1}" \ {0} such that f is
a 2-to-1 function satisfying f(x) = f(x @ s), then
this M -query algorithm outputs a = 1;

o if f is a 1-to-1 function, this M-query algorithm
outputs a = 0.

Proof. The proof is presented in Appendix A 4. O

For this classical algorithm, the extrapolation for esti-
mating the energy consumption can be performed in the
following procedure. In the setup of Fig. 4, we replace
the quantum computer of A with a classical computer
to perform the classical algorithm and the communica-
tion between A and B with classical communication. For
a fixed choice of N, conduct the classical algorithm for
several different choices of M in the order of

M = O(poly(N)), (161)

and measure the energy consumption as in (153). From
the measured energy consumption for several M, we es-
timate the leading order of the energy consumption and



its constant factor as M increases. Using this estimation
of the function of M representing the energy consump-
tion, perform an extrapolation to obtain an estimate of
the energy consumption for M in (160) of Proposition 10
with setting § = 1/3 as in Problem 6. For each fixed
choice of N, use this estimate as the energy consumption
of this classical algorithm for solving Simon’s problem,
so we can compare it with the quantum case.

We note that the goal of this approach is to estimate
the scaling and the constant factor of the energy con-
sumption of the classical algorithm as M grows. In the
proposed experiment with polynomial large M in (161),
the classical algorithm may not return the correct out-
put; still, one should not try to conduct the classical algo-
rithm for exponentially large M in (160) to estimate the
energy consumption directly, which is infeasible. After
all, Proposition 10 already guarantees that the algorithm
works for M in (160), and the aim of the experiment is
not the reproduction of this theoretical result on query
complexity. Rather, our proposal here is to perform only
polynomial-time experiments to estimate the energy con-
sumption for M in (160) by extrapolation, to obtain a
criterion on the advantage in the energy consumption.

Next, the fundamental approach is based on the funda-
mental lower bound of energy consumption for any clas-
sical algorithm shown in Corollary 9. Problematically,
the above extrapolation-based approach can be used for
demonstration of the advantage of quantum computation
only over the existing classical algorithm used in the ex-
periment, rather than any possible classical algorithm.
For example, apart from the probabilistic classical algo-
rithm analyzed here, Ref. [97] provides a deterministic
classical algorithm using M = O(2"/?) queries to solve
Simon’s problem, but the bound that we have shown in
Proposition 10 may not directly be applicable to this dif-
ferent algorithm; thus, as long as the extrapolation-based
approach is used, one may need a case-by-case analysis
to determine the constant factor for the extrapolation
depending on the choice of classical algorithms. By con-
trast, in the fundamental approach here, we will address
this issue by using the fundamental lower bound appli-
cable to any classical algorithm.

In particular, for any classical algorithm to solve Si-
mon’s problem, we have the explicit lower bound in (149)
in the proof of Corollary 9, i.e.,

w>we = %S(Cm)

1 3v15 — 11
> x| X2«
6v/15 — 18

B
—2V1
8=V oveNma 3| —ma ,
6 — /15

where we have chosen the Boltzmann constant to be kg =
1. With the room temperature in mind, we set
1

— =300 K,
B

(162)

(163)
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N W (1)
50 2x 10713
100 1x107°
150 7 x 102

200 3 x 10°
250 1x 108
300 5 x 10%°

TABLE I. Fundamental lower bounds on the energy consump-
tion of any classical algorithm for solving Simon’s problem in
Problem 6 with various problem sizes N. For small values of
N <100 and room temperature 1/8 = 300 K, the Boltzmann
constant kp =~ 1 x 1072 J/K is dominant, keeping the lower
bound of the energy consumption below 1J. For larger N,
the lower bound of energy consumption rapidly becomes too
large to realize in practice for any classical algorithm. Note
that apart from this fundamental approach, in the main text,
we also discuss an extrapolation-based approach to estimate
the lower bound of energy consumption more tightly for some
specific choice of the classical algorithm, which is expected to
be more suitable for near-term experiments.

and substituting 1/8 in (162) with kg/8 for kp ~ 1 x
1023 J/K, we obtain the energy consumption in joule.
With this calculation, typical values of the fundamental
lower bounds in (162) are summarized in Table I. For
comparison, we have the following facts [98].

1. Energy of using a 10-watt flashlight for 1 minute is
6 x 102 J.

2. Magnetic stored energy in the world’s largest
toroidal superconducting magnet for the ATLAS
experiment at CERN, Geneva, is 1 x 10° J.

3. Yearly electricity consumption in the U.S. as of
2009 is 1 x 109 J.

4. Total energy from the Sun that strikes the face of
the Earth each year is 5 x 10%° J.

With an appropriate choice of IV, if the quantum exper-
iment demonstrates an energy consumption below the
corresponding value in Table I, our analysis shows that
no classical algorithm can outperform such an implemen-
tation of the quantum algorithm in terms of energy con-
sumption.

Although the values in the table may be demanding
at least under the current technology, the fundamen-
tal approach here has a merit instead. The conven-
tional experiments for demonstrating quantum compu-
tational supremacy in terms of time complexity com-
pare the quantum algorithm with the existing classical
algorithm; in this case, even if a quantum algorithm in
the experiments outperforms a classical algorithm, an-
other faster classical algorithm may again outperform the
implemented quantum algorithm as technology develops
further. In our case of energy-consumption advantage,
the extrapolation-based approach also makes a similar
type of comparison between the quantum algorithm and



the existing classical algorithm. By contrast, the funda-
mental approach here is applicable to any possible clas-
sical algorithm, which was hard to claim for the conven-
tional analysis of quantum advantage in time complex-
ity. Therefore, our analysis establishes an ultimate goal
of quantum technologies from a new perspective: out-
perform the fundamental classical lower bound of energy
consumption by an experimental realization of a quan-
tum algorithm.

Consequently, our proposal for these experimen-
tal demonstrations clarifies how to realize the query-
complexity setting (formulated as a learning problem,
where a party A is to learn a property of the function
f through queries realized as quantum communication
with another party B, and B is to implement the ora-
cle of f). Our proposal and analysis also set quantita-
tive goals of quantum technologies for the demonstrations
(e.g., the values in Table I). On top of these theoreti-
cal developments, accomplishing a demonstration of the
energy-consumption advantage of quantum computation
over classical computation would be a major milestone
in the experiments.

VI. DISCUSSION AND OUTLOOK

In this work, we have formulated a framework for
studying the energy consumption of quantum and classi-
cal computation. With this framework, we have derived
general upper and lower bounds of the energy consump-
tion of quantum and classical computation, respectively,
in the query-complexity setting.

To derive the upper bound of the energy consumption
of quantum computation, our analysis provides a compre-
hensive account of all the contributions arising from the
cost of each operation used for implementing the com-
putation, of initializing the state of the computer at the
end of the computer into the initial state, and of the
overhead of quantum error correction, with imperfections
of the implementation taken into account. In particu-
lar, to obtain an upper bound of the achievable initial-
ization cost, we have developed a finite-step Landauer-
erasure protocol to initialize a given state into a pure
state within a finite number of time steps up to finite in-
fidelity, progressing over the existing infinite-step proto-
cols [16, 23]. Our analysis indicates that an upper bound
of energy consumption of quantum computation is deter-
mined by the gate and query complexities and the heat
dissipation achievable by the finite-step Landauer erasure
in our framework. These upper bounds rigorously clar-
ify that, even though quantum computation might have
larger per-gate energy consumption than classical com-
putation, it is indeed true that polynomial-time quantum
computation can be physically realized with a polynomial
amount of energy consumption including all the above
costs, serving as a widely applicable (yet potentially non-
tight) estimate of the achievable energy consumption of
quantum computation.
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As for the lower bound, we developed new techniques
to prove a fundamentally nonzero lower bound that works
for any classical algorithm regardless of how energy-
efficiently the classical computation is implemented. To
establish this fundamental lower bound, we have em-
ployed two fundamental physical insights: the energy-
conservation law and Landauer’s principle. In particu-
lar, working on a query-complexity setting, we develop
a technique to argue that a lower bound on the query
complexity of any classical algorithm solving a computa-
tional problem can be used to establish a lower bound on
the Landauer cost—that is, the minimum heat dissipa-
tion required to erase the information obtained from the
queries, measured in terms of entropy. Consequently, due
to the energy-conservation law, the energy consumption
of any classical algorithm solving such a computational
problem must be at least the Landauer cost. Our analy-
sis suggests that the lower bound on energy consumption
is governed by this entropic quantity, which depends not
only on the query complexity but also on the probability
distribution of the oracle in our framework. Owing to the
generality of these techniques, our lower bound holds re-
gardless of technological advances in the energy efficiency
of the physical implementation of classical computation.

