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5.9

5.10

Photon-coupled traps: In the text we mention the possibility of coupling different
traps with the use of photons. We explore this idea further in this exercise. Consider
two traps, each with an ion labelled the communication ion. These two ions are
irradiated, emitting a photon whose frequency depends on the ion’s state. If the ion
is in the ground state |0}, the photon is blue (&Elue [0} =: |vble)). If the ion is in the
ground state |1) the photon is red (&Ied [0} =: |Vred)). The photons arrive at a 50/50
beam splitter. We then measure one photon at each detector. The measurements are
done in the Bell basis. What Bell state needs to be measured for the two ions to be
entangled? What is the final state of the communication ions?
Ramsey interferometry with ions: An early application of trapped-ion quantum
computers was metrology, the science of more precise measurements. One notable
example of this is Ramsey interferometry. Say you begin with a single ion in the
ground state, |0). If left to evolve for some time ¢, the ion’s excited state will accumu-
late a phase ¢ relative to the ground state. With only the use of single-qubit rotations
and projective measurements, create a protocol to determine ¢.

Superconducting Circuits

In thfa previous chapters we selected our qubits from natural systems: nuclear spins, photon
and ions. By doing so, we worked with qubits that have fixed prbperties. Howe;rzr wh:t’
cc.vuld we do if we could tune the parameters of these qubits to more convenient value’s‘? We
will take this idea further by building qubits using a similar approach to classical compt;tin
Asa ﬁmt gUCSs, we can try to build a qubit from an electrical circuit — for instance aﬁ
LC oscillator. By doing so, we could tune the energy levels of our qubit by modif):in
the capac.itar_lce or the inductance. However, this approach would preseﬁt two challen cf
The first is that conventional LC circuits have an internal resistance that would indﬁce.
dec-oherence in the quantum setting. The second is that an LC circuit is a harmonic oscillator
wh‘lch means that the energy difference between energy levels is constant, so it’s challengin ,
It)o lso.late two energy levels to use as our qubit. Fortunately, we can sol\:e these cllaller?gei
q):l :;;::g superconducting materials and making tunable qubits, known as superconducting
This .chapter introduces how we can use superconducting qubits for quantum computin
We b.egm with a brief introduction to superconductivity (Section 6.1) and superconducting‘
f:1rcu¥ts (Section 6.2). This section introduces a critical circuit element called the Jose hsoﬁ
Junction. In Section 6.3 we see how we can use it to build an electrical circuit with an el:ie
spe:-ctrum suitable to construct a qubit, There are many types of éuperconductin ubrigt:
'I'h-:s. chapter focuses on the transmon and briefly mentions other superconductif : ubit.
a{chlll'ectures. We will initialize the transmon using brute-force cooling machinesgc:lled
dilution refrigerators (Section 6.5). In Section 6.4 we introduce the field of circuit quantum
electr:odynamics (QED). With this, we can then explain how the qubits are CO(iltrOHed
(S.ectx.on 6.6) and measured (Section 6.7). Next, we disbuss the noise sources in Section 6.8
Like in Chapter 3, we use concrete examples to discuss noise in superconductin, ubiis-.
but the methods outlined here are general and can be applied to other types of ugbi?s Wi ’
conclude in Section 6.9 with a summary of the chapter and an overview of the strgn hs- :]:
weaknesses of superconducting qubit quantum computing. g

6.1 Superconductivity

Superconductors have enabled many technologies. We’ve seen examples of this in earlier
cha.pters. In NMR we found they can be used to produce powerful magnetic fields. In
optics we found they can operate as sensitive detectors. To study superconducting qubits
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we’ll need a more detailed introduction to the properties of superconduc_:to.rs and a theor.y
that explains how these properties emerge. We introduc.e two characterls.tlc macroscopic
properties of superconductivity in Section 6.1.1. In Section 6.1:2 we outline the Bardée_n—
Cooper-Schrieffer (BCS) theory of superconductivity tha?t describes how 51.1percor.1duct1v1ty
emerges from microscopic effects. We conclude this section by demon‘stratmg an 1mpor‘tant
property of superconducting systems: Magnetic flux can be quantized under the right

conditions (Section 6.1.3).

6.1.1 Properties of Superconductors

Quantum mechanics is usually thought of as the physics of very §mall things; 'su.per-
conductivity challenges this notion. Superconductivity is character}zed by two dlstmf:t
macroscopic properties: perfect conductivity and perfect diamagnetism. (A diamagnetic
material partially expels external magnetic fields.) ‘

Most metals are superconductors at sufficiently low temperatures. There are different
types of superconductors. Here, we will consider conventional low-ten'lperature.su[.)ercon-
ductors described by BCS theory. Metallic elements, such as aluminum or niobium, or
alloys of these, such as niobium-titanium, are the typical low-temperature supe.rconduct'ors.
The more exotic high-temperature superconductors are made from ceramic materials
doped into a conducting state. . .

The perfect conductivity of superconductors was discovered by }.Ielk.e Kamerlingh Onnes
in 1911, earning him the Nobel Prize in 1913 for his discovery. This dlscovery was enabled
by Onnes’ earlier discovery of a process to liquefy helium and ac%neve the record low
temperatures necessary for discovering superconductors. It had previously been observed
that the resistivity of metals decreased smoothly as they were cooled, bu.t what Onnes was
surprised to find was that, as the temperature dropped below 4.2 K, .the resistance of mercur‘y
suddenly dropped to zero (Fig. 6.1). The temperature where this sudden drop occurs is

(a) Superconductivity (b) Meisner effect
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Superconductivity and the Meissner effect. (a) Sketch of the electrical resistivity of typical metals plotted against
temperature. Superconducting systems are distinguished by their resistivity suddenly dropping to zero at a critical
temperature, T.. (b) Diagram of the Meissner effect. Once a system becomes superconducting, it expels all external

magnetic field lines.
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known as the critical temperature, T,. It was later understood that this change represented
a phase transition' of the conduction electrons in the metal.

The perfect diamagnetism of superconductors was later discovered by Walther Meissner
and Robert Ochsenfeld, in 1933. Meissner and Ochsenfeld found that superconductors
expel externally applied magnetic fields when cooled through their critical temperature.
This expulsion of magnetic fields is known as the Meissner effect. It is what enables the
popular science demonstration of superconductors levitating magnets. It’s important to
emphasize that perfect diamagnetism is distinct from perfect conductivity, although the
difference can be subtle. Classical electromagnetism allows a magnetic field to become
trapped in a perfect conductor. That is, according to Lenz’s law (which says that a changing
magnetic field induces a voltage which will drive a current in a conductor that opposes the
change in the magnetic field), if a cooled metal became a perfect conductor, it would trap an
externally applied magnetic field inside of it. However, Meissner and Ochsenfeld found this
was not true in superconductors. The magnetic field is expelled from them. This implies
that the Meissner effect is not a consequence of perfect conductivity but is a distinct effect.
The microscopic mechanism of the Meissner effect is that the superconductor generates a
screening current on its surface that shields the body of the superconductor from the existing
external field.

Superconductors are characterized by three critical parameters that describe the external
conditions necessary for the metal to be superconducting. The most recognized of these
conditions is that the material must be cooled below a particular temperature; this is
the critical temperature, which is mostly in the range of 0-20 K for low-temperature
superconductors. The second parameter is that the strength of the magnetic field surrounding
the superconductor must be below a certain point, known as the critical field, 4,.2 It is
typically in the range 10~1-10! T. The final parameter is that the electrical current passing
through the mgtal must be below a critical current, /.. Since /. depends on the cross-
sectional area of the metal, 4, we often talk about the critical current density J, = I./4,
which is an intrinsic property. The critical current density of typical low-temperature
superconductors is in the range of 10°~10* A/mm?2. While the values of these three critical
parameters depend on the microscopic details of the superconductor, they are all a proxy
for the superconductivity’s “strength” in the metal. Therefore, these parameters are highly
correlated and depend on each other. We define these critical parameters as the maximum

value when only one external condition is applied. These values won’t be observed if more
than. one external condition is applied. For example, the maximum observed supercurrent
depends on the magnetic field and temperature. This dependence is important in applications
such as the high-field magnets used in NMR. A current produces a magnetic field in this
application, but the resulting magnetic field will reduce the critical current.

1 a phase transition is an abrupt change in a system’s properties in response to a change in one or more of the
system’s macroscopic variables, e.g. a solid melting into a liquid due to a temperature change.
2 Here, H is used instead of B because it relates to the magnetic field in materials.
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6.1.2 BCS Theory of Superconductivity

The Bardeen—Cooper—Schrieffer (BCS) theory of superconductivity describ.es how super-
conductivity emerges in conventional metals from microscopic effecjcs. This theory was
proposed in 1957 by John Bardeen, Leon Cooper, and John Robert Schr%effer, 46 .years aftfer
the discovery of superconductivity. They were awarded the Nobel Prl'ze for. this work in
1972. While we won’t explore the details of BCS theory, we will use its main result, that
superconductivity emerges due to the formation of pairs of electrons.

Cooper Pairs

Cooper pairs are pairs of electrons that, at low temperatures, experience a weak attractive
coupling to one another. In 1956, Leon Cooper proved that the 'electrons cou_ld lower
their energy compared to the normal-metal ground state by formu.‘lg b.()und. pairs, even
if the attractive potential is weak. The exact form of the interactl.on is quite complex
mathematically. However, it was understood early on that it was likely that the crystal
lattice’s phonons were mediating the attractive interaction between electror}s. The role of
the crystal lattice in superconductivity was confirmed by the discovery of the isotope .effect,
which showed that bulk superconducting properties, such as T, and H,, change with the
isotopic mass of the ions in the lattice. . . o
Despite the complexity of a rigorous mathematical description, there is an intuitive plCtl.lI'e
of the microscopic origin of the attractive electron potential that produces Cooper pairs.
Inside a metal, the negative charge of the conduction electrons is balanced by the positive
charge of the ions that make up the crystal lattice. This balance makes tﬁe total system
charge neutral on average. However, on short timescales, an el‘ectrf)n passgg through the
lattice of positive ions will pull the ions toward it (Fig. 6.2). Thls.wﬂl resuljt ?n the electron
leaving a slightly positive charge density trail behind it. This region of pos%tlve ch?rge can
attract a second electron, thus giving rise to an attractive electron—electron interaction. The
two electrons correlated by the lattice deformation can have a separation_ of 100 nm or
more, much larger than the distance between the ions in the latti(?e? which is ~0.1 nm. In
fully quantum language, we would describe the interaction as arising from the exchange

Depiction of the attractive interaction that forms Cooper pairs. A moving electron attracts the positively
charged fons in the lattice. The lattice is slightly distorted, creating a positively charged region in the wake of the

moving electron. Another electron is attracted to that region, creating an effective coupling between the two electrons.
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of phonons between the two electrons, in analogy to how electrons interact by exchanging
photons in quantum electrodynamics.

