The microwave course — Exercises
check back for updates

A. Impedance, admittance, and LC-resonators

For a sufficiently low frequency (and we are yet to build up our understanding of how low
is that), the dynamics of electromagnetic field can be reduced to a network of inductors
and capacitors. We denote both elements as a box with two wires sticking out of it, with
the understanding that an L-labeled box means inductance and a C-labeled box means
capacitance. A voltage and a current source are denoted by a big circle with a wavy line
in the middle. And ideal voltage source V has zero series resistance and an ideal current
I source has an infinite parallel resistance. We also agree to consider all signal to have a
time-dependence of the form V(t) = V expiwt and I(t) = I expiwt. The amplitudes V
and I are themselves complex numbers, and the real voltages and currents are obtained by
taking the real part of their complex-valued functions. This way we reduce differentiation
in the time domain by a multiplication by iw, which simplifies the math dramatically.
The quantity connecting V to I is called impedance and is indicated as Z(w). The inverse
of impednace is what connected I to V, it is called admittance, and is usually denoted as
Y (w). For example, impedance of an inductor is Z;, = iwL and admittance of a capacitor
is YC = wC.

With these notations in mind, we can formally define an inductance as an element, which
results in a current I when biased by an ideal voltage source V such that V = (z’wL)f .
Likewise, for a capacitor we would get V= (1/iwC )f In both cases, the complex numbers
V and I are represented by vectors perpendicular to each other. In case of inductance,
V is "ahead” of [ by 90 degrees, and it’s the opposite for the case of capacitance (we
remind that +i = exp(4in/2)). For the sake of simplicity of notations we will often skip
the "hat” in the complex number notation for voltages and currents.

Connecting an inductor to a capacitor results in the formation of an LC circuit which has
a resonance at the frequency wy = 1/ V'LC. There are two ways to arrange such a connec-
tions. First (see Fig. 1a,b is connecting a voltage source to a series combination of L. and
C). In this case, the total impedance connected to the voltage source is Z(w) = iwL—i/wC
and it becomes zero at the frequency wy = 1/ VLC'. That is, for a finite AC-voltage am-
plitude applied, the resulting current has a diverging amplitude. That’s a resonance of
current, or a series resonance. The second way of connecting an inductor to a capacitor
is shown in Fig. 1c,d. This time a current source is connected to a parallel combination
of L and C, which is equivalent to an admittance Y (w) = iwC — i/wL. At frequency wy
we have the admittance going to zero, that is a finite amplitude current source induces a
diverging voltage. That’s a resonance of voltage or the parallel LC-resonance. So, a series
resonance is characterized by the zero of the impedance function of the entire circuit and
a parallel resonance is characterized by the zero of the admittance function.

The divergences are eliminated in the presence of some dissipation. In case of the parallel
LC-circuit, a small dissipation rate can be introduced by adding a high-value resistor R
in parallel with L and C (see Fig. 1le). Now admittance is never zero for a real frequency.
However, it does have a zero but for complex valued frequency. @ = wqy + i€, where for a
large enough R we should get € < wy.
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Figure 1: Understanding resonances via impedance and admittance functions

Exercise 1.1 Find a condition on R for which ¢ < wy, calculate € and connect its value
to the quality factor @) of the resonance. What do you think constraints the sign of €7

Let us minimally complicate the case of LC resonances by adding a third element, this
time a small capacitance C'; < C connected as shown in Fig. 1f. Is this a series or a
parallel resonance circuit?

Exercise 1.2 A little paradox. Consider a circuit in Fig. 1f. Find w’ such that Z(w') =0
and w” such that Y (w”) = 0. Do not hesitate to make Taylor series expansion in C, to the
lowest order to simplify the answer. Plot both functions vs frequency. So, are we looking
at a series or a parallel resonance? What happens to w’ and w” when we take the limit of
a very small capacitance C.7

Exercise 1.3 Let’s add some loss (see Fig. 1g). Resistor R; represents the so-called
"internal” dissipation, say due to losses in the capacitor C or inductance L or wires con-
necting them, and resistor R, models an "external” dissipation, say due to the internal
resistance of the voltage source. With the choice of the circuit in Fig. 1g, the internal
loss becomes negligible when R; is very large (open circuit) and the external loss becomes
negligible when R, is very small (short circuit). So let’s fix some value of Co << C,
calculate Z(w) and Y (w), and explore their zeros. Describe the resonance behavior. Here
you can use both the analytical approach or Microwave Office. Is there still a paradox
when we send C¢ towards zero?