Using these upper and lower bounds, we rigorously
prove that quantum computation can be exponentially
advantageous in terms of energy consumption over clas-
sical computation for solving a computational problem,
in particular, Simon’s problem, as the problem size in-
creases. Since our formulation and analysis are based
on the query-complexity setting of Simon’s problem, our
proof of this exponential quantum advantage is free from
the complexity-theoretic assumptions on the hardness of
the problem, such as the assumption on the conjectured
hardness of integer factoring for classical computation.
We have also proposed a schematic setup of experiments
to demonstrate this energy-consumption advantage of
quantum computation, using a cryptographic primitive
to instantiate and implement the oracle for Simon’s prob-
lem feasibly.

These results bridge the gap between the complexity-
theoretical techniques for studying query complexity and
the physical notion of energy that has been studied pre-
viously in the field of quantum thermodynamics, open-
ing an alternative way of studying the advantages of
quantum computation. Our framework and the gen-
eral bounds on energy consumption can be used for
studying a potentially broader class of problems; for
example, similar to Simon’s problem, it is interesting
to extend our analysis to other problems in the query-
complexity setting, such as the Abelian hidden subgroup
problem [99], the Bernstein-Vasirani problem [100], and
the problem with verifiable quantum advantage with-
out structure [101]. Another relevant question would be
whether such an energy-consumption advantage of quan-
tum computation could still be proven even if the as-
sumption of a black-box oracle is relaxed and whether the
energetic contributions from the oracle can be included



in the overall bounds, unlike the conventional analysis
in the query-complexity setting. Also, while our anal-
ysis provides an achievable upper bound of energy con-
sumption for quantum computation and a fundamental
lower bound for classical computation, it is interesting to
develop techniques for proving a lower bound of energy
consumption of quantum computation.

Finally, through our analysis, we have proposed a
new type of experiment to demonstrate the energy-
consumption advantages of quantum computation for
Simon’s problem, offering an explicit criterion for im-
plementing a quantum algorithm that outperforms any
possible classical algorithm in energy consumption (Ta-
ble I). As a result, our work elevates the significance
of Simon’s problem—and potentially a broader class
of query-complexity problems—from both theoretical
and experimental perspectives; this aligns with the pi-
oneering theoretical studies on quantum computational
supremacy [102-108], which emphasized the importance
of special sampling problems that now receive consider-
able attention in quantum experiments [109-111]. Re-
markably, unlike the existing experiments on quantum
computational supremacy that focus on time complex-
ity, once the proposed quantum experiment satisfies our
energy-consumption advantage criterion in Table I, our
analysis guarantees that no classical algorithm will be
able to surpass the quantum algorithm, regardless of
technological advances in energy-efficient computation.
To make this demonstration possible in principle, we have
explicitly evaluated the lower bounds of query complex-
ity and energy consumption for any classical algorithm
to solve Simon’s problem, providing clarification on the
constant factors involved. On the theoretical side, re-
fining these constant factors in our analysis would fur-
ther reduce the technological requirements for experi-
mental demonstration. Experimentally demonstrating
this fundamental energy-consumption advantage of quan-
tum computation over any classical computation would
represent a significant milestone, and our developments
have opened a route toward further studies in this direc-
tion with a solid theoretical foundation.

ACKNOWLEDGMENTS

The authors thank Jake Xuereb, Parnam (Faraj)
Bakhshinezhad, Philip Taranto, Satoshi Yoshida, Nat-
suto Isogai, Mio Murao, Pauli Erker, and Marcus Huber
for the discussion. Quantum circuits have been gener-
ated using the quantikz package [112]. Figure 4 has
been created with emojis designed by OpenMoji under
the license CC BY-SA 4.0. F.M. acknowledges funding
by the European flagship on quantum technologies (‘AS-
PECTS’ consortium 101080167) and funding from the
European Research Council (Consolidator grant ‘Coco-
quest’ 101043705). H.Y. acknowledges JST PRESTO
Grant Number JPMJPR201A, JPMJPR23FC, JSPS
KAKENHI Grant Number JP23K19970, and MEXT

32

Quantum Leap Flagship Program (MEXT QLEAP) JP-
MXS0118069605, JPMXS0120351339.



APPENDICES

Appendices of the article “Energy-Consumption Ad-
vantage of Quantum Computation” are organized as fol-
lows. In Appendix A, we provide technical details and
proofs for the results in the main text. In Appendix B,
we illustrate the physics of control cost for a specific ex-
ample and highlight further references on this topic.

Appendix A: Proofs

In this appendix, we provide the proofs of the the-
orems, propositions, and lemmas present in the main
text. In Appendix A 1, we prove the finite-step and finite-
fidelity Landauer-erasure bound (Theorem 2 in the main
text) together with an estimate of the relevant energy
scales (Proposition 11). Then, in Appendix A 2, we pro-
vide a line-by-line decomposition and proof of the energy-
consumption upper bound (Theorem 3 of the main text).
In Appendix A 3, we provide technical details for the en-
tropic lower bound in Simon’s problem (Proposition 8,
Lemma 12, Proposition 13, and Lemma 14) used in the
proof of Corollary 9 in the main text. Lastly, in Ap-
pendix A4, we provide a proof of the achievable up-
per bound of query complexity of Simon’s problem for
a classical algorithm that we use in our analysis (Propo-
sition 10).

1. Proof on finite Landauer-erasure bound

In this appendix, we present the details of the
Laudauer-erasure protocol and prove a finite version of
the work cost of erasing states of a finite-dimensional tar-
get quantum system for this protocol. In particular, we
will prove Theorem 2 in the main text and Proposition 11
shown below.

Regarding the protocol for the Landaure erasure, we
consider a protocol based on the one in Ref. [23]. Given
a quantum state pg of the d-dimensional target sys-
tem to be erased as in Theorem 2 in the main text,
the Landauer-erasure protocol transforms pg into a final
state ps satisfying the pure-state fidelity 1—e = (0]|p’5|0);
in particular, the protocol here uses

do=(1=2)|0) (0] + =< (@ = l0){0]), (A1)
where 1 is the identity operator acting on the d-
dimenional space. For the sake of analysis, we require
e < 1/2 (to be used in (A46), (A62), and (AT73)). Im-
portantly, this final state has full rank and therefore sat-
isfies supp(ps) C supp(p’) as required also in Ref. [23],
where supp(p) represents the support of the operator p.
To define the protocol, one can consider any continu-
ously differentiable path p[u] through the space of den-
sity operators parameterized by u € [0, 1] with endpoints
p(0) = ps and p(1) = pls. For any choice of T points
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0<u <wug <- -+ <ur =1in[0,1], the environment
is composed of T d-dimensional subsystems and has the
total Hamiltonian

T
Hp =Y HY & L >0,

t=1

(A2)

where the Hamiltonian of the ¢th subsystem (¢ =
1,...,T) is given by

1
Hg) = _B In p[ut] > 07 (A?))

and 1,est£¢ is the identity operator acting on all the sub-
systems but the tth. For each t, we write the thermal
state of the tth subsystem of the environment as

,ﬁH(f)
®)rpa1 . € =
T = ———— = plw], A4
E [ﬂ] tr[e*ﬁHS)} p[ t] ( )
where the last equality holds by definition (A3). Then,
the thermal state of the environment 75[f] in (53) of the
main text becomes
T T
(8] = @ 7' 18] = @) plu. (A3)
t=1 t=1

The protocol is composed of T steps; in the tth step for
t=1,...,T, the protocol swaps the target system’s state
with the thermal state T,(; ) [B] of the tth subsystem of the
environment, so that the target system’s state after the
tth step should be p[u;] along the path p[u]. For this
protocol, Ref. [23] shows that the heat dissipation into
the environment is given by

T
8Os =Y tr | (plu] — plusa)) In (plu)) |- (A6)

For the sake of analysis, our protocol chooses a straight
path p[u] through the state space and equally spaced
points on the path, i.e.,

plu] = ps + u(ps — ps), (A7)
Uy = % (A8)

With this protocol, we prove Theorem 2 in the main
text, which is repeated again below. In particular, we
progress beyond the asymptotic bound shown in Ref. [16]
and analyze in detail how the number of steps an erasure
protocol requires scales as a function of the final pure-
state infidelity € and the difference of the actual heat
dissipation n to Landauer’s ideal bound.