BCS Ground State and Condensate Wavefunction

More than 45 years elapsed between the experimental discovery of superconductivity
and its explanation by the BCS theory. Part of the difficulty was the complexity of the
phonon-mediated interaction between the electrons. BCS cleverly avoided these details.
They “guessed” the form of the ground-state wavefunction of the superconducting state with
unknown coefficients characterizing the probability amplitudes of particular momentum
states being occupied or unoccupied by Cooper pairs. They then used variational techniques
to minimize the energy of this ansatz wavefunction in terms of the probability amplitudes.
With an explicit form for the probability amplitudes, they now had the complete form of
the BCS ground-state wavefunction. The variational technique used by BCS has become an
important tool in theoretical physics. For instance, it was used by Robert Laughlin to derive
the ground-state wavefunction of the fractional quantum Hall effect, earning him the Nobel
Prize in 1998.

The BCS ground-state wavefunction describes a collection of globally phase-coherent
electrons. That is, the quantum phase of each Cooper pair has a well-defined relation to
every other. In this way, the Cooper pairs form a macroscopic quantum state often referred
to as the BCS condensate. This is very different from the normal (not superconducting)
state of electrons in a metal, where the constant scattering of electrons by the crystal lattice
and other electrons scrambles the electrons’ phases, leaving them largely incoherent. The
emergence of phase coherence in the BCS condensate, therefore, hints at the suppression of
electron scattering. This is formalized in the BCS theory by the emergence of an energy
gap, Agcs, between the BCS ground state and the first excited state of the electronic system.
This energy gap, related to the binding energy of the Cooper pairs, means that Cooper pairs
are immune to low-energy scattering events that scramble the phases of the normal-state
electrons and cause electrical resistance in normal metals. This suppression of scattering
gives rise to the perfect conductivity of the superconducting state. Furthermore, the global
coherence of the phases of the Cooper pairs in the condensate, along with the fundamental
coupling of the electron’s phase to the magnetic vector potential, gives rise to the unusual
magnetic properties of superconductors.

It’s possible to understand many of the macroscopic properties of superconductors by
postulating that a single wavefunction describes the condensate of Cooper pairs. We will
follow this phenomenological approach here, inspired by the Feynman Lectures on Physics.
Still, we note that the concept of the macroscopic condensate wavefunction can be made
rigorous by a theory invented by two Russian physicists, Vitaly Ginzburg and Lev Landau.
The Ginzburg-Landau theory derived the properties of the superconducting condensate by
treating the onset of superconductivity as a phase transition of the electrons, using the more
general Landau theory of phase transitions. The Ginzburg-Landau theory was published in
the former Soviet Union in 1950 but didn’t receive much attention in the West until a few
decades later.
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In this treatment, we start by writing the macroscopic wavefunction for the supercon-
ducting condensate, ¥ (7), where 7 is the position within the superconductor. We define
o = Y(@* ¥ (@), which is the modulus square of the wavefunction, as the density of
Cooper pairs. Finally, we can write the full wavefunction as

v @ = Vo@D, (6.1)

including 6(7) as its phase. For microscopic wavefunctions, we would interpret p as a
probability density. However, here we can interpret o as a particle density because it’s the
wavefunction of a large collection of Cooper pairs.

We postulate that the state ¥ (7) obeys the Schrodinger equation for a particle of charge
g coupled to an electromagnetic field. The Hamiltonian for such a particle (written in the
position representation) is well known to be

2
= o (59 - 4i) + 000 (62)
m \ i

where Z(?) is the vector potential of the magnetic field and ¢(7) the scalar potential of the
electric field. From this point forward, we’ll drop the explicit 7 dependence. In the full
Ginzburg-Landau theory, there ate nonlinear corrections to this basic Hamiltonian, which
we ignore here. For a Cooper pair, we have that ¢ = 2e, where e is the charge of the electron.
We leave this constant general for now since the experimental determination of its value
provided important evidence that the superconducting state involved pairs of electrons.
Using the Schrodinger equation, we can then derive a conservation law for Cooper pairs
(charge),

8 » = - -
5(10(?)*1#(?)) =-V.-J=0, (6.3)
where J is the current describing the collective motion of the Cooper pairs,
- 1 (P2 > b= >\ Sy
J=ﬁ W 7V—qA v+ —?V—qA / (6.4)

These last two equations would each have the same form for a microscopic wavefunction
but would be interpreted as a conservation law for probability. Using the ansatz, Eq. 6.1),
we get the explicit form

J= % [%e = %,Z] o =7, (6.5)

where in the last step we have defined ¥ = %[6’9 — %E ]. With the general observation
that a particle current can be defined as the density of particles times their velocity, we
can identify ¥ as the velocity of the fluid of Cooper pairs, also known as the condensate

velocity.

6.1.3 Magnetic Flux Quantization

An interesting and unique property of superconducting systems is that magnetic flux within
a superconducting loop becomes quantized. This is a consequence of the superconducting
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Magnetic ﬂu)i quantum trapped in a superconducting ring. (a) A superconducting ring in uniformly applied
external field, B, perpendicular to the plane of the ring. (b) The field will induce a current that travels along the surface
of the ring. This current maintains the flux quantization by generating its own field that adds to or subtracts from the
applied field. (c) For an arbitrary flux through the ring, the wavefunction would be multivalued, which is unphysical
{d) With an integer number of flux quanta in the ring, the wavefunction is single-valued. .

.condensate having a coherent global phase. We’ll examine flux quantization here because
it’s a building block of many superconducting qubits.

We’ll start by_)considering a superconducting ring that’s threaded by a uniformly applied
magnetic field, B, oriented perpendicular to the plane of the ring (Fig. 6.3a). The Meissner
effect implies a screening current develops on the surface of the superconductor that cancels
the magnetic field in the bulk. (Experiments and detailed theory show this is the case.) Since
the current density is zero deep inside our superconducting ring, i.e. J= 0, it follows that

=g ﬁ = q-»
J=— —24|p= Vo =14
- [W hA]p—o = Vo=-4 (6.6)

We now take the line integral of both sides of this equation around a closed contour, T, that
passes deep inside the superconducting ring, yielding

- q -
Vo .-dl == }
ﬁ 5 ﬁA dl. 6.7)

We can si_r}lplify the right-hand side of this equation by applying Stokes’ theorem (§ A-dl =
fs(v x A)_’- dS)j wh_t?re S is the surface enclosed by I', and the definitions of the vector
potential (V x 4 = B) and the magnetic flux (& = f; B. d§'), finding

q i q =l e d q - - q)
= Adl=— V . e N —-q_.
3 e B=] [Ba=T (63)

For the left-hand side, we can start again with a result from vector calculus:

2
Vo .-dl=6,—06
/1 2 — 0, (6.9)
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which would be zero for a closed contour if the field (phase) were simply connected. In a
multiply connected field, like the superconducting phase of our ring, it doesn’t need to be.
To go further, we must add a physical requirement, which is that the wavefunction of the
superconductor is single-valued at any point in space and time. That is, if the phase starts
with a value 6y, once you return to the initial point, the phase can only take on values of
6o = 6 + 2nm. Otherwise, the wavefunction would have a different value, as depicted in
Fig. 6.3c. This then implies

yg Vo - dl = 2mn, (6.10)
r
where n € Z. Thus we find that the flux through the ring is equal to
o= @n = dgn, (6.11)
q

where g = 2e and we defined @¢ = ”Tﬁ = 2h_e where 4 is Planck’s cfonstant. That is? the flux
through the ring is quantized, taking on values that are integer multiples of ®o. @ is known
as the superconducting flux quantum. Physically, this flux quantization is enforced by the
screening current that flows in the superconducting ring, either adding or subtracting the

appropriate amount of flux.

6.2 Superconducting Circuits
I T T W L e e ]

Equipped with this brief introduction to superconductivity, we can now consider supercon-
ducting circuits. We’ll first describe some of the desired properties of an artificial atom
needed to build a qubit (Section 6.2.1). We’ll then try to build the qubit with a superconduct-
ing LC circuit. To do so, we’ll first present the classical LC circuit in Section 6.2.2. Using
the canonical quantization procedure, we’ll then find the Hamiltonian for the quantized
LC circuit in Section 6.2.3. However, we’ll find that to build an artificial atom we will
require a nonlinear circuit element. The nonlinear element of choice in superconducting
quantum computing is the Josephson junction, which we introduce in Section 6.2.4. Finally,
in Section 6.2.5 we introduce a type of tunable Josephson junction known as a DC-SQUID.

6.2.1 Artificial Atom

First, let’s outline our criteria for building an “artificial atom” for quantum computing. This
is a system with an energy spectrum that is discrete, well-separated, and anharmonic. For
our first criterion, we need a Hamiltonian with a discrete spectrum, like a natural atom. For
our second criterion, we need the separation between adjacent energy levels to be much
larger than both the thermal fluctuations of the environment and any broadening of the
levels induced by coupling to the environment. (Small broadening implies weak coupling to
the environment.) Our third criterion, an anharmonic spectrum, is helpful for controlling the
qubit using Rabi oscillations or similar techniques. Consider a system that has a harmonic
(i.e. equidistant) spectrum, that is, AE = Ey —Eg = Ep — Ey = - - -, where E, is the energy
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of the nth energy level. Now, assume that we’d like to excite the system from its ground
state to its first excited state. As we’ve seen many times in this text, we can do so by driving
the system resonantly at wg, = (E1 — Eg)/F. However, this is also the transition frequency
to the next level, and so forth. Thus, we would end up exciting the system to a superposition
of many energy levels. We avoid this outcome by making the levels anharmonic. These
three properties are characteristic of the spectrum of natural atoms, which is why we call
superconducting qubits “artificial atoms.” Once built, our artificial atom will be a multilevel
system, but we will encode our qubit in two of its energy levels, typically the two lowest.

Given that classical computers are built with electronic circuits, it’s reasonable to contem-
plate quantum electronic circuits to build quantum computers. In the next section we’ll first
consider one of the simplest circuits, an LC oscillator. We’ll find that a superconducting
LC oscillator can satisfy our first two criteria for an artificial atom, but fails to satisfy the
requirement of anharmonicity. To achieve anharmonicity, we’ll need to introduce a nonlinear
circuit element: the Josephson junction.

6.2.2 Classical LC Oscillator

The two components of an LC oscillator are an inductor and a capacitor, which are
characterized by their inductance, L, and capacitance, C. A typical inductor consists of
a current-carrying wire that’s been shaped into a coil. When a current moves through the
inductor, it induces a magnetic field in the inductor. Importantly, this magnetic field stores
energy, often referred to as inductive energy. The inductance, L, is defined by the relation
between the current in the inductor, 7, and the magnetic flux through the inductor, ®. The
flux is given by the integral of the magnetic field over the cross-section $ of the inductor’s
coil, ie. @ = ;B - dS. In detail, we have that

L=+ (6.12)

Combining this definition with Faraday’s law of induction, we arrive at the so-called consti-
tutive relation for the inductor, which relates I to the voltage ¥ across the coil: ¥ = L

In the context of superconducting quantum circuits, we will often find it convenient to use
the less-conventional integral form of this relation,

t
D) = / V(¢Hde, (6.13)
—00
where it’s assumed that at time ¢ = —oo0 the circuit is at rest with no stored energy.