B. Transmission lines

Transmission lines is an electromagnetic structure with a cylindrical geometry, conceptu-
ally consisting of two independent conductors ”parallel” to each other, in the sense that
the cross-section of the line is the same along the line. Such a line propagates electro-
magnetic excitations qualitatively similar to plane waves in vacuum, also known as TEM



(transverse electric magnetic). The energy of the TEM wave resides mainly in the vicin-
ity of the line conductors in the form of spatially confined electric and magnetic fields.
A telegraph is the first example of such a TEM transmission line. A USB cable or a
coaxial cable is a more modern implementation of the "telegraph”. There is also a plenty
of on-chip or printed circuit board (PCB) transmission lines with geometries known as
microstrip (the first conductor is a strip, the second is the ”ground” plane), coplanar
waveguide (CPW) (a 2D projection of a coaxial cable), coupled strips (two microstrip
lines parallel to each other), etc.

Interestingly, the vast zoo of TEM transmission lines can be modeled by a relatively
simple ladder network of inductors and capacitors (Fig. 2). The model is motivated by
the physical structure of the line: there is electric field between the lines due to the
potential difference, and there is magnetic field winding around the lines due to the
currents. Instead of electric and magnetic fields we focus on currents and voltages, while
Maxwell’s equations and boundary conditions are replaced by the Kirchoff’s laws. We
define a voltage wave as a sum of forward and backward propagating waves

V(z) = Vi exp(ikz) + V_ exp(—ikz), (1)

where both the propagation constant k£ and the amplitudes V, and V_ generally depend
on the frequency w. Likewise, we define a current wave

I(z) = I exp(ikz) + I_ exp(—ikx) (2)
For the simplest ladder network shown in Fig. 2¢, we would get

k=w/v
v=1/Vie )
Vo)L =V /I = Z. = \/lJc

where we used the inductance [ and capacitance ¢ per unit length of the line L = [ X dx
and C' = ¢ x dx. The quantity v is the phase velocity and the quantity Z,, is the wave
impedance. Interestingly, the quantities ¢ and [ depend weakly on the line geometry and,
in case there is now media near the conductors, a good estimate is ¢ ~ ¢y and | ~ .
The deviation of k(w) = w/v law is called dispersion, it means some frequencies propa-
gate faster than the others, and hence it can significantly alter the propagation of signals
involving m and it can significantly distort the propagation of signals containing multiple
frequencies. A purely imaginary k& would mean propagation is forbidden (why?).

Exercise 1.4 Let’s consider a more general ladder model for a transmission line, where the
”inductance” part is given by an element with a frequency-dependent impedance Z;(w)
(per unit length) and the ”capacitance” part is given by an element with a frequency-
dependent admittance Y3(w). Such more general model is physically justified, because as
the wire gets longer, impedance adds up but admittance adds up as well and this can take
into account the fact that ideal inductance and capacitance model might be an oversim-
plification. The deviation of k(w) = w/v law is called dispersion and it can significantly
alter propagation of waves consisting of multiple frequencies.

Show that for such a general transmission line k(w) = y/—Z1(w)Ya(w) and Zy(w) =
Z(w)/Ya(w)



Physical 2-wire transmission line Example: semi-rigid coaxal cable
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Figure 2: TEM transmission lines

Exercise 1.5 Consider a case where Z;(w) represents a parallel resonance circuit con-
sisting of capacitance C” and inductance L. Consider then a different case where Y;(w)
represents a parallel resonance circuit consisting of capacitance C' and inductance L'.
Analyze the properties of wave propagation in such transmission lines in low- and high-
frequency limits.

Exercise 1.6 Consider a case where Z;(w) = iwL + r(w) and calculate the propaga-
tion constant k(w). A frequency-dependent resistor can be used to model the skin-effect.
Namely for a conductor with a conductivity o, the AC current flows only in the surface
"skin”-layer 0, = 1/, /figow. That is, as the frequency goes up, the skin layer gets thinner,
so the same amplitude current would dissipate more energy (less conductor cross-section
is available). Therefore, while a good model for the inductor of a wire is L = po X dx,
a good model for the resistance is r(w) = dx x (1/0) x 1/(7wdds), where d is the wire
diameter. Thus, for conductors much wider than ds, we get r(w) o< \/w. At low enough
frequencies the current flows in the entire wire cross-section, so r is just the wire’s re-
sistance. At high enough frequencies, the skin-depth becomes so small that the Drude
model of conductivity requires modifications. For a good conductor, d, is on the order
of a few microns at 1 GHz, so the skin effect plays an important role in the microwave
frequency range for conductors thicker than a few microns. Estimate the loss per unit
length in a coaxial cable made of Copper inner conductor with a diameter of 0.5 mm.
Plot your result vs frequency in the 1 - 20 GHz range.
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Figure 3: Cross-section of a two-wire transmission line and the effective ladder inductance
and capacitance per unit length



Exercise 1.7 Refer to Fig. 3 for an accurate model for the ladder inductance and capac-
itance in a two-wire transmission line. Assume € = ¢;. Calculate the speed of light. Does
it depend on the geometry of the line? What about wave impedance? Design a geometry
such that Z ., =1 €, 100 €2, 1000 €2, 10000 2. Any problems with such a transmission line
design request?

C. Terminated transmission lines and impedance transformations