Theorem 2 (Finite Landauer-erasure bound). Given a
quantum state pg of a d-dimensional target system for
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FIG. 5. Illustration visualizing the arguments used for deriv-
ing the upper and lower bound on Qg in (A23) and (A27)
for T'= 7. The sum on the right-hand side of (A6) making up
BQE is represented through the area below the step function
in blue. This step function is lower bounded by the integral
fol du(—S[u]) due to the monotonicity of the integrand (solid
red curve), which yields to (A23). An upper bound is given
by the shifted integral given by the dashed violet curve, to-
gether with a correction of the last step on the right of the
interval of the integral, leading to (A27).

any d > 2 and any constants € € (0,1/2] and n € (0,1],
let T be

et (<)o),

where [---] is the ceiling function, and e is the Euler
constant. Then, a T-step Landauer-erasure protocol can
transform pg into a final state p's with infidelity to a pure
state |0y satisfying (0]ps|0) > 1 — ¢ in (55) by using an
environment at inverse temperature 8 > 0, in such a way
that the heat Qg in (56) dissipated into the environment
differs from Laundauer’s bound AS in (59) at most by

BQp —AS <, (67)
as required in (65).

Proof. We will prove that, for a generic number of steps
T, the protocol described above to transform pg into pl
n (A1), which is e-close to the pure state |0), has a heat
dissipation Qp to the environment bounded by

ln( (d—1) T)
BQp — AS < # (A9)

so that setting T as in the theorem statement should
achieve BQp — AS <.

To bound Qp in (A6), we write, for simplicity of no-
tation,

Slu = S(plu]) = — trlplu] In(p[u])]. (A10)
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By using the shorthand S[u] == 2-S[u], it holds that
Slul = — tr[plu] > (In(p[u]) + 1)] (A11)
= —tr[(pls — ps) x (In(p[u]) + 1)] (A12)
= —tr[(pls — ps) In(plu])]- (A13)

Using this notation, each term on the right-hand side
of (A6) simplifies into

te{(plur] — plue—) In(plu])] = 1] 528 1n<p[ut]>]
(A14)
*S[ut]
== (A15)

Moreover, S[u] is a concave function; i.e., for any uq, us,
and X € [0, 1], we have

A18)
A19)

ST + (1= Nug] = S(p[Aun + (1— Nua])  (A16)
s(Nplur] + (1 = Nplus])  (A17)

> AS(plur]) + (1 — A)S(pluz 12

(

= AS[u1] + (1 — X)S[uz].
Thus, —S[u] is a monotonically non-decreasing function
as u increases. In Fig. 5, we illustrate an example of a
monotonically non-decreasing function and how we use
this property to derive upper and lower bounds of FQp.
By evaluating the integral according to this figure, (A6)
can be bounded from below by

T

-5 (]

BOE = T (A20)
= T
> /O du (- (A21)
S10] — S[1] (A22)
=AS (A23)
and from above by
T

BQr =Y _S;M (A24)

' - —5[
< /1 JRZ (=Stul) + = (A25)

= [ ()~ [ an (~51) + S

—S[1]

T

<AS+ ‘sm-s[%”+

Therefore, we can rewrite (A6) as

0<BQp— AS < ‘S[O] - SH ‘ - %5[1]. (A28)



We bound the right-hand side of (A28). The first term
on the right-hand side can be estimated using the conti-
nuity bound of the quantum entropy in Refs. [113-116].
In particular, let

(A29)

denote the trace distance, and

ha) = {—x In(z) — (1 —2)ln(1—2), @€ (0,1),

0 =0,1
(A30)
the binary entropy. Since we have
11 ps—ps
0l =pl=| = A31
oo - o| 7| = B2, (A1)
it holds that
1
7\|Pi§ —pslh < ak (A32)

where the last inequality follows from 3o’ — pl|1 € [0, 1]
for all density operators p and p’. Thus, for any T > 2,
it holds that

1 1
f<=<1-= A
< <1 (433)
where the last inequality holds due to d > 2. For §

satisfying (A33), the continuity bound in Refs. [113-116]
leads to

1 1
~S|=|| = ~5(p|= A34
s 57| = [sen - s (o] 7])| s
< §ln(d — 1) + h(6). (A35)
For any T > 2, it also follows from (A32) that
o) <h( = (A36)
- T
1+InT
<
S—7 (A37)
where the last inequality follows from
1
hiz) <z (1 +1n ) (A38)
X

for all x > 0. Therefore, for any T" > 2, we obtain
from (A32), (A35), and (A37)

‘ﬂm_ﬂlﬂng—D+1+mj

A
T T T (A39)

To bound the second term of the right-hand side of (A28),
we use plg in (Al) to evaluate

(A40)
(Ad1)

—S[1] = tr[(ps — ps) In pls]
= —S(ps) — tr[ps In pls]

= —S(ps) —
d—1
, , €
—;<J|PS 7) In (d—l)

d—1
g
<0 (0] ps |0)In(1 - £) Z Gl ps 1) 1n(d 1)

(01 ps 0) In(1 — &)

(A42)

(A43)
d—1
€
< - ; (| ps 1) In (d 1) (Ad4)
=In ( ) (A45)
where (A44) follows from
—In(1-¢) < m(df1> (A46)

for all e < 1/2 and d > 2, and (A45) uses normalization
of tr[ps] = 1 and the identity —log(z) = log(1/x) for
x > 0. As a whole, applying (A39) and (A45) to (A28)
yields

In(d—1) 147 In(%2)

~AS<
BQE —AS < T + T + T

e(d— 2
m( = T) A48
- (A48)
which provides the bound (A9) on the heat dissipation
Qp for a generic number of steps T > 2.
To complete the proof, we set T in (A48) in such a way
that we should obtain Qg — AS < 1. We write (A48)

as
e(d—1)2T
In <7€ )
— 7

Given the fact that Inxz/x does not increase for all x >
e, we see that f(T) is a monotonically non-increasing
function for all T' > &/(d — 1)?, which always holds here
dueto T >1,e <1/2,and d > 2. An exact solution of

f(T)=n (A50)

with respect to T" would require the Lambert W func-
tion, which cannot be expressed in a closed form through
elementary functions [117, 118]. But for our analysis,
finding T satisfying

(A47)

F(T) = (Ad9)

f(T) <n (A51)
within the order of
1 d?
T= O( log ) (A52)
n en
is sufficient; to provide such T, let us choose T as
_1\2
T:{(e—&—l)ln((e—&-l)(d 1) >-‘ (A53)
en en



Then, we have
J(T)
< f(e+ 1 <(e+ 1)(
en
en ln((e-i-l)(d 1) )
e+l 1n<<e+1><d 1)2 )

(A54)

)) (A55)
n (i

((e+1 )(d—1) ))
(e+1)(d 1)2 )

B (A56)
< (1 + i) (A57)
=1, (A58)

where the first inequality follows from the monotonicity
of f, the second inequality follows from

1 1
nY < (A59)
x e

for all z > 0. For all e < 1/2, n < 1, and d > 2, the
choice of T in (A53) indeed satisfies

T> ZiimCH?SJD ) (A60)
=<t L n(2(e + 1) (A61)
> 9. (A62)

Note that n < 1 is not necessarily the tightest upper
bound to derive the last line and thus to show the theo-
rem here. Therefore, we obtain from (A48) and (A58)

which yields the conclusion. O

In Proposition 11, we analyze the energetics involved
in the finite Landauer-erasure protocol in Theorem 2. In
particular, we are interested how the energy scale of the
Hamiltonian Hp of the environment in (A2) behaves as
a function of the required infidelity € between the final
state and the pure state and the required steps T' of the
protocol in Theorem 2. Note that we have T" > 2 in
Theorem 2 due to (A62).