A typical capacitor consists of two conducting plates separated by an insulating region,
which can be a vacuum or dielectric material. A voltage applied to a capacitor will cause
opposite charges to build up on the plates of the capacitor, producing an electric field in
the insulating region. Complementary to the inductive energy above, this electric field
also stores energy, commonly referred to as the charging energy. In fact, a capacitor can
be seen as an electromagnetic dual of an inductor in many ways. Gauss’ law generally
relates the charge on the capacitor to the electric field through Q = ¢ fSE s where, in
this case, S is a closed surface containing one of the capacitor plates. For the simplified
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geometry of a parallel plate capacitor, |E | is approximately uniform betweein the plates and
negligible outside of them, and Gauss’ law reduces to Q = €g|£|a, where a is the area of the
capacitor plates. Further, from the definition of electrical potential, we have that the voltage
(potential difference) between the plates is the line integral of E, which for parallel plates
gives V = E/d, where d is the separation of the plates. Putting this together, we get

Q
C= 7 (6.14)
where the capacitance, C, is the constant relating Q and V. For a parallel-plate capaci.tor
this reduces to C = €pa/d. Due to the linearity of Maxwell’s equations, this linear relation
between Q and ¥ holds for a general geometry, even if the exact expression for C will dfepend
on the specific geometry. The charge Q(f) on the conductor is given by the conservation of

charge,
t
() = / 1), 6.15)

where I(2) is the current flowing to the capacitor. Combining the differential of this relation
with Eq. (6.14) yields the constitutive relation for the capacitor: I = C %.

As we mentioned, inductors and capacitors store energy. This energy can be found by
taking the integral of the power

E= / t P()dt = / ' V(nI(1)de, (6.16)

- —00
where we used Watt’s law, P(¥) = V(¢)I(t). Importantly, ideal capacitors and inductors are
considered to be lossless elements, meaning that all energy put into them can be extracted.
This is in contrast to a dissipative element like a resistor. We can write the energy of the
capacitor and inductor in terms of the flux and charge. For the inductor, we find

! I . LF @?
EL(®) =/; V(HI()dl = f_oo (L d(t/))l(t’)dt =p =g 6.17)

and for the capacitor, we find

! g av@y\ ,, cv: @
Ecap(t) = / V(EHI()d! = f N 1409) (C ( )> df = — (6.18)

ar 2~ 2C

We will now find the classical Hamiltonian of this circuit by following the standard
prescription of classical mechanics. That is, we will start by writing down the Lag'rangian3
of the circuit and then derive the Hamiltonian using the Legendre transformation after
deriving the canonical variables of the circuit. In standard (classical) circuit analy'sis, we
typically work with the dynamical variables I and V. In the context of the Lagranglan' and
Hamiltonian formalisms, we will find it instead better to work with ® and (, as explained

3 Asa briefnote on interpretation for those who are unfamiliar with Lagrangian and Hamiltonian formalisms,
in classical mechanics they are advanced methods for solving the dynamics of compl'e).( coupled systems. We
start by writing the Lagrangian in terms of the uncoupled circuit variables of the individual component.s. We
then derive the canonical variables, which can be seen as the “true” degrees of freedom of the coupleq clrgult,
including constraints imposed by the circuit topology, i.e. Kirchoff’s laws. Finally, we write the Hamiltonian,
which essentially expresses the system’s energy, in terms of these true degrees of freedom.
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below. In this context, Eq. (6. 13) can be taken to define the flux, @, across any circuit element
or at any circuit node as the time integral of the voltage across it. In this general context, the
circuit variable ® no longer has the literal meaning of magnetic flux, but it is, nonetheless,
perfectly well defined. Finally, we remark that the Lagrangian and Hamiltonian formalisms
are a somewhat heavy-handed approach for a circuit as simple as the LC oscillator, but
the following derivation illustrates the formalism, which will be useful for more complex
circuits.

In classical mechanics, the Lagrangian is taken to be a functional of the kinetic energy, 7,
and potential energy, V, of the system. We must then choose which roles our capacitive and
inductive energies will play in our electrical analogue. The choice is arbitrary in general, but
we will find it convenient in superconducting circuits to assign the energy of the capacitor
to 7" and the energy of the inductor to ). This is equivalent to choosing the flux to play the

role of position and the charge the role of momentum. The Lagrangian is thus,

I . 1
L=T-V=-Cd?- a2 :
T 7 7L (6.19)
(The over-dot is a commonly used notation for the time derivative.) Next, we find the

so-called canonically conjugate momentum, P, to the coordinate ®:

P=—==Cd=0. (6.20)

In the case of this simple circuit, the canonical momentum is the charge on the capacitor.
In general, it will be a more complicated function of multiple circuit variables, although

maintaining units of charge. We can now obtain the Hamiltonian using the Legendre
transformation

_ . _ Q2 4)2
Hc=Pd-L= 2 + A (6.21)
which is the expected form of the energy of an LC circuit. Note that we expressed the
Hamiltonian only in terms of the canonical variables, O and ®; other variables, such as o,
must be eliminated in the final expression:

We can recognize Eq. (6.21) as the Hamiltonian for the harmonic oscillator. When an
inductor is connected to a charged capacitor, the circuit’s energy will oscillate between the
two components via simple harmonic oscillations. The voltage across the capacitor will
drop to zero as it drives a current through the inductor, causing the inductor to build up
a magnetic field (Fig. 6.4). As per Faraday-Lenz’s law, this magnetic field will induce a
voltage in the inductor’s coil that opposes the current flow, eventually reversing the current.
The energy stored in the inductor will thus fall to zero as it recharges the capacitor with the
opposite polarity. This cycle repeats, with the energy in the LC circuit oscillating between
the two components with a frequency

(6.22)

5
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Energy oscillating in an LC circuit. The voltage across the charged capacitor drives a current through the inductor,
causing the inductor to build up a magnetic field. The current continues to flow in the same direction until the charge on
the capacitor has flipped and the current then stops. The process then begins again with the current flowing in the

opposite direction.
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6.2.3 Quantized LC Oscillator

We will quantize our LC oscillator in the same way we did for the harmonic oscillator in
Section 2.6, that is, by following the procedure of canonical quantization. Since ® and .Q are
canonically conjugate variables, we quantize our Hamiltonian by promoting these variables

to operators,
050 o&— 9, (6.23)

and imposing the commutation relation
[ci:, Q] — i, (6.24)

Here we see an intuitive motivation for using ® and Q as our canonical circuit variables,
instead of / and V: They have the correct units such that their commutator has the same

units as A.
We can now express our Hamiltonian operator as
. 1., Cao?.,
= — OR (6.25)
Hic 7 CQ2 +—

We used the definition of w, to write the Hamiltonian in terms of C to highlight how, in our
circuit analogy, C plays the role of mass. This is consistent with our choice to associate the

capacitive energy with the kinetic energy. .
Now that we have expressed the circuit Hamiltonian in the form of a quantum harmonic

oscillator, we can solve the system as we have done previously. We start by defining the
ladder operators,

= D@’ +a) and O =iQ,al —a), (6.26)

where @,pp = /hZ,/2 and Qppr = +/Fi/2Z, are the zero-point fluctuations of the flux

and charge, respectively, and Z, = \/L/C is the characteristic impedance of the oscillator.
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The creation operator 4t = /1 J2RZ,(® — inQ) thus creates an excitation of the oscillator
of frequency w,. The Hamiltonian of the LC oscillator thus takes the usual form

N 1
Hie = ha (afa i 5) : (6.27)

Usually, we think of quantum systems as being very small, of atomic scale, but the
Hamiltonian !;’L(; can describe any scale. The validity of the quantization procedure for a
MES0SCOpiC Or even macroscopic system can be viewed as a hypothesis, but one that has
been extensively tested and verified with a high degree of precision. At the same time, a
theoretical motivation for this procedure is that the constitutive relations governing the
inductor and capacitor have been derived directly from Maxwell’s equations, and these
relations serve as a convenient tool for calculating the behaviour of the electromagnetic field
in the presence of conductors and dielectrics. In that sense, what is really being quantized in
Eq. (6.25) is the electromagnetic field itself.

One way of choosing the scale of our superconducting quantum devices is by choosing the
frequency @,.. By choosing the right frequency for our circuit, we can ensure the separation
between energy levels is much greater than the thermal energy, i.e. iw, 3> kgT. Thus, the
temperature that can practically be achieved sets a lower bound on w,. For scale, a frequency
of 10 GHz corresponds to a temperature of about 480 mK. In practice, we want the thermal
energy to be several times smaller than the energy spacing so that the thermal excitation
probability is negligible. In a modern dilution refrigerator with state-of-the-art filtering,
it’s possible to cool the circuit below 7 ~ 20 mK. All this together implies a minimum
operating frequency of a few gigahertz.

There exist some upper bounds on w, too. First, if the frequency is too high, the excitation
of the resonator will have sufficient energy to break Cooper pairs, and the system will
not function as a superconductor. This implies that we want w, < Apcs/F. In aluminum,
for example, Apcs/h ~ 50 GHz. (In fact, the energy to break a Cooper pair is 2Apcs,
sometimes called the spectroscopic gap.) Other common superconductors, such as niobium,
have much higher gaps. However, there is a technological challenge in pushing operation to
the terahertz range, ~0.1-10 THz, between optical and microwaves, as the technologies for
generating and detecting radiation are inefficient and impractical. Thus we’re bounded from
above by w ~ 100 GHz.

In practice, most superconducting qubit systems operate approximately in the range
of' 5-10 GHz, which fits nicely in the bounds above. This range also overlaps with the
frequency bands of many important communication protocols, such as LTE for cellphones
and Wi-Fi for computing, allowing superconducting quantum devices to exploit a large
amount of already existing technology.

6.2.4 Josephson Junction

Our method to build a qubit is finding a quantum system with good control of two of its
states. In superconducting systems, the control is through coherent fields similar to NMR.
Unfortunately, a superconducting LC circuit behaves as a harmonic oscillator, and our
control cannot isolate only two levels as they all have the same spacing. We need to add
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Insufator Superconductor

Josephson junction. A Josephson junction consists of two superconductors separated by a thin insulator. Cooper pairs
will cross the insulator via the effect of quantum tunnelling. This tunnelling causes the junction to have an inductive
energy; thus, it operationally behaves like a nonlinear inductor.

some anharmonicity from a nonlinear circuit element with very low dissipation to our
quantum system.

While there are many types of superconducting qubits, the Josephson junction (Fig 6.5)
is the nonlinear element of choice in qubit design. The Josephson junction is named after
Brian Josephson, who first predicted the existence of a supercurrent for these devices while
still a Ph.D. candidate. He received the Nobel Prize for his work in 1973. The most common
form of a Josephson junction is a tunnel junction with two superconducting electrodes. It is
a device built from two conductors separated by an insulating barrier. Classically, electrons
can’t cross the insulating barrier. However, quantum mechanics allows electrons to tunnel
through the barrier. We can control the probability of tunnelling by adjusting, for example,
the insulator’s thickness or the insulator’s type, which determines the height of the energy
barrier. More generally, a Josephson junction can be formed by any “weak link” between
two superconductors. In a typical tunnel junction, the probability of an electron impinging
on the barrier tunnels is very small, in the range p ~ 10~3-10~%. Before Josephson, it
was assumed that the probability of a Cooper pair tunnelling would be ~p?, implying
that any superconducting current through the junction would be negligible. Contrary to
these expectations, Josephson predicted that, due to the phase coherence between electrons,
Cooper pairs tunnel with probability ~p, just like single electrons in a normal-metal tunnel
junction.

Josephson further derived a pair of constitutive equations, now known as the Josephson
equations, that describe the dynamics of a Josephson junction in terms of the current and

voltage across it. These elements’ nonlinearity is needed to build a superconducting qubit.
Josephson’s derivations of the Josephson equations are beyond the scope of this textbook.

In that derivation, Josephson used microscopic tunnelling theory while accounting for the
superconducting electrodes’ quantum coherence. Here, we will motivate the Josephson
equations using a phenomenological approach, due to Feynman, based on the macroscopic

wavefunction concept we introduced above.
To motivate the Josephson equations, we start by writing down a minimal model

(Schrodinger equation) for coupled clectrodes:

9 d
ih—;/j_tl =Ey1 + Ky, and ih% = Exyn + Ky, (6.28)
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where v/; is the superconducting wavefunction of electrode i, E; is the self-energy (chemical
p(?tential) of electrode 7, and X is a coupling constant (tunnelling amplitude) that’s deter-
mined by.the tunnel barrier. The second term of each equation is often called the tunnelling
j[erm,. as 1t represents the tunnelling of Cooper pairs between the electrodes. If We now
imagine applying a voltage ¥ across the electrodes, then the energy difference between the
two supercqnductors is Ey — Ey = 2eV, since each Cooper pair has charge g = 2e.

By substituting the ansatz wavefunction, Eq. (6.1), into the Schrédinger equation for

the electrodes, Eq. (6.28), we find that the time evolution of the density and phase of the
wavefunction in each electrode is

. 2 .
f1 = +ﬁK\/p1pz sin(g), (6.29)
. 2 .
f2 = —ﬁK\/PIPZ sin(¢), (6.30)
. K [p eV
0 =——_[-= - —

1 2y o cos(¢) P (6.31)
. K [p1 eV
O =—— |— —

h 2 cos(¢) + o (6.32)
wherei ¢ =6 - 61 is the superconducting phase difference. We see from the first pair of
equations that p; = —py, i.e. as we expect from charge conservation. Thus the current
across the junction is

J . 2K : .
= o1 = —=+/P1p25in(¢) = I sin(p), (6.33)

:Ivllelefriisct 1Jsoa; :;;::LTZ ((;f‘l i:;)(ﬁ:)rﬁor%ahty and we defined 7, := ZCTK VPl p2. This is.known as
. o - It gives the current from the Cooper pairs tunnelling across
the _]UI-ICtlon as a function of the macroscopic phase difference between the electrodes. I, is
the critical current, the maximum current that can flow before the Cooper pairs break :nd
superconductivity is lost. We also frequently encounter the related critical current density,
Je = I /A4, where 4 is the area of the tunnel junction. The magnitude of the critical current is’
determined by the tunnel barrier and the material properties of the electrodes. Microscopic
calculations, due to Vinay Ambegaokar and Alexis Baratoff, show I, = mApcs/2R,e
wh'ere Agcs is the superconducting energy gap of the electrodes and R, is the normal-st:te,
resistance of the tunnel junction. That is, R, is the Ohmic resistance of the tunnel junction
when both electrodes are in the normal-metal state. It gives us a phenomenological measure
of the strength of the tunnelling.
We can now find a relationship between the rate of change of the phase difference across
the junction and the voltage across the Junction by combining Egs. (6.31) and (6.32). In
doing so, we find .

. . ] 2e 2w

Pp=6—-6=—V=""
1= 0 v, (6.34)
Yvhere we have assumed that p; and p, are approximately constant and equal. Assum-
ing they’re constant is a good approximation so long as the effect of tunnelling is small.

Moreover, they are equal when we use the same metal on both sides of the junction.
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This relationship is known as the second Josephson equation. By integrating over the
second Josephson equation, we also find that the superconducting phase difference, ¢, is
proportional to the flux across the junction,

P ot 2
¢ = / bdt = =~ f V)t = Lo, (6.35)
0 Dy J_oo Dy

where in the last step we used Eq. (6.13) to get the result that V' = ddi; and assume an initial
condition ¥V (t = —o0) = 0.

Using the Josephson equations, we can demonstrate that the inductance of a Josephson
junction is nonlinear with respect to ®. To do so, we first substitute the first Josephson
equation and the second Josephson equation into the definition for inductance,

-1 . -1

d Vo L

oy _F(dsm@® " __ ¥V 0 _ o (6.36)
de I dt ILgpcosp 2mnVi.cos¢p  cos¢

where we define Ljg = ®¢/(2nl,), which is known as the Josephson inductance. Then,
by substituting the definition of ¢ into the equation for the inductance, we find

Ly(®) = Lyo (6.37)

cosr @/ dg)’
Thus the Josephson junction has an inductance which is nonlinear with respect to the flux,
with a linearized value of L.

We can also find the energy stored in a Josephson junction. We assume the junction starts
from rest with ¢» = 0 at t = 0. We can then find the energy at a later time, #, by again using
Watt’s law and integrating the power P = IV. By substituting the first and second Josephson
equations into this equation, we find

t ¢
E= f IEYW(Hd! = L:®o f sin(¢')d¢’ = Ey (1 — cos()), (6.38)
0 2 Jo

where E; = ®pl,. /2 is known as the Josephson energy.

6.2.5 DC-SQUID

An interesting and useful feature of engineered qubits is that they can have a high degree of
in situ tunability.* We can take advantage of this tunability to implement gates more quickly
and with higher fidelity. For example, as we will see when we perform a two-qubit gate, we
will at times want to bring two qubits into resonance with one another for some period of
time and then take them out of resonance.

In superconducting qubits, this tunability is frequently enabled by replacing a simple
Josephson junction by a related device known as a DC-SQUID (superconducting quantum
interference device). The DC-SQUID effectively makes a Josephson junction with a value of
I that can be tuned with a magnetic field. The SQUID consists of two Josephson junctions
put in parallel to form a ring. Referring to Fig. 6.7, a Cooper pair entering on the Jeft

4 This is a tunability which is possible after the system has been fabricated.
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. DCsuperconducting quantum interference device (DC-SQUID). A DC-SQUID consists of two Josephson junctions

connected in parallel to form a loop. A DC-SQUID operates like a Josephson junction whose Josephson energy can be
tuned after it’s fabricated, by adjusting the flux through the SQUID’s loop.

has two choices, going through path a or b, leading to the potential interference of the
superconducting phases

2e up down =

A0a=6a-|——/ A-dl; A9b=8b+%/ A-dl, (6.39)
P—>q p—>q

where 4 is the vector potential associated with the flux @, and 8, (8) is the phase difference

across Junction a (b). So that the Cooper pair wavefunction is single-valued, we physically

require these two phases to be the same, i.¢. A6, = A0, which leads to

Sb—8a=%£2~d?=2—;d>:2n%. (6.40)
The total current across the circuit is then
Iiotal = Io[sin, + sin8p] = Iy sin %(aa + 8p) cos %(Sa — 3p) (6.41)
= Iy cos (n 3) sind
5 (6.42)
= Jc(®)sin 4, (6.43)

Yvher§ we have defined § = (8, + 85)/2. We see that this indeed looks like a Josephson
Junction that can be tuned by the flux @.

6.3 Qubit
\

With all the ingredients in hand, we can now introduce one of the first superconducting
qubits, the Cooper-pair box (CPB) (Section 6.3.1). The derivation of its properties as
a qub.it is relatively straightforward and serves as a pedagogical application of circuit
quantization. However, the CPB is generally no longer used as a qubit because it is highly
susceptible to environmental charge noise. We will then introduce an alternative qubit design
which is more resistant to charge noise: the transmon (Section 6.3.2). It has the same basic
Hamiltonian as the CPB, but is designed with very different parameters. We’ll conclude this
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~ Micrographs of superconducting quantum devices. (a) A micrograph of a small superconducting quantum

processor with four transmon qubits (see Section 6.3.2). The brighter areas are aluminum and the darker areas are the
silicon substrate below. The transmons are the structures with “teeth,” that is, interdigitated capacitors that form the
shunt capacitors of the transmons. The solid aluminum lines and the surrounding ground planes, which are perforated
with square holes, form microwave waveguides (see Section 6.4.2). The pitch of the squares is about 20 pm. (b) An
electron micrograph of a SQUID. The center of the SQUID loop is the center of the micrograph. The Josephson junctions,
symmetrically placed in the vertical center of the image, are formed by the overlap of two aluminum layers. The height
of the junctions is about 300 nm.

section with a brief discussion of two other prominent types of superconducting qubits in
Section 6.3.4.

6.3.1 Cooper—Pair Box

The CPB is the canonical example of a charge qubit. We will first introduce the Hamiltonian
of the general charge qubit. We’ll then consider different regimes of this Hamiltonian, one
of which describes the CPB.

Hamiltonian

So far, we have considered an idealized notion of a Josephson junction in which they
are solely nonlinear inductors. However, as one might expect from their physical resem-
blance to capacitors, Josephson junctions based on tunnel junctions always have a parasitic
capacitance. Thus, we take the model of a physical Josephson junction to consist of an
“ideal Josephson element” that’s connected in parallel to a capacitor, C;, as shown in
Fig. 6.8. ‘

Charge qubits are a family of superconducting qubits which have a similar circuit design.
This circuit consists of a gate capacitor, Cg, connected in series with a Josephson junction,
as shown in Fig. 6.9a. We label a portion of this circuit as the island and another portion
as the reservoir. As seen from Fig. 6.9a, the island is a piece of superconducting material
that is physically separated from the rest of the circuit by a spatial gap and by an insulator.
The conductor that is separated from the island by the insulator is known as the reservoir,
implying that it is physically much larger, and we assume that its state is not affected by the
tunnelling of Cooper pairs on to, or off of, the island.
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<Ideal JJ

Physical JJ ]x

Physical and ideal Josephson junction. A physical Josephson junction consists of an ideal Josephson junction with

asmall parasitic capacitor connected in parallel, The capacitor represents the geometric capacitance of the Josephson
junction’s electrodes.

ORJO 10

(@) Circuit with physical J.J

(b) The island (c) Circuit with ideal JJ

Charge qubit. (a) A charge qubit consists of a voltage source, a gate capacitor Gy, and a Josephson junction. (b) The
island is a small piece of metal defined from the empty space in (g to the insulator in the Josephson junction. The
reservoir is the other electrode of the Josephson junction that's not a part of the island, generally assumed to he a larger

piece of metal. (c) This is the final circuit model of the (PB, including the ideal Josephson junction and its parasitic
capacitance, (;.