Proposition 11 (Maximum energy of environment in
finite Laudauer-eraser protocol). Let Hg be the Hamil-
tonian in (A2). The mazimum energy eigenvalue of Hp
is bounded by

T/ d—1 1 /In2xT 1
Hpllw < = (m%=24+1) -2
I E””—B(n e +) B( 2 +12T+1>

_O(T d) (A64)
g e )

where T > 2 is the number of steps of the Landauer-
erasure protocol in Theorem 2, d > 2 is the dimension of
the target system for the Landauer-erasure protocol, and
e € (0,1/2] is the infidelity between the final state and
the pure state in (Al).

(A65)
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Proof. Since Hg is a sum over terms Hg) ® Lrestt

as shown in (A2), the maximum eigenvalue of Hg is
bounded by the sum of the maxima over the Hamilto-
t)

nian H](E of each individual subsystem, i.e.,

T T
|Hlloo < D IHE © Liestzlloe = Y 1 Hp lloc- (AG6)
t=1 t=1

Due to the definition of Hg) in (A3), we have

m=—;mkmwmm<mm

where we write the minimum eigenvalue of a density op-
erator p as Amin(p). Thus, we have

nH'nm=H—;mmW1

”HEHOO < _*Zln)\mm Ut (AGS)

The problem reduces to bounding Amin(p[ut]). As
shown in (A7) and (A8), we have

t t
plut] = (1 - T)ps + fpfg-

It generally holds that the minimum eigenvalue of the
sum of two positive semi-definite Hermitian matrices is
bounded from below by the sum of the smallest two eigen-
values of the summands [119-121]. Since p > 0 is not fur-
ther specified, we here bound the minimum eigenvalue of
plu] from below by that of p, i.e.,

(A69)

t t
Amin (plue]) > <1 - T> Amin(ps) + T/\min(pg) (A70)
>0+ %)\min(pfs) (A71)
t €
=TI T (AT2)

where the last line follows from the fact that the eigen-
values of p5 in (Al) is (1 —¢) and ¢/(d — 1), and we
have

(A73)

for all € € (0,1/2] and d > 2. As a result, summing over
all the contributions, we arrive at the following upper
bound for the maximum eigenvalue of Hg

1 ) te
_ glnﬂd;l) _ %lnT! (AT5)
B A kD)
153 €



1 In27T 1
——(TwT-T
ﬁ( " T +12T+1>
(A76)
_Z | d—1+1 _l 1n27‘rT+ 1
A AN 12T + 1
(A77)
T d
—o(=m?2 ATS
(/8 n€>’ ( )

where the second inequality follows from a variant of Stir-
J
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ling’s approximation [89]

™7
T! > V2rT () T (AT79)
e
This concludes the proof. O

2. Detail of proof of general upper bound on
energy consumption

In this appendix, we expand upon the expressions for
the energy consumption of quantum algorithms derived
in Sec. IIT A. In particular, we prove Theorem 3 repeated
again below.

Theorem 3 (An upper bound of energy consumption in ideal case without gate errors). Given constants Eciy.
n (38) and B in (13), working in an idealized case without gate errors, computation in the framework of Fig. 3 can
be performed with an energy consumption W (Definition 1) bounded, as the problem size N goes to infinity, and the

infidelities €,m > 0 vanish, by

1 w 1
W S W(Q) - O (Ectrl. X WDcomp + (Ectrl. + ) X npOIylog(en)> ) (83)

Bn

where the width W of the circuit in (9) and the depth Deomp given by (17) are the parameters depending on the

problem size N.

Proof. Proving the statement essentially boils down to
summing up all the terms in (30). To this end, we use
the expressions derived in steps (1) and (2) for the gate
and erasure costs and replace them line-by-line. We also
note that the contributions from energetic costs sum up
to zero, and hence, in the overall energy consumption,
the terms that matter are the control cost and the ini-
tialization cost.

As a prerequisite, we give some more detailed expres-
sions for the cost of the erasure in (77). We start by
recalling that the number of steps 7" in the Landauer-
erasure protocol for each qubit (i.e., for dimension d = 2)
is given, due to Theorem 2, by

1 1
T=0 ( log ) , (A80)
n en

(

as 1, — 0. This expression will be used for expressing
all the erasure-related costs in terms of € and 7. First of
all, the circuit depth (71) of the erasure part £ in Fig. 3
can be expressed as

1 1
D <O(T)=0 (log ) , (A81)
n en
where the swap gate is implemented within a constant
depth in our setting. In addition, the environment con-
trol cost in (75) can be expressed as

5 T 1Y\ (A80) 1 1

EE) @ o Zi0g-) “EV 0 [ —polylog— ) . (A82
ctrl. 78z gyPolos (A82)
All these expressions together can then be inserted into
(&)

the control cost for the erasure, £ to give

W, — AE® = E®) + Qg (A83)
(72),(76)
< (Ecm. + Ec(f;f_) x WDe + %(mz +1) (A84)
(A81),(A82) 1 1 1. 1 1%
S Ecr+0< olylo ))XWO(lO >+1H2+ A85
(e +0 (5 potvion Tlog )+ pn24n) (A8
1 1
=0 <(Ecm. + ) X Wpolylog) , (A86)
Bn n en
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which leads to the bound in (82). Finally, using (30), we obtain

M+1 M
Uy, in,k out £
W= (z B 4 3B | B 4 B
k=1 k=1
40),(44),(47 MAL M
COHE D S™ 0 (B, x WD) + 3 0 (Butn
k=1 k=1

M+1
:O(qudv<§:Dk+MDm+Dm>>+@3f%ga

k=1

all costs for all Uy, input, and output

1 W 1
(A:86) 0 <Ectrl. X WDcomp + (Ectrl. + ) X npOIY1og€77> )

B

where the last line follows from the definition of Dcomp
in (17). This concludes the proof. O

3. Proof on the classical lower bound on energy

consumption for solving Simon’s problem

In this appendix, we prove Proposition 8, Lemma 12,
Proposition 13, and Lemma 14 used for establishing a
lower bound on the energy consumption of all classi-
cal algorithms for solving Simon’s problem analyzed in
Sec. IV C.

We start with providing the proof of Proposition 8
repeated again below for readability. The proposition
shows that a lower bound of the query complexity of Si-
mon’s problem in Problem 6 is given for problem size N
and average success probability 1/2 + A by (115), i.e.,

2A

TrA (A91)

MN,A = ’V XQN/Q-‘,

where A € (0,1/2) is any constant in this parameter
region and is suitably tunable for our analysis. Note that
Ref. [86] have also shown a bound on M to achieve the
average success probability 3/4 in Simon’s problem, but
for our analysis of Problem 6, especially for the proof of
Lemma 12, it is critical to obtain the bound on M for an
average success probability between 1/2 and 2/3, as with
Proposition 8 with parameter chosen as A < 1/6.

Proposition 8 (Refined analysis of lower bound of query
complexity of Simon’s problem for classical algorithms).
For any parameter A € (0,1/2), if we have

2A

M<MN_’A:—’V m

X QNVQw, (115)

the average success probability of any probabilistic classi-
cal algorithm with at most M queries for Simon’s problem
in Problem 6 is upper bounded by

1

- +A.