As with the LC circuit, we’ll find the charge qubit Hamiltonian by using basic circuit
analysis and Lagrangian mechanics applied to Fig. 6.9¢. Introductory texts on circuit analysis
will often introduce two equivalent methods to solve circuits: the node-voltage method
and the loop-current method. In the quantum context, if the only nonlinear elements in
our circuit are inductive elements, e.g. Josephson junctions, it is better to use the node-
voltage method. In the node-voltage method, we start by identifying one particular node of
the circuit as “ground,” which we take to be the zero of the electrical potential. All other
node voltages, and therefore fluxes, are then expressed relative to the ground. The voltages
across individual elements, known as branch voltages, are then the differences of node
voltages.

Referring to Fig. 6.9¢, we will take the common node between the voltage source and the
Josephson junction as the ground. We will then denote the flux of the island as @ and the
flux of the node between the voltage source and Cy as @g. Since there are no other inductive

elements in the circuit, the potential energy in our circuit is the energy of the Josephson
junction,

2 2
V=-E COS(EO((DJ - 0)) = -k cos(EOGDJ). (6.44)

We include the —0 in the first step to remind us that the Josephson energy is a function
of the phase (flux) difference across it, even if we happen to have chosen one side of the
Junction as the ground node. Next, we write down the kinetic energy of the circuit as the
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sum of the energies of all the capacitors,

G -
G- 07+ By - by = L2+ Libs -7, (6.45)
T=—(@ -0+ 5Py — bp)" = Py + (s )
In the second step, we approximate the voltage source as ideal, which imposes that @y = Vg,

introducing the classical control voltage ¥ into the problem. Finally, our Lagrangian is

< 62 4 (6, —py S ) 6.46)
£=T_V=7(DJ+7(CDJ Vg) + Ejcos oy J (
Next, we’ll use the Lagrangian to find the Hamiltonian. To do so, we first need to calculate

the canonical momentum conjugate to @, which is the canonical charge
Q=£=cjcb]+cg(cbj—Vg)=czd>J—chg, (6.47)

0D,

where Cx = Cg + C;. As mentioned previously, we see that in this case, the canoni'cal
charge has a more complicated form than the charge on any individual capa<.:1tor, reflecting
the constraints imposed by the circuit topology. We also note that this canonical cfharg:e can
be interpreted as the charge on the island of the CPB. We now calculate the Hamiltonian as

H=0d;,-L
. . CJ ) Cg . 2 _ 2—7[@ )
=Czcb3—Cng<1>J—chj—?(qy—rfg) Ey cos| - @y
Csb] <2” ) (6.48)
== —Ejcos| — Py ),
2 T @,

where in the last line we dropped the term —C, Vé /2 because it does not contri.bute. to
the dynamics of the system. The final step in the process is to express the anmltoman
only in terms of canonical variables, substituting &; = (0 + C4 Vg? /Cx. By doing so, anf‘l
promoting Q and & to quantum operators, we find the Hamiltonian of the charge qubit

to be

N ) A
H= Q@+ Gl _EJCOS(z_ncp)_ (6.49)
2Cx, D

We can now write the Hamiltonian in a more standard form by making a series of
definitions and substitutions. First, we would like to work in terms of tl‘le number of
Cooper pairs instead of the charge and in terms of the Josephs?n phase 1ns.teaj1d of the
flux. To do so, we introduce the Cooper-pair number operator, 7 (beware: this is not the
harmonic oscillator number operator), and the phase difference operator, ¢. The 9perator
n relates to the number of Cooper pairs that have tunnelled across the jur}ctlon; in other
words, the excess number of Cooper pairs on the island. The operator ¢ relates to the
superconducting phase difference across the junction. Importantly, because these operators
relate to the differences of node variables across the junction, they are b.ranch operators
and not node operators, which introduces some subtleties. For our particular choice of
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ground, we can write 7 = ——Q/2e and ¢ = 2% b /Dy, Second, we define the gate charge
as ng '= Qg /2e = CgV,/2e, which is controlled by the classical voltage bias. Finally, we
define the charging energy as £¢ = €*/2Cs. This is the energy needed to charge the
island capacitance when adding one electron to the box. (Note the energy to add a Cooper
pair is (2¢)/2Cy = 4E¢.) With these definitions, our Hamiltonian becomes

H = 4Ec(h — ng)? — E; cos . (6.50)

Be careful that some references will define Ec as the charging energy of a Cooper pair
instead of a single electron, and so the factor of 4 is dropped in front of £.

Charge Qubit Regimes

Equation (6.50) is the Hamiltonian for a general charge qubit. Different types of charge
qubits are distinguished by their ratio £ J/Ec. The difference in this ratio will result in
different system dynamics. For example, when E;/Ec < 1, charging effects dominate
tunnelling effects, with the implications that the number of Cooper pairs on the island is well
defined and the energy of the system is very sensitive to the gate charge (or environmental
charge). In the simplest circuit, with just a Josephson Junction and gate capacitance, this
ratio is controlled by varying the area, 4, and critical current density, J;, of the junction. (J,
is in turn controlled by the oxidation time and pressure used to form the tunnel barrier.) For
afixed Ji, £ ~ A and Ec ~ 1/4, implying Ey/E¢ ~ 42, For fixed A, Ej/E¢ ~ J,. (Since
J depends exponentially on the thickness of the barrier, while C; depends linearly, there is
not a large change in C; when we change J...) If we desire to further decouple E; and £,
we can increase the island capacitance by connecting a shunt capacitor, Cs, in parallel to
our Josephson junction. The total capacitance of the island is then Cy = G+ Cr+ C.

We can start to understand the effect of Ej/Ec on the circuit dynamics by recalling
that 7 and ¢ are conjugate variables. This implies that if the uncertainty in one of these
variables is small, the uncertainty in the other must be large. In the regime E;/E¢ « 1,
often referred to as the charge regime, the number of the Cooper pairs on the island has a
sharply peaked distribution, i.e. it is well defined. Conversely, the fluctuations of the phase
are large. Because of this difference, the Cooper pair number basis is a good one in which
to express the state of the system. (We sometimes then say that the Cooper-pair number is
a good quantum number for the system.) In the context of charge qubits, the regime with
80 2 Ey/Ec > 1 is often referred to as the transmon regime. In this regime, the qubit is
less sensitive to charge noise, and Cooper pairs are not well localized on the island and,
instead, ¢ becomes a good quantum number.

The CPB is a charge qubit in the regime of E;/Ec < 1. Accordingly, it is useful to
analyze the CPB starting in the charge basis, that is, using the eigenstates of 7,

iiln) =nln). (6.51)

Here, |n) represents the state with n excess Cooper pairs on the island, i.e. n = 0 would
represent a charge-neutral island. Note that # can also be negative since Cooper pairs can be
removed from the neutral state,
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To express the Josephson term in the [n) basis, we first define the phase difference basis
through the Fourier transform pair:
< i 2 ind
_ in —in
B= . 3 e (652)
n=—=aco

(We note that the discrete nature of » implies that ¢ is only well defined modulo 27.) With

these relations and the exponential operator,

N 2m
bb o L
2 0

dpe? |g) (91, (6.53)

it is easy to show (see the exercises) that eti9 |n) = |n F 1) or, equivalently,

o0
=" InFl)nl.
n=—0o0

The Josephson term can then be expressed as

x<
Ey cos(¢3> = %(e"'d’ tety= ) %J—(ln)(n F 1+ [+ D). (6.55)
n=—oo
We see that the Josephson term explicitly takes the form of a tunnelling term when written
in the charge basis. That is, it increases or decreases the number of Cooper pairs on the
island by one when a tunnelling event occurs. Importantly, all the possible tunnelling events
are summed coherently.

Using the language introduced in Section 2.6.5, we see that ¢ is the generator of transla-
tions in 7. That said, we mention again that 4 and ¢ are branch operators, and not necessarily
canonical variables of our system, which is quantized in terms of node operators. Still,
they are linear functions of the node operators, so we can still explicitly calculate their
commutation relation based on the canonical commutation relations of the node operators.

It is easy to see that the charging (kinetic) part of the Hamiltonian is diagonal in the
charge basis. We can thus write the total Hamiltonian of the charge qubit as

. > E
H= 3 4Ec(n—ng)’ Inknl = —(In)n + 11+ |n + 1)n)). (6.56)

n=—00

The charging term gives rise to a series of parabolas (one for each value of #) for the
energy as a function of ny (Fig. 6.10a). These parabolas intersect at half-integer values of
ng; these points are commonly referred to as the charge degeneracy points. However, the
degeneracies disappear and we instead find a series of avoided crossings because of the
Josephson term, which couples the different charging parabolas.

We can see this explicitly by analyzing the Hamiltonian near a degeneracy point, i.e.
ng = 1/2. In the CPB regime, we can restrict the analysis to only two states since E¢ > E.

These two states corresponding to » = 0 and n = 1 are denoted as |0) and |1). We have

. 1 E
B = 4E¢ (ng - E) &, — %&x, (6.57)
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(a) CPB band diagram

n=-1

Ty

Different regimes for the charge qubit’s energy band diagram. (a) The energy band diagram for a CPB. (Inset)
In the two-level approximation near n, = 1/2, the energies are Fug = 5 (6482 (ny — 1) +E ke shown in
grey. (b) The energy diagrams for charge qubits with different £ /£. As £;/Ecincreases into the transmon regime, the

energy levels become less affected by variations in ng and the system hecomes more harmonic.

where we have dropped terms proportional to 1. This Hamiltonian also has eigenvalues

Epjg = 1 64E2 0 )
e/g = 5 ( 64E; (ng - 7) +E J> . We can see from the eigenvalues that the energies

are{n(.)t degenerate at n, = %, instead forming two hyperbolic bands with a minimum energy
splitting of £ J- The next energy levels are separated by ~ 4E¢. Thus, for Ec > E;, we
have two well-isolated energy levels which we can use to encode a qubit 5

6.3.2 Transmon

The CPB was the first superconducting circuit to successfully be used as a qubit. However, it
Me clear that environmental charge noise placed strong limits on the potential coheren,ce
times of the CPB. This led to the development of the so-called transmon. Historically, the
transmlon was viewed as a charge qubit in the regime of £ /Ec ~ 20-80. As we will, see
below.m detail, it can also naturally be viewed as an anharmonic oscillator, We can develo

a qualitative appreciation for working in this regime by studying the transmon’s spectruﬁl:
When studying a qubit’s spectrum, what we measure are the transition frequencies between.
energy le.:vels hw; = E; — E;. The effect of different values of E;/E¢ on the transition
frequencies between the ground state and the Jth excited state as a function of ng are shown

in ig. 6'. | b. hese plots ere prOduced by numericall solvi for e ei Vi
F : 0 I Wi ical y ;
; , i g )l mng 1o th clgen alues of the
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As we can see from Fig. 6.10b, there is one major advantage and one major disadvantage
to increasing the value of E;/Ec. The advantage is that the variation of the energy w.ith
respect to n, decreases as E;/Ec increases. This is crucial as environmental charge no.156
effectively leads to fluctuations in ng and thus the qubit’s transition frequency, leading
to dephasing. The disadvantage is that, as E;/Ec increases, the spectrum becomes more
harmonic, which is something we want to avoid. If the anharmonicity decreases too much,
the system simply stops being usable as a qubit, as the third and higher levels will be excited
during qubit operations. More generally, limited anharmonicity implies limited control
bandwidth and, thus, speed of gates.

Fortunately, there exists a sweet spot for the value of E;/Ec to minimize the err.ors
and maintain adequate nonlinearity, which is the transmon regime. This sweet spot exists
because the anharmonicity decreases as (E; /Ec)~1/? while the charge sensitivity decreases
exponentially.

Complementary to the CPB, since E; > E¢ for the transmon, it’s better to analyze t}.le
transmon in the continuous ¢ basis. Doing so, we can think of the dynamics of the system in
analogy to a particle moving in a potential defined by theAJ osephson term of the Hamiltonian.
For small oscillations around the equilibrium point (¢) = 0, we can Taylor expand the
Josephson energy and truncate it to fourth order, rewriting the Hamiltonian (Eq. (6.50)) as

A y Eya Eyas
A, = 4Ech* + 7J¢2 - ﬁqs“, (6.58)

where we have dropped the n, term since its effects are small in the transmon regime and

dropped a constant factor £;. .

The Hamiltonian Eq. (6.58) has the form of a harmonic oscillator with an anharmonic
correction. Therefore, we will solve the Hamiltonian using perturbation theory, starting
from the solution to the harmonic part. Accordingly, we introduce the following ladder

operators:

¢ = bupr6T +5) and i = ingpe(b - D), (6.59)
where ¢pr and n,¢ are the magnitudes of the zero-point fluctuations given by
1/4
1 (8Ec\"* _1 (& 6.60
¢zpf = —«/_5 (E_j) and Rzpf = ﬁ REc . ( )

Here, we denote the transmon ladder operators as bt and b to distinguish them Afr(A)m ladder
operators we’ll encounter later. From the result that [¢, 71] = i, it follows that [b, pt1=1,

= 1) =L () () a6 =[] e
d J c

Using these ladder operators we can write our Hamiltonian as

N E;\'/? . A E; (2Ec 2l ~n Ey (2Ec S| Td
H,=_EC<—J> (b*-b)2+7 T (b' + by 1% (' +b)

2,
¢ (6.62)

se 1N Ecoar 2
— /8E,Ec (b*b + 5) - -é(bT + by, (6.63)
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Written in this way, the transmon’s resemblance to a harmonic oscillator with a small
anharmonic deviation is clear. The harmonic resonance frequency of the oscillator is

hwo = /8EjEc. The prefactor of the nonlinear term is %, which is small compared to
hwo when

E E 1
VB8EEC > l—g > L ~ 9 x 1074, (6.64)

B 7 02)®)
This clearly holds in the transmon regime of E;/Ec ~ 20-80. We will also drop terms
with an unequal number of raising and lowering operators. In the interaction picture of
the unperturbed harmonic oscillator Hamiltonian, the creation operator acquires a time
dependence ¢s'bt where wq is the oscillator frequency. Therefore, any terms with an
unequal number of creation and annihilation operators will have a time-dependent phase,
such as e*?®4! We can apply a rotating-wave approximation to drop these terms so long as

hwy > Ec /4, which is true in the transmon regime. Thus, we find the transmon Hamiltonian
to be

. AU AN 7 SN
A, = hoy, <bTb + 5) + 7bTbTbb, (6.65)

where we have dropped a constant term of —% that appears and introduced the anharmo-
nicity « '= w13 — wo1, where wy; = (Ej — E;)/h is the transition frequency (see exercises).
We have also defined the qubit frequency as w, := wy1 = +/SEcEs — E¢ (which includes
the first-order energy shift, E¢), since we encode the qubit in the ground state and the first
excited state, |g) and |e).

The anharmonicity of the transmon is a key parameter. First, we require o >»> I, I}
I’y = 1/T1,T2 = 1/T3). Otherwise, the circuit will not behave as a qubit. Second, «
limits how fast the transmon can be controlled. Roughly, the minimum gate time is ~
1/a. If this speed limit is violated, the spectrum of a control pulse centered at wg; will
still have significant power at w;». (See the discussion of hard and soft control pulses in
Chapter 3.) The anharmonicity of a transmon is typically designed to be in the range
o/2m ~ 100-400 MHz. With this range for &, we can maintain a large ratio of £ /Ec with
a qubit frequency of w, /27 =~ 4-8 GHz. Since |a| « @y, we have that the transmon is
essentially an anharmonic oscillator. As we’ll find in the exercises, & = —E—hc = _Té{:?
This relation makes it clear that there is a design trade-off between the anharmonicity, which
controls the gate speed, and the sensitivity to charge noise, which grows with E.

At different points of this chapter we will simplify our Hamiltonian by making the two-
level approximation, in which we restrict ourselves to the two-qubit levels of the transmon.
We can justify such an approximation by suppressing excitations to higher noncomputational
states. We can achieve this suppression by making || larger or by using pulse-shaping
techniques as we introduced in NMR. In this two-level approximation, the raising operator’s
only function is to map the ground state to the excited state, bt = leXg| = 4 and the
lower operators is to map the excited state to the ground state b= lgiel = 6_. As a
result we also find that bTh = leXel, bbt = lgXel, btbthb = 0. For consistency with the
other chapters, we encode the logical 0 in the ground state and the logical 1 in the excited
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state. Thus, —0, = bTh — bbT = 2bTh — 1. The transmon Hamiltonian under the two-level
approximation reduces to
hay

H = —— "0 (6.66)

This approximation assumes that 57 |e) = 0, which makes sense if we have hig.h anharmo-
nicity. Still, we should keep in mind that higher energy levels do exist. We will la'ter u'se
these higher energy levels for qubit control and measurement, similar to what we did with
trapped ions.

6.3.3 Tunable Transmon

An important variant of the transmon is the tunable transmon, also known as the split
transmon. Building a tunable transmon involves replacing the Josephson junction in the
transmon with a DC-SQUID. Thus, its Hamiltonian is

[Afst = 4Ecﬁ2 — Ejjcos (151 — Ejycos (];2, (6.67)

where Ej; and ¢; are, respectively, the Josephson energy and the phase difference across the
ith Josephson junctions. In the presence of an external flux ey, flux quantization requires

that <$1 — $2 + %@ext = Omod(2r). By defining ¢ext := %0¢>ext and the average phase

difference d;avg = ((i)l + ¢A>2)/ 2, we can rewrite Eq. (6.67) as

Hy = 4ECi® — Ef(gox) c05(Gavg — o)) (6.68)
where
Ey(@exe) = Ersycos2(o) + @ sin(end) (6.69)

Ejy =En+En,d:=Enp—En)/Esxs, and ¢p = d tan(gexr). By adjusting an extergal
flux, ®exe, applied to the transmon, we can tune ¢y, adjust its effective £ and thus its
qubit frequency w,.

6.3.4 Other Superconducting Qubits

As of writing this text, the transmon is the most developed of the superconducting qubits. It
is the one most used. While the transmon is the focus of this chapter, we’ll briefly survey
some of the other superconducting qubits here.

The simplest flux qubit is the RF-SQUID qubit, which, in many ways, can be thought
of as the electromagnetic dual of the CPB. An RF-SQUID qubit (depicted in Fig. 6.11a)
is made from a superconducting loop with inductance L interrupted by a single Josephson
junction. Complementary to the charge bias gate capacitively coupled to the CPB islapd, the
flux qubit is biased by an external magnetic flux inductively coupled to the flux qubit lc?op.

Comparing the circuit in Fig. 6.11a to the CPB, the inductor has replaced th.e capacitor
and a magnetic flux bias has replaced the voltage bias. For the CPB, the applied Yoltage
controls the tunnelling of Cooper pairs on or off of the CPB’s island. Here, the applied flux
controls the tunnelling of magnetic flux quanta in to or out of the loop.

6.3 Qubit

@%E@%

RF-SQUID Three-J.J

2]

Fluxonium

m Flux qubits. (a) The circuit diagram for the RF-SQUID flux qubit. The qubit loop is penetrated by an external magnetic

flux that controls the flux bias, @ey. (b) The potential for the RF-SQUID flux qubit. The two lowest energy level states are
used to encode the qubit. (c) The three-junction flux qubit, which essentially replaces the magnetic inductance of the
RF-SQUID with the Josephson inductance of the additional junctions. Qualitatively, its potential landscape is very similar
to (b). (d) The fluxonium is a more recent qubit that replaces the two large junctions of the flux qubit with an array of
many junctions. While still controlled by a flux bias, the dynamics are substantially different from the other flux qubits.

Phase qubit
(a)

> ¢

£ " Phase qubit. (a) The circuit diagram for the phase qubit, showing a large Josephson junction biased by a current

source. (b) The potential for the phase qubit. The junction is biased until only a few states remain in the metastable well,
The lowest two states are used as the qubit states.

Dual to the CPB, it is convenient to describe the flux qubit in the phase basis. With an
external flux bias near one half of a flux quantum, the low-energy part of the flux qubit
potential forms a double-well potential. Roughly, the two states of the qubit, one in each well,
represent a persistent current circulating in the loop either clockwise or counterclockwise.
Alternatively, this can be thought of as a small magnetic moment pointing up or down, not
unlike a spin. Because of quantum tunnelling between the wells, however, these two states
hybridize, with the final qubit states being the even and odd superposition of the clockwise
and counter-clockwise states.

The most notable variation of the flux qubit is the three-junction flux qubit, which is
often referred to as the flux qubit (see Fig. 6.11¢). The relatively large inductance value
required to make the RF-SQUID flux qubit requires having a physically large inductor
coil, which unfortunately also serves as a good antenna for electromagnetic interference.
The three-junction flux qubit removes the large, geometric inductor and replaces it with
additional Josephson junctions, using their Josephson inductance in place of the geometric
inductance.

Another historical qubit archetype is the phase qubit. The phase qubit is essentially a
large, current-biased Josephson junction (Fig. 6.12a). The phase qubits have an £ 7/Ec
ratio which is many orders of magnitude larger than the other qubits we’ve studied, ~10°.
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Its potential energy has a washboard shape, as seen in Fig. 6.12b. When propetly current
biased, one well of the washboard potential will host only a few quantum states. The
two qubit levels of the phase qubit are then the two lowest energy levels in the well.
Other auxiliary levels can be used, e.g. for readout. Phase qubits were one of the early
superconducting qubits, producing many important results. However, like the CPB, they are
rarely used now because they suffered from low coherence times related to defects in the
large-area tunnel barriers.