5 (116)

> +Qf (A87)
X WDin) + O (Ectrl. X WDOIlt) + Eéfr)l + Q(S) (ASS)
(A89)
(A90)

(

Proof. As in Refs. [12, 13], given some fixed input se-
quence & = (x1,...,x5) of length M in (114), we call &
good if x = xp, @ s for some 1 < k < m < M; otherwise,
we call ¥ bad. For a fixed input sequence &, let

Pgood (A92)
denote the probability of Z being good; i.e., that being
bad is 1 — pgooda- To succeed in estimating b with prob-
ability greater than 2/3 as required in Problem 6, any
classical algorithm in our framework of Fig. 3 needs to
query the function oracle Oy repeatedly at least until the
input sequence ¥ becomes good with some probability
sufficiently larger than zero. When & is good and b =1,
ie., fis 2-to-1, the classical algorithm can find elements
of ¥ satisfying zx = x,, ® s for some 1 < k <m < M
to conclude that f is 2-to-1. But we note that even if
Z is good, in the case of b = 0, i.e., the case where f
is 1-to-1, the M different inputs = € {0, 1}V still yield
M distinct outputs y = f(z). Conditioned on having a
good input sequence, the success probability of the clas-
sical algorithm estimating b correctly has a trivial upper
bound 1. For a bad input sequence Z, the M input-
output relations (x1, f(x1)),..., (znm, f(xar)) are identi-
cal regardless of b = 0 or b = 1 (i.e., regardless of f
being 1-to-1 or 2-to-1). Thus, conditioned on having a
bad input sequence, the success probability of the classi-
cal algorithm estimating b correctly cannot exceed 1/2,
i.e., a completely random guess. Therefore, the overall
success probability of the classical algorithm estimating
b correctly is upper bounded by

1 _ 1 DPgood
2 2t o
As shown in Ref. [86] (see also Refs. [12, 13]), the prob-
ability of having a good input sequence Z = (z1,...,Zp)
at the Mth query, conditioned on the case where the in-
put sequence at the (M — 1)th query is bad, is at most

Pgood X 1+ (1 - pgood) X (A93)

M—-1

1— (M—-2)(M-1)* (A94)
2

oN _



Following Ref. [86], for any M, we bound

M—-1 < 2M
9N _ 1 _ (M—2)2(M—1) — 9N+1 _M2'

(A95)

Thus, for any sequence & obtained from M queries, the
probability of Z being good is at most

M
m—1
Pgood < Z ON _ 1 _ (m—2)(m—1) (A96)
m=1 2
M
2M
< Z IN+1 _ p\f2 (A97)
m=1
2M?
RELE Ve (498)
Since M is an integer, the bound (115), i.e.,
2A
M —— x 2N/ A
< { TN -‘ (A99)
holds if and only if we have
= N/2
M <\ fmg <2V (A100)
Therefore, for any M satisfying (115), we have
24 Ny2\?
2(y/ 25 x 2V?)
Pgood < s —2A.  (A101)

3
ON+1 _ ( 28 x 2N/2)

Due to (A93), the average success probability of the clas-
sical algorithm is at most

1 1
4 Peood 4 A

A102
2 2 2 (4102)

O

Lemma 12 below aims to provide a high-probability
lower bound on the required number of queries to the
oracle for all classical algorithms to solve Simon’s prob-
lem. We have shown in Proposition 8 that, for any clas-
sical algorithm with the number of queries smaller than
M A, its success probability in solving Simon’s problem

J
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in Problem 6 is upper bounded by 1/2 + A. For our
purpose, however, we need to invert this statement; in
words, what we need for our analysis is that to achieve
a fixed success probability 2/3, the probability that the
oracle is queried at least M > My A times should be
reasonably high. Intuitively, if the algorithm stops with
M < My a too often, the algorithm cannot gain enough
information from the queries to successfully solve Simon’s
problem with probability 2/3. In particular, let us write
the probability of the algorithm performing strictly less
than My A queries as

p(M<Mys)= 3 p(M), (A103)
M<My, A
and that of more than or equal to My A queries
p(M>Mya)= S p(M), (A104)

M2>Mn A

where p(M) is defined in (128) as the probability distri-
bution of the algorithm querying the oracle exactly M
times. Then, we need to show that a fair fraction of the
volume of the probability distribution p(M) lies in the
region of M > My a; that is, p(M > My a) = (1) for
large N. We prove such a probabilistic bound quantita-
tively in the following lemma.

Lemma 12 (High-probability lower bound on the re-
quired number of queries for all classical algorithms to
solve Simon’s problem). Let N > 0 be a problem size
and the oracle Oy be chosen according to Simon’s prob-
lem as described in Problem 6. For any probabilistic and
adaptive classical algorithm for solving Simon’s problem
with probability greater than or equal to 2/3, the probabil-
ity of the algorithm querying the oracle O greater than

or equal to /20 /(1 + A) x 2N/ times is bounded by
1-6A
M>M > — A105
p( el N,A) =3_ 6A7 ( )

where My a is given by (115), A € (0,1/2) is the pa-
rameter in Proposition 8, and p(M > My a) is defined
as (A104).

Proof. We here more rigorously express the ideas
sketched above. To this end, let us write the algorithm’s
success probability as

2
p (success) = p (success|M < My a)p (M < My,A) + p(success|M > My a)p (M > My,a) > 3’ (A106)

where the p(success|M < My, ) is the success probability of the algorithm conditioned on the cases where the
algorithm has queried the oracle strictly less than My a times, and p(success|M > My a) is that conditioned on the
cases where the oracle has queried more than or equal to My a times. To (A106), we apply the result in Proposition 8
showing that the success probability conditioned on the case where the oracle has queried strictly less than My A



times is at most 1/2 + A; i.e., it holds that
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Moreover, due to the normalization of probability distributions, we have

Combining (A106), (A107) (A108), and (A109), we find

1
p (success|M < Mpy,a) < 3 + A. (A107)
p(M<Mna)=1—p(M > Myna), (A108)
p (success|M > My a) <1. (A109)
1 2
<—|—A> (1—=p(M > Mya))+p(M>Mya)> 3 (A110)

2

Therefore, we have

1-6A
p(M > Mya) >

> e (A111)

and thereby conclude the proof. O

The next ingredient for proving the entropic lower
bound on the energy consumption for classical algorithms
to solve Simon’s problem in Sec. IV C is Proposition 13
below. For a given number of queries to the oracle, this
proposition gives a lower bound on how much entropy
the algorithm produces.

Proposition 13 (Lower bound on entropy produced by
all classical algorithms with a fixed number of queries for
Simon’s problem). For fized M > 0, any classical prob-
abilistic and adaptive algorithm structured as in Fig. 3
calling the oracle O for Simon’s problem in Problem 6
on M different inputs x € {0,1}V generates the com-
puter’s state with entropy

S > 11 2T
(pnr) = ) nm,

(A112)
where pyr is given by (129) in the main text, and S is
the entropy defined according to S(p) = —tr[pln p].

Proof. To start the proof, we clarify an explicit form of
py in (129). Problem 6 is defined using s, b, and f
sampled according to the uniform distributions p(s), p(b),
and p(f|s,b), respectively, as shown by (125) in the main
text and detailed in the following. The single-bit state b €
{0,1} is given by a fair coin toss, i.e., chosen uniformly
at random from {0, 1}, giving us, for each b,

(A113)

According to the prescription for Simon’s problem, s €
{0,1}™ \ {0} is chosen uniformly at random, giving us

1
2N — 17

p(s) = (Al14)

(

because there exist 2V — 1 elements in {0, 1}" \ {0}. Fur-
thermore, for the sake of our analysis, we here write

p(flb) =" > p(s)p(fls,b). (A115)
s€{0,1}N\{0}
Then, we have
N ifb=0
p(f[b) = 1 1 ifp=1 (A116)
2N -1 (2]%]1!1)2N71! ’

The probabilities on the right-hand side can be derived
from normalization. In the case of b = 0, we choose 1-to-1
functions as f, and p(f|b) comes from |Son | = 2V, where
Sy~ is the set of permutations, i.e., 1-to-1 functions, over
2N elements in {0,1}". In the case of b = 1, we choose
2-to-1 functions as f, and we can see p(f|b) as follows.
The factor 1/(2¥ —1) comes from p(s). Moreover, to fully
define the function f satisfying f(z) = f(z @ s), half of
all inputs of f can be assigned the unique correspond-
ing outputs; that is, we have to choose 2%V /2 ordered
elements from the set {0, 1}V of 2V elements. There are
(212\,1\11)21\7_1! such choices. The product of these numbers
constitutes p(f|b) in (A116).