A relatively recent addition to the superconducting qubit zoo is the so-called fluxonium.
The fluxonium takes the basic idea of the three-junction flux qubit much further, adding a
long array of junctions (see Fig. 6.11d). While still controlled by a flux bias, the dynamics
and energy-level diagram are substantially different from the other flux qubits. Despite the
relative complexity of the array of junctions, fluxonium has demonstrated coherence times
approaching those of transmons. It also offers some potential advantages, such as the ability
to operate at lower frequencies than transmons, where the cost and complexity of control
electronics is potentially lower.

6.4 Circuit Quantum Electrodynamics

We will now introduce an important paradigm within superconducting quantum circuits,
known as circuit quantum electrodynamics (QED). At a fundamental level, circuit QED is
the study of the interaction between superconducting qubits and quantized electromagnetic
fields inside a resonator. At a practical level, circuit QED has played a major role in the
development of quantum computing with superconducting circuits. Among other things, it
allowed for stronger coupling between the qubits and photons, for mitigating the effects of
decoherence, and has led to new ways of performing two-qubit gates and measurements.

Throughout this section, we’ll build up to the central Hamiltonian of circuit QED, the one
which describes the interaction between a superconducting qubit and a resonator. We’ll first
use circuit QED’s predecessor, cavity QED, as a springboard into the topic (Section 6.4.1).
It provides a simpler setting to introduce the underlying physics of the interaction. In
Section 6.4.2, we’ll study a waveguide resonator’s structure and Hamiltonian. Using these
Hamiltonians, we’ll then find that the interaction between the qubits and the resonator
takes the form of the well-studied Jaynes—Cummings Hamiltonian, which we study in
Section 6.4.3. This Hamiltonian can take different forms depending on the detuning between
the qubit and the resonator. Finally, we’ll conclude in Section 6.4.4 by exploring a particular
detuning useful for quantum computing, the so-called dispersive regime.

6.4.1 Cavity QED

Circuit QED was inspired by and closely resembles cavity QED. Tn cavity QED, we place
atoms inside an electromagnetic eavity formed by two mirrors. We then study the quantum
interaction between the atom and the quantized electromagnetic field in the cavity. The
cavities can operate at optical or microwave frequencies, interacting with the corresponding

M
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(a) (b) (©)

Input field Mostly Partially
reflected  transmitted

Multiple
reflections
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modes

Working principle of a Fabry-Pérot cavity. (a) An input field is incident on the cavity. (b) The field is mostly
reflected, and a small portion is transmitted. (c) The field reflects multiple times inside the cavity. (d) The multiple
reflections lead to constructive and destructive interference, leaving only discrete modes with a stable field
configuration. The existence of these discrete modes leads to a series of peaks when we measure the transmission of the
cavity as a function of frequency, as shown in Fig. 6.14,

transitions in the atom. Cavity QED provides a way to study the interaction between single
atoms and single photons. Until this point in the text, when studying the interaction between
light and qubits, we treated the interaction semiclassically, i.e. ignoring the light’s quantum
nature. In this section, we’ll no longer do this.

The primary purpose of the cavity in cavity QED is to increase the coupling strength
between the atom and photons in the cavity. Colloquially, the cavity allows a single photon
to interact with the atom multiple times as the photon bounces back and forth between the
mirrors that form the cavity. In this way, cavity QED allows us to observe the interaction of
a single photon with a single atom. At the same time, the cavity causes the spectrum of the
electromagnetic field inside to become discrete, in contrast to the continuous spectrum of
free space. It also helps in isolating the atom from the noise of the environment.

How an optical cavity discretizes the electromagnetic field can be understood by studying
a simple electromagnetic cavity, the Fabry-Pérot cavity. It consists of two mirrors facing
one another. One or both mirrors will be made slightly transparent so that a small fraction of
light incident on the mirror can enter or leave the cavity, as shown in Fig. 6.13. Once inside
the cavity, the light will reflect between the two mirrors many times before leaking out.
These multiple reflections interfere with each other, and only a discrete set of frequencies
will interfere constructively. These frequencies correspond to wavelengths A, = 2//n, where
! is the length of the cavity and n is a positive integer. These wavelengths correspond to the
resonant modes of the cavity (Fig. 6.13d). The resonant frequencies can be experimentally
determined by measuring the intensity of light transmitted through the cavity (assuming
it has two slightly leaky mirrors). Similar to what is depicted in Fig. 6.14 for a waveguide
cavity, the transmission measured as a function of frequency shows a series of peaks
corresponding to the resonant frequencies.

In both circuit and cavity QED, we often work in the single-mode approximation. In
this approximation, we focus on the coupling between the atom and Just a single mode of the
cavity. Within this approximation, we then treat the mode of interest as a quantum harmonic
oscillator. To work in this approximation, we set the bandwidth of the input field to be in the
range of only one of the cavity’s modes, selecting that single mode.

At a conceptual level, circuit QED is essentially identical to cavity QED. Experimentally,
in circuit QED we use an artificial atom (a superconducting qubit) instead of a natural atom
and an on-chip microwave waveguide resonator in place of a 3D cavity.
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Cavity transmission intensity. The transmission peaks as a function of the frequency. In this figure, the line widths
increase for subsequent peaks. What's depicted here is the steady-state behaviour of the cavity. Figure 6.13 describes
how the cavity reaches the steady state.

6.4.2 Waveguide Resonators

To move from cavity QED to circuit QED, we replace the 3D cavity by a mic%'ofabricated
waveguide resonator typically operating in the microwave regime. A waveguidg is a structure
that confines and guides electromagnetic waves. In circuit QED they are typically rp.ade by
patterning superconducting films on dielectric substrates. By adding boundary COIldl'[l(‘)nS at
two ends of our waveguide, we turn it into a waveguide resonator. In cavities, the mu‘ro?'s
impose a boundary condition on the electromagnetic field, specifically that j[he el'ecFrlc
field is zero at the surface of the mirrors. The waveguide resonators operate in a similar
way, imposing either an open-circuit (zero current) or short-circuit (zero V(?ltage) b'oundary
condition at the ends of the resonator. The resonators are typically designed in the microwave
regime consistent with the qubit frequencies. .

There exist different types of on-chip waveguides. The most common is the coplan.ar
waveguide, which is illustrated in Fig. 6.15a. It consists of a center conductor Wltl.l a spatlal
gap on each side of it separating it from the ground-plane conductors. One can 1mag1n§ a
slice of the coaxial cable bringing TV signals into your house. Like the cable, the waveguide
tightly confines the microwaves in the two transverse dimensions while allowing .them to
propagate along the third dimension. Typical superconducting metals are aluminum or
niobium. Typically substrate materials are sapphire or undoped silicon.

We can consider a resonator with two open-circuit boundary conditions, like the one
depicted in Fig. 6.15a. It is known as a A /2 resonator, having resonant wavelengths defined

by Xy = 2d/(m + 1), where m is a nonnegative integer and d is the length of the resonator.

For each wavelength, there will be a corresponding frequency. The spectrum of the resonator
is illustrated in Fig. 6.14. The lowest resonance frequency, often called the fundamen.tal
frequency and corresponding to g, is given by fy = v/2d with all resonance freguenc@s
given by f,, = (m + 1)fo. Here, v = 1/+/Iycy is the speed of light in the waveguide, o is
the capacitance per unit length, and /j is the inductance per unit length of the WE.lVGnglde.
Both ¢¢ and /y are design parameters, but typically v ~ 1 x 108 m/s, about one-third of the
speed of light in a vacuum.
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2D coplanar waveguide resonator. It consists of a central conductor with a spatial gap on each side separating it
from ground-plane conductors. The outer ground planes extend much farther than are shown in the diagram and are
ideally semi-infinite. Note that the drawing is not to scale. The wavequides are made from thin metal films

{~100 nm), forming an approximately two-dimensional structure. The coplanar waveguide can operate as a resonator
by imposing boundary conditions on the central conductor. These boundary conditions can be imposed by either
patterning open gaps in the central conductor, which result in open-circuit (zero current) boundary conditions, or by

connecting the central conductor to the ground planes, resulting in short-circuit (zero voltage) boundary conditions. The
open-circuit houndary condition is illustrated in the figure,

As with the 3D cavity modes above, we can apply the single-mode approximation to
describe the coplanar waveguide resonator as a lumped-element LC oscillator. We refer
to devices as “lumped-element” when we can ignore the spatial extent of their modes.
The particular values of the lumped-element inductance, L,, and capacitance, C,, can
be derived in different ways, e.g. as the weighted average of /y and ¢ over the spatial-
mode structure. This implies that the values of L, and C, are functions of the mode

number, m. The Hamiltonian of a single mode of the cavity can be written in the standard
way as

. 1
H. = ho, (aﬂa + 5) , (6.70)

where a' denotes the creation operator of the resonator mode and w, its angular frequency.

To add the artificial atom to our system, we typically capacitively couple a transmon to
the waveguide resonator. In carly designs, the transmon was placed inside the gap between
the center conductor and the ground plane of the waveguide resonator. While the network of
physical capacitance can be complex, standard circuit techniques allow us to represent the
coupling by a single “coupling” capacitance, C,..

While 2D waveguides will be the focus of this chapter, we can also consider using 3D
resonators in the microwave regime. Each dimension of these resonators is made to be on the
order of centimetres to produce resonance frequencies in the microwave range. Historically,
so-called 3D transmon architectures made an important contribution to understanding
decoherence in superconducting qubits and resonators. The lesson was that much of the
decoherence at the time came from material defects on the surfaces and interfaces of the
metals and substrate used to make the qubit. Using a 3D resonator, less of the field energy
is stored at the surface and interfaces, so less loss occurs. The lessons learned from 3D
transmons were successfully translated back into two-dimensional architectures, such as
transmon arrays, which continue to dominate. Still, 3D architectures are used for some
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alternative approaches where the qubits are encoded in the cavity modes. For pedagogical
purposes, it’s sufficient to focus on the simpler 2D design.

6.4.3 Jaynes—Cummings Model

Equipped with the Hamiltonian of the transmon and the waveguide resonator, we can now
study their interaction, which is given by the Jaynes—Cummings Hamiltonian. This is
a well-studied Hamiltonian that represents the exchange of a single photon between a
harmonic oscillator and a two-level system.

To derive the Jaynes—-Cummings Hamiltonian, we consider a transmon and waveguide
resonator that are capacitively coupled. Since the resonator is an extended object, the full
treatment is somewhat complex, but we can reduce the problem to that of a lumped-element
LC resonator coupled to the transmon through a capacitance C, (Fig. 6.16).