The probability distribution p(f|b) allows us to de-
scribe the computer’s state at the end of the computation
before the output in Fig. 3, up to the reversible transfor-
mation, as

1
PMZM Z

p(0) > p(fb)ps(M)psar, (ALLT)
be{0,1} f

as shown in (129) of the main text. We can furthermore
split the state pjps into a convex sum of the case where f

is 1-to-1, pS\Z:O), and the case where f is 2-to-1, pg\l}:m,
1 w=0) , 1 (=1
pM = 505\/[ Ve Qﬂgw ), (A118)

where the prefactor 1/2 comes from p(b) in (A113), and
the two contributions for b = 0, 1 are defined as

p) = zﬁ zf:p(ﬂb)pf(M)Pf,M- (A119)



We use the concavity of the entropy together with the
decomposition (A118) to give a lower bound of S(ps)
by

Lo w=0), Lo =1
> -
Stpan) 2 58 (o477) + 55 (o) (AL20)
Lo =0
>
> 2S (pM ) (A121)
where the last line follows from S (pg\ljle) > 0. The

strategy for the remainder of the proof is to find a lower

)

bound on S(pS\Z:O ) corresponding to the 1-to-1 func-

tions. Although this strategy may ignore the contribu-
tion from the 2-to-1 functions, it will turn out that the
contribution from the 1-to-1 functions is already suffi-
cient for our analysis.

To bound (A121) further, we cast the quantum-state
picture in (A117) (i.e., the diagonal density operator)
into the corresponding probability distribution to calcu-
late its entropy. To describe the input-output relation of
y = f(x), let us introduce a rank-1 computational-basis
projector Iz ; acting on the space of the 2NV x M bits
for pps in (A117) as

M
Uz g = ® |k, yi) (Tk, k!, (A122)
k=1

J

@) = 3 (g5 (o100 e fa aseean) aon (o fe) hsecar-1)
f

(

J\ﬁl

k=1

=:q(Z
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where & and g are any ordered choices of M elements in
the set {0,1}". In particular, we have & = (x1,...,7)
and ¥ = (y1,...,ynm), where zg,yr € {0,1}V for all
1 < k < M. Note that the algorithm uses M differ-
ent inputs as Z by construction, but we do not assume
the outputs ¥ to be distinct from each other in general.

_0)

To calculate the entropy S (pg\ljf ), we consider a prob-

ability distribution obtained from the diagonal operator

P by

p(Z,9) = tr [Higpgé}:o)} , (A123)
so that it holds that
S(A70) == p@pmp@.p.  (A120)

z,y

Substituting ps s in (A119) with (122) in the main text,
we can express the probability p(Z, §) of the 2N x M bits
in (A123) as

(A125)

q(continue|{(z¢, f(ze)) hr<e<r)q(@e[{(ze, f(xe)) hr<e<r—1) X P(fIb=0)0f(z1)y, '5f(mM),yM)

7)

- (p(lmq<stop|{<xe,ye>}1gw>q<xM|{<xe,f(wm}lgegM_l)

M—-1

« T atcontinel {(er uehr<est)atol{(eruhscsion)

k=1

<3 p(f1b = 067001 -
f

6f'(zM)>yM

=:p(¥)
= q(Z]9) x p(¥),

where ¢(Z|¥) and p(y) are defined as shown in the second
line, and d, is a delta function, i.e.,

5 1, ifa=0b,
@b 0, otherwise.

The notations of ¢(Z|%) and p(y) are chosen suggestively
to distinguish between probabilities arising from the al-

(A128)

(A126)

(A127)

(

gorithm’s probabilistic strategy (written in ¢) and the
setting of Simon’s problem (written in p), as explained
in more detail below. Note that in general, p(y) may
depend on ¥, which can be any ordered sequence of M
elements from {0,1}" and may include the same ele-
ments yr = ye for 1 < k < £ < M; however, p(%) does
not depend on the choice of M different inputs xj due
to uniform randomness of the choice of 1-to-1 functions



f:{0,1}" — {0,1}" in Problem 6 in the case of b = 0.
By construction, the probability distribution p(Z,%) is
normalized with respect to a sum over all Z and ¥/, i.e.,

Zp(f7 g) =1
z,y

(A129)

The quantity p(¥) can be mterpreted as the probability
of measuring the output sequence g, given the computer’s
state p©. Summing over all values of 7/ lets us recover the
normalization, i.e.,

Zp Zp flb=0

flxa),ym

Zéf SRTTREE

(A130)
(A131)

=> p(flb=0)x1=
7

On the other hand, ¢(Z|%) can be interpreted as the
probability of querying the input sequence ¥ conditioned
on having exactly M queries and on measuring the out-
put sequence 3. For any choice of M > 1 and ¢, the
function ¢(Z|y) is a probability distribution over & by
construction (as shown in (122) and (128) in the main
text) and normalized by

> al@y) = 1.

x

(A132)

These interpretations also show that we can under-
stand p(7) as the distribution obtained by marginalizing
p(&, ) over I,

Zp@, 7) = (Z q(fw)) p(@) =p(i).  (A133)

T

Using the fact that entropy does not increase under
marginalization [9], we can bound the entropy of p(Z, %)
in (A124) by that of the marginal distribution p(y), i.e

pr Zp ) Inp(f

This inequality allows us to analyze a lower bound of the
entropy of pjs solely through the contribution coming
from properties of Simon’s problem (captured by p(%)),
irrespectively of the contribution from the algorithm’s
strategy to solve it (captured by ¢(Z|7)).

In the following, we estimate the entropy
=2 7P Inp(y) in (Al34). To this end, we fur-

) Inp(Z,¥) (A134)

ther split the sum over all possible output sequences ¥

in (A134) into one for M distinct outputs in {0, 1}V and
the rest. In particular, we write the set of M distinct
elements in {0,1}" as

. M
yp Zye foralll <k < (< M}.

Ydistinct =
(A135)
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and its complement as

cym) 2 ¥ € {0, 13V I\ Yaistinet-
(A136)

Yindistinct = {g = (yla cee

For any ¥ € Yindistinet that includes indistinct pairs of
Yk = Ye, we have

p(y) =0.

To see this, recall that p(¢) in (A125) is defined as a sum
over all 1-to-1 functions, but the input Z to each 1-to-1
function is a sequence of distinct values, i.e., z # x4 €
{0,1}" for all 1 < k < ¢ < M. Thus, the sequence of
outputs f(z1),..., f(za) of any 1-to-1 function is also
a sequence of pairwise distinct values in {0,1}V. As a
consequence, we have (A137) if ¥ ¢ Yaistinct. On the other
hand, for any choice of M distinct values ¥ € Yqistinct, the
probability p(¢) does not depend on ¢; i.e., it holds for
some constant Pgistinct > 0 that

(A137)

p(ﬂ) = Ddistinct - (A138)

This holds due to the uniform randomness of the choice
of 1-to-1 functions f : {0,1}* — {0,1}" in Problem 6,
ie.,

p() = p(=(¥)),

for any permuted vector 7(y) = (w(y1),...,7(ym
ing the normalization (A131), we further have

(A139)
)). Us-

1= > @+ Y. @ (A140)
Y€ Yaistinct Y€ Yindistinct
= > p@+0 (A141)
Y€ Yaistinct
= |Ydistinct|pdistinct- (A142)
A combinatorial argument yields
Y, 2" M! 721\,! Al4
istinct| — = y 143
[Vaistinet| (M) 2N = M)! (A143)

which is the number of ordered choices of M distinct

elements in the set {0,1}" of 2V elements. Thus, we
have
(2N — M)!
Pdistinct = T (A144)
Therefore, it holds that
- Zp ) Inp(if (A145)
== > p@mpiH—- > pi)hp@)
€ Yaistinct Y€ Yindistinet
(A146)
== > p@hp) +0 (A147)

Y€ Yaistinct



2N
=In eIt (A148)

Consequently, it follows from (A121), (A124), (A134),
and (A148) that

S L In 2™ A149
(pm) > ) m» ( )
which leads to the conclusion. O

Finally, we show Lemma 14 below to evaluate the frac-
tion of factorials appearing in the lower bound of the

43

any N € {1,2,...} and A € (0,1/6), it holds that
2N 2A
1 > 2N2N1In2 -3, (A150
PN My VT A n2-3, (Al50)

where My a is defined as (115).

Proof. We bound the factorials using a variant of Stir-
ling’s approximation [89]

2mn <E> e < nl < V27 (E) et (A151)
e e

which holds for arbitrary positive integers n. In partic-

entropy in the main text. ular, with My, denoting | /%5 2N/21 as in (115),
Lemma 14 (Estimation of fraction of factorials). For  we have
J
21
In —
(2 = My a)
N 2v 1
NN (L) el2xaN i1
e
= N 2N —Mn,a 2N —My.a 12(2N3w1 ) (A152)
T W) (2 )T
% 1 1
N _ MNA)MN,AGMNTAersz-H12(2N—MN’A)> (A153)

M
) ( Q%A) + Mya(NIn2—-1)— (-MN,Aln (1—

M M12\7,A
N N,A 9N
(2 2) ¥+ Mya (Nln2 - 1) - s
> MN,A + MN,A (N1n2 — 1) -3
= MyaNIn2 -3
2A
>/ ——2N2Nn2 -
“V1+A n 3
where (A155) follows from
Y <In(l+2)< (A159)
1+z ™~

for all x > —1 with # = —My A /2", and (A156) holds
due to

1

2N 4 32 2N (A160)
M3 A

; 1 1 1

oN

L L <3 (A161

1— Ma 12 (2N—MN,A 2N+112>— ( )

for all N € {1,2,...} and A € (0,1/6). To see

that (A161) holds true, we define a function representing

Mya , 1 1 1
2N 12\2N — My 2V 4+ 4

(A154)
1 ( 1 1 )
— - (A155)
12 \2V — My 2V 4+ 5
(A156)
(A157)
(A158)
[
the left-hand side of (A161), i.e
MR A
SN 1 1 1
FN,A ::721\] +( >a
( ) 1_]\/12]\11\}A 12 2N_MN,A 2N+112
(A162)

and observe that this function has a constant order

F(N,A)=0(1) as N — o0, in particular,
. M{ A 2A
R S e e S

then, for every N, due to the monotonicity of F(N,A)
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FIG. 6. A plot of F(N,1/6) in (A162) for N €

{1,2,...,30} (red dots). As discussed in the main text,
we have limy oo F(N,1/6) = 2A/(1 + A)|acrjs = 2/7
(blue dashed-dotted line). As the plot shows, the function
F(N,1/6) is upper bounded by 3 (purple dashed line) since it
takes the maximum at N = 2 with F(2,1/6) =2.02--- < 3.

in terms of A, we have

F(N,A) < F(N,1/6) € {2 3] (A164)

?a

where the range can be confirmed also from Fig. 6. O

4. Proof on classical upper bound for solving
Simon’s problem

In this appendix, we present a proof of the achievable
upper bound of query complexity of Simon’s problem in
Problem 6 by the classical algorithm with M uniformly
random queries, as described in Proposition 10 of Sec. V.
The statement of Proposition 10 is repeated again below
for readability.

Proposition 10 (Refined analysis of upper bound of
query complexity of Simon’s problem for a classical algo-
rithm). Fiz any N. For any § > 0, if we have

MF
2

the classical algorithm that makes the uniformly ran-
dom M (or more) queries for solving Simon’s problem

J

<8 In (15) 2N 41+ ﬂ =0(2N?),  (160)
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in Problem 6 achieves the following with a high probabil-
ity greater than 1 — §:

e if there exists any s € {0,1}" \ {0} such that f is
a 2-to-1 function satisfying f(x) = f(x @ s), then
this M-query algorithm outputs a = 1;

o if f is a 1-to-1 function, this M-query algorithm
outputs a = 0.
Proof. Recall that, as described in Sec. V, with the M
different inputs & = (z1,...,zp) chosen uniformly at
random, the algorithm works as follows:

o if at least one pair (zy,z.,) satisfying f(zx) =
f(zy,) for some xy, # x,, is found in the M queries,
the algorithm has an evidence that f is a 2-to-1
function and thus outputs a = 1;

e otherwise, the algorithm considers f to be 1-to-1
and outputs a = 0.

If f is a 1-to-1 function, the algorithm always returns
the correct output a = 0; thus, it suffices to analyze the
probability of outputting a = 0 in the case of f being
2-to-1. For any s € {0,1} \ {0}, the set {0,1}" is
divided into 2V /2 equivalence classes with an equivalence
relation z ~ x @ s. If the uniformly random M queries
of the algorithm include a pair of x and x & s in the
same equivalence class for some x, then the algorithm
finds f(z) = f(z ® ) and thus outputs a = 1 correctly.
The false output, i.e., a = 0 for the 2-to-1 function f,
arises when all the M queries z1, ...,z are in different
equivalence classes.

The failure probability is given by a fraction of the
number of the sequences that give a false output, di-
vided by the number of possible sequences. The num-
ber of sequences that return the false output is given by

(21/%)2M, wh dered i h
Y , where M unordered inputs are chosen among
the 2% /2 equivalence classes, which amounts to the factor

(2];\/1/2), but for each of the M equivalence classes, there

are 2 possible choices x or x @ s, giving the other factor
2™ On the other hand, the number of possible sequences

is given by (21\1;), the number of unordered choices of M

elements in 2. All-in-all, the failure probability is given
by

e
G

and we have a bound on this failure probability by

(A165)

(2N/2)2M C2NSN=T o py(eN- 9y (2N (M - 1)) x 2M
@ 2NN -V - 2) - 2V - (M - 1)) e
_2VeN -2V —4)-- 2V —2(M 1)) (A167)

NN —1)(2N —2)--- (2N — (M — 1))
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1 2 M -1
_1(1- 1- O P A168
( 2N—1>< 2N—2> ( 2N—(M—1)) e
1 2 M—1
§1<1_2N) (1_21V>...<1_ 5% ) (A169)
< e 012N gm2/2N L =M 2Y (A170)
= MM -1)/2N (A171)

where the last inequality follows from e* > 1 + z for all
x.
Therefore, for any M satisfying

1 1 1
_ _ N _
M > o <8ln5>2 143, (A172)
we have
e~ MM-1)/27T 5 (A173)

Since M is an integer, with M chosen as (160), the
classical algorithm with the M or more uniformly ran-
dom queries achieves the success probability in solving
Simon’s problem greater than 1 — J. O

Appendix B: Details of control-cost model

In this appendix, we aim to provide a clearer explana-
tion of the concept of control cost discussed in Sec. I1C
of the main text. In the main text, we have argued that
when performing a unitary operation on a computer, it
can require more energy than just the change of energy
in the memory alone. We call this cost the control cost.
We have introduced a generic constant to account for the
control cost so that our analysis should not depend on a
specific architecture of the computer, whereas the exact
value of control costs may depend on specific models be-
ing used. Crucially, we assume that the control cost is
non-negative yet at most in the order of the energy scale
of the Hamiltonian, as shown in (19) and (38). Here, we
present a toy example that exhibits these properties. To
this end, we sketch a model that can implement arbitrary
unitaries to a single-qubit target system assisted by an
auxiliary system but may incur the control cost, based
on the model shown, e.g., in Ref. [122].

Interactions between systems are described by interac-
tion Hamiltonians, and the time evolution of the quan-
tum states, according to the Hamiltonians, conserves en-
ergy. If we work with non-energy-degenerate qubits as
our computational platforms, such as trapped ions, su-
perconducting qubits, and optics, then the energy con-
servation restricts the set of possible operations imple-
mentable by the Hamiltonian dynamics. In particu-
lar, if the quantum computer’s memory is described by
the Hamiltonian Hg, then unitary operations U imple-

(

mentable within the energy-conservation law would sat-
isfy a condition of
[Hs,U] = 0. (B1)
In more general cases, a unitary operation to be ap-
plied to a target system may not satisfy this energy-
conservation condition; however, the implementation can
be made to conserve energy by enlarging the system it
acts on to include an auxiliary system. Such an auxiliary
system for the control may also be called a catalyst or
battery. For a selection of references where this setting is
discussed in further detail, see Refs. [122-125]. The local
operation on the target system is then only the effective
operation that arises by tracing out the auxiliary system.
Toy example based on Ref. [122]. Let us model the
target system Hg = C? as a qubit and the auxiliary
system H¢ for the control as a harmonic oscillator, i.e.,
a half-infinite ladder. The two systems are governed by
the Hamiltonian

H=Hs+ Hec =wll) (1\S®]lc+]15®2nw|n> (n|e s
n>0
(B2)

where {|0)¢,|1)¢} and {|n), : n =0,1,...} are orthonor-
mal bases of Hg and H¢, and 1o and 1 g are the identity
operators acting on Hg and H ¢, respectively. If we desire
to perform a unitary U on our target qubit, we can do so
in an energy-preserving way by defining the dilation on
the composite system Hg ® H¢ as

V[U] = 0) (0]s ©10) {0l +

SN Uiy Glg®In—i) (n—jle, (B3)

n>11i,j=0

where we write U; ; := (i| U |j). The operator V[U] com-
mutes with H = Hg + H¢ in (B2) because it commutes
termwise. In particular, the term in the first line of (B3)
commutes with H because it is diagonal in terms of the
same basis. The same is true for all terms in the second
line with ¢ = j. All other terms are of the form

(constant) x |0) (1|g ® |n) (n — 1| + (h.c.) (B4)
where (h.c.) represents the hermitian conjugate of the
first term, and n > 0 is some integer. These terms also
commute since they preserve the degenerate subspaces



spanc{[0) g ® )¢, |1) g @ |n — 1)} of H (recall, two di-
agonalizable matrices commute if and only if they are
simultaneously diagonalizable, i.e., if and only if they
preserve each other’s eigenspace).

The question we now have is: for a given input state
[)s = D21 j) of the target system and an initially
pure state |¢) of the auxiliary system given by

L—-1
o =3 0nln) = % S lnthe (B9

s = tro{VIU]16) (9l ©16) (¢l VIUT} in general? We
write the approximate implementation (in (B3)) of U act-
ing on the subsystem S as a channel

Au(vs) = tre [VIUI([9) (0] @ |9) (8l ) VIUIT]. (B6)

To estimate the quality of Ay in approximating U, we
calculate how V[U] acts on the two spaces Hg ® Hc.
For this purpose, we define another state of the auxiliary
system

with some constant ¢y > 1, how close are U |¢)g and

10" In+£o)c s (B7)

=
which overlaps with |¢). up to the two boundary terms

|€o) and |[€o + L — 1), . With the help of this state, we
can concisely write how V[U] acts on [¢)¢ ® |¢) , i.e.,

V0N © o) =y “ o (U 1)s) ® 1)
+ \/g)dsc» (B8)

where |x) ¢ is some state orthogonal to (U [¢) ¢)®|¢") -
This state moreover satisfies

(Xlgc s ®¢") ) =0. (B9)

Calculating the reduced density matrix ply = Ay(¥s)
yields, for any initial state [¢),

po=(1- 2 U WU+ s @10
where xs = tre [|x) (x|gc] is the remainder from the
partial trace, and no cross terms from (U |¢)g) ®
|#") (X|g + (h.c.) appear because of orthogonality
shown in (B9).

Now, we can prove that in the limit of L — oo, the
channel Ay converges to the original unitary channel
for U. In terms of channel fidelity f(Ay,U) (see, e.g.,
Refs. [126-128]), we can quantify how well Ay approxi-
mates the unitary channel U on average over the input
states. In our case, we have

Ay, U) = / dp(w) (V[T Ap ()T 1) (B11)
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_ /du(w) (1 - O(i))
=1-0 @) ’

where the integral is over the normalized and uniform
measure du(i)) of the projective space P(Hg) = CP!
of the single-qubit Hilbert space Hg = C2. The
bound (B13) follows from the approximation using (B10)
and the negative sign in front of the big-O term comes
from | (¢|pls|1) g | < 1 for all states ps # [¢) (¢|g. This
shows that in the limit of large L, the two unitary chan-
nels corresponding to U and Ay coincide.

Emergence of the control cost. In Ref. [122], it is ar-
gued that the channel on the auxiliary system for the
control, defined by pc + p = trs{V(U)ps@pcV (U)T},
always increases the entropy of the auxiliary system.
As a consequence, we can argue that the cost of re-
setting the state of the auxiliary system for the con-
trol will always be positive within this framework since
the Landauer-erasure cost of reinitializing the auxiliary
system is bounded by the positive entropy difference
S(pe) —S(pc) > 0 [23]. This fact also justifies the as-
sumption that E.,p > 0 in (19).

To show this fact quantitatively, we here bound the
increase of the entropy of the auxiliary system on aver-
age over the initial states [1)) 4 of the target system in
performing V[U]. To this end, we compute the average
entropy change for the auxiliary system as

(B12)

(B13)

(ASe) = / dp(@) 1S(o) — S(6) (Dle)|  (BL4)

- / dp(1)S(0lp), (B15)

where the integral is over all possible initial states on the
target system. A lower bound of S(p) can be estab-
lished by using concavity of the entropy as

S(pc) = S(ps)

=s((1-2 v v+ 2xs) @)

(B16)

2
Z 7S(XS)7

7 (B18)

where the first equality follows from the fact that the
state V[U](|¢) g ®|#) ) in (B8) is pure, the second equal-
ity from (B10), and we write x5 = tre||x) (x|gc]- The
entropy S(xs) > 0 may depend on U and [¢)4 but is
independent of the value of L > 2, which can be seen by
explicitly calculating (B8) and observing that no factor
of L appears in |x) g, For some particular choices of uni-
tary U, it may hold that S(xs) = 0 or even S(p,;) =0
(for example, for U = 1). However, for general unitaries,
the entropy does not vanish. Under the assumption that
the entropy S(xs) > 0 is strictly positive for at least a



constant fraction of the initial state [1/) ¢ among all pos-
sible choices, we asymptotically have

(@s0)=2(7).

which provides a lower bound of the control cost arising
from reinitializing the auxiliary system by the Laudauer-
erasure protocol per implementing U with V[U].

Apart from this control cost of reinitialization, in prac-
tice, one may also need to account for the energetic cost
required for preparing the state (B5) of the auxiliary sys-
tem. We also note that when connecting these results
to actual energy requirements in an experimental imple-
mentation of a quantum computer, other control costs
like the ones to control the timing of the operations in
implementing V [U] should also be considered [75]. As for
the energetic cost, by definition of |¢) and Hc¢, we have

(¢l He |¢) = Q(wL).

(B19)

(B20)
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This scaling shows that preparing the state (B5) of the
auxiliary system comes at an energetic cost that grows
with the target channel fidelity for the implementation
Ay to approximate the gate U. Letting e = 1 — f(Ay, U)
denote the infidelity, we can combine (B13) and (B20) to
qualitatively recover the scaling derived in Ref. [32], i.e.,

wlticlo) o (1),

A detailed analysis and the conception of a more opti-
mal auxiliary system for the control are also given in
Ref. [32], where the linear dependency of the control cost
Ectr1. = O(Equbit) is also derived for a certain model, as
n (38) of the main text. Note that a similar bound can
also be obtained from the results in Refs. [34, 35, 129-
131]. These bounds show that the assumptions on the
control cost in our analysis indeed hold for the con-
ventional theoretical models that we believe capture the
essence of physics in practice.

(B21)
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