We can now derive the full Hamiltonian for the transmon, resonator, and coupling
interaction. To do so, we need to determine the new terms to be added to the Lagrangian
of the circuit and then derive the Hamiltonian using the Legendre transformation. First,
consider how C. would add to the circuit’s Lagrangian. ®, and @, are the resonator and
transmon flux. Recall that , and ®, are the voltages across the resonator and transmon,
and then (&, — dJ,) is the voltage across C. The energy contributed by C, is

Ce

Tint = ) G ‘i)t)z' ©671)

The terms that are proportional to d'D% and d'>t2 will just add to the capacitive energies of
the transmon and resonator, producing static frequency shifts. The cross term C.d,,/2
is then the interaction energy resulting from the coupling. To find the exact expression for
the Hamiltonian with Eq. (6.71) included in the Lagrangian requires using the Legendre
transformation. We don’t include this calculation here, but give the expression for the new
term after assuming that C, <« C,, Cx,. When we transform to the Hamiltonian and quantize
the circuit, this leads to the interaction Hamiltonian

00, = —hg(b' — byt — a, (6.72)
)]

| Transmon capactively coupled to a waveguide resonator. Here we model one mode of the resonator as a
lumped-element LC resonator. The capacitance of the transmon Cs; = G, + (; includes a component from the
capacitance of the transmon’s Josephson junction (.
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where g is known as the oscillator-transmon

. coupling constant ioht—
coupling constant, pling nt or the light-matter

"V 2r Cx \2E: (6.73)
Thus, the full Hamiltonian for the system ¢
Eq. (6.70), the transmon (before the two-level

coupling interaction. Together we have

IA{:‘ﬁIr +IA{I +1A{1'nt5

Z.e2 C, (EJ )1/4

onsists of the Hamiltonians of the resonator,
approximation), Bq. (6.65), and the capacitive

— hoats pth o L) _ Ecitstns bt — Byt — 4
ra'a + ho, <b b+ 2) b bbb — hg(h* — by@at - &),

We can nolw si'mplify the Hamiltonian in two steps. The first step is to apply a rotating-
wave‘z;gpro:lwnauon. In the rotating frame of the uncoupled Hamiltonian f = fuw,été +
ﬁwf (b ‘b + g) the G (&) operator evolves as et (@'e™"y and the b (b1 operator evolves
as be™'" (bTeia!) Thus, in this rotating frame, the interaction term has the form
gD _ he (;;‘r atel@qton + bltgei@g—wp

(6.74)

+ bat et | Bae'(““rwf)f) . (675)

Ass.Lun{ng We are near resonance, ie. |w, - w,| « |y + w,|, we drop the quickly
oscillating terms. Transforming back to the lab frame, we find

i = Dt AT _ Eeprpris bta 4 ba
va'a + hao, (b b+ 2) 7bTbTbb + hg(bta + bat). (6.76)
The next step is to apply the two-level approximation for the transmon and find

Hic = hw,ata — %62 + hg(ra + 6_ah). (6.77)
This is the Jaynes—Cummings Hamiltonian, Ajc. This is a well-studied Hamiltonian that
1s exactly solvable. The last term corresponds to our transmon and resonator interactin
through a coherent exchange of a photon in the resonator and of an excitation of the transmof
Some texts will flip the sign of the ﬁ—;)"-&z term in the Jaynes—Cummings Hamiltonian We'
choose the sign convention that is consistent with the rest of this text. ‘

We now turn to finding thAe cigenstates and eigenvalues of the Jaynes-Cummings Hamil-
t(.)man. We start by writing Hjc in the basis of the bare states. The bare states are the joint
cigenstates of the qubit and the resonator when there is no coupling term. These states take
the form of |g/e) ® [n), where n is the photon number of the resonator.

We can introduce the operator Nt,‘ that counts the total number of excitations in the bare
‘states, Ny =646_ +ata. In doing so, we find that it has two pertinent properties. The first
1sl that, since the pairs of stakis le,n — 1) and |g, n) have an equal number of excita'tions the
eigenvalues of the operator N, are degenerate. Second, N, commutes with A, and A, ’and

with the full A,
| Arc. | = (e B0, = nfac, +ate_ ata + r6-]=0,  (678)

and therefore the total number of excitations is conserved by ﬁJC.
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. L - . . is
Because of these two properties, we can write Hjc as a block-diagonal matrix in the bas

i 1 blocks
of the bare states ordered as, {|g,0),e,0),|g,1),le,1),1g,2),...}. The dlag(c)relat P
will occur in each of the degenerate 2 x 2 subspaces of {|e,n — 1}, |g, n.)}, excep
n = 0 case in which there’s only one state, |g, 0). Thus, we have the matrix:

F7(0)
Hye

Fr(1)
7 fic ) . (6.79)
Hyjc = A

Each block-diagonal component (» > 1) can be written as

a0 _ [ ten=1ifcle,n—1)  (e,n—1fclg, n>}
Me =1 niclen—1 (galficlgn)

=h|:(n_l)wr+% gv/n ]

gi o %
Y Y 5 (6.80)
= haw(n — E)]l i 7‘72 + liga/néy,

where A '= w; — w, is the detuning between the qubit and t.he resonator. Fﬁte ‘ihiltsull th;
latter equation, the Pauli matrices &, and 6, belong to tl_le Hilbert space o -1: ziz Iell ;I | )g},mIS
and |e,n — 1). To be clear, this &, is not in the qubit basis. The block Ham; t0t " ;C) e
the form of a coupled two-state system. We also note that each subspace of states |g,

i tates.
e,n — 1) is decoupled from all other s . ' = -
| Finding the eigenvalues and eigenstates of Hjc is now straightforward given its decompo

sition into diagonal blocks that are sums of Pauli matrices. Using Eq. (2.161), we find that

that ﬁIJ((":) has eigenvalues,

S s 6.81)
Eypn = hoy(n — E) + Iy g*n+ i (

0 in( % 6.82
|+5 n) = COS(?”) |ean - 1) + SIH(?) |g5 n) s ( )

On
|—,n) = — sin(ez—") le,n —1) + cos(—2—> lg,n), (6.83)

and eigenstates,

where 6, = arctan(2g./n/A). The states |+, n) are known as the dressed states,dw1th ::z
idea that the bare matter (qubit) states are “dressed” by the photons. The dressed gro

i _p%
state equals the ground state, |—, 0) := |g, 0), and it has an energy —h~".

6.4.4 Detuning Regimes

. . o o
The Jaynes—Cummings Hamiltonian (Eq. (6.80)) has two different behaviours depending 0

the value of A: the on-resonance and dispersive regimes.
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(a) Resonant (b) Dispersive
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Jaynes—~Cummings Hamiltonian’s spectrum. The spectrum for the (a) resonant regime, A = 0, and (b) the
dispersive regime | A /91 >> 1.In panel (a), the outer lines show the uncoupled energies, while the central lines show
the dressed energies. In panel (b), the solid lines show the uncoupled energy levels, while the dotted lines show dressed
energies. This figure is adapted from Blais et al. (2004).

In the on-resonance regime, the frequency of the transmon and the resonator are equal,

@y = wg and A = 0. In that case, 0, = 7/2 and Egs. (6.82) and (6.83) reduce to the
resonant eigenstates,

|+, n) = %(lg, n) +le,n — 1)), (6.84)
| n) = —J;(lg, m — le,n = 1)), (6.85)

Purcell effect (which we discuss in Section 6.8).

In this regime, it’s easy to observe an interesting quantum effect known as vacuum Rabi
oscillations. Consider placing an excited qubit in a resonator in the vacuum state, giving
the initial state |e, 0). We know from the Jaynes—Cummings Hamiltonian that this state wil
couple to |g, 1), causing periodic oscillations between the two. These are known as vacuum
Rabi oscillations.

Even though the on-resonance regime isn’t typically used directly in quantum computing,
it’s an important model of light-matter interaction and is seen in various other applications
of circuit QED,

One common regime we work in is the dispersive regime, where the detuning between
the transmon and resonator is large with respect to the coupling between them, | A l/lgl > 1.
As a result, in this regime the qubit and resonator energy eigenstates are only weakly
entangled. Different protocols for Imeasurements and two-qubit gates become possible in
this regime. The large difference in frequency makes it such that the transmon and the
resonator cannot exchange excitations directly.

We now look to find solutions to the Jaynes—-Cummings model in the dispersive regime.
In the two-level approximation, Egs. (6.81)—(6.83) are exact, and we can find expressions

_—E
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. . s
for the energies and states by expanding them for |A|./|g|. > 1 At th(? saTne. time, 111‘[ Clh
instructive to find an approximate form of the Hamiltonian in the dispersive 1.eg1m'e, w. i
can be done in different ways. One approach, valid in the two-level approximation, 1s to
apply the dispersive transformation

U= exp[ii—(ﬁjﬁ - 6_?;)]- (€D

We’ll explore this approach in detail in the exercises, but for now we just write the result.
We find that the transmon Hamiltonian in the dispersive regime is

it T 6.87
I:Idisp = hw;ﬁ*‘& = 2q6z — hx6,d'a, (6.87)
where
2
2 2 e g
£ - £ - S - e (1)
w,’.:w,.-——m, (,l);/ —C()l]“— A, and X A A_Ec/h

i um i i ive regi hich is
From this Hamiltonian, we can determine the spectrum in the dispersive regime, w
!/

w
Ex = li(w,. &+ x)n £ h7’ (6.89)

i i oy for |+, n). ' .
Wh\j\}: (f; ;Z:'Z}iairili?f}i]rst te|1‘m 0% Eq. (6.89) looks like the :spectr.um 9f a harmonlcj osiﬂlai)oi
but with a frequency that depends on the state of the qu‘t.)lt. This will be the ’ba51s 0 qlt,l 1n
readout in circuit QED, which we discuss in detail in Section 6:7. For now, let’s comme.n (?
the structure of the state-dependent dispersive frequency shift, x, here..Th.e ﬁrstrtre; (r; ;E
X, g°/ A, is the result obtained for a pure two-level system.. The sec?nd term 1is -i c(;) eeren
for the limited anharmonicity of the transmon. To leading .01'de1, the mag.nl u .e. !
transmon’s anharmonicity is E¢. We see that for Ec > A, ie. large anhalmomilty,thm.
correction term tends to zero, and we recover the result for the two-level .system. In td e ON 601
limit, with A >> E¢, we instead find that the correction canc§ls the lea'dmg term a;l. x ~= 0.
This recovers the result that, although coupling harmonic oscillators will produce frequency

i ifts are not state-dependent. .
Shﬁilit?l?eiﬁisaonance case, thg dressed states in the dispersiV(? regime are not maxugl?iy
mixed states. This can be seen by substituting the definition of 6, into Egs. (6.82) and (6.82).

For A > g./n, we can perform the series expansions to find cos(awtan( X >> 1 and
sin(arctan(%ﬁ)) e g“Tﬁ. Thus, we find

|+an> & C+ (|€, n-— 1) + % |g> n>> ) (6()0)
|—n) ~ C_ <|g,n> - gTﬁ len — 1>> , 6.97)

where C4 are normalization constants. o o ‘ -
The most straightforward advantage of working in the dispersive regime is a hqi |
- o - ](
enhancement of the qubit lifetime compared to the resonant regime. Recall that the.: 1es016 e
i 1 ‘onme
will greatly enhance signals at its resonant frequency, w,. This also applies to environi

6.5 Initialization

noise, including quantum fluctuations. If our qubit is in resonance with this enhanced noise,

it will have a much shorter lifetime. Working at a frequency away from this peak, in the
wings of the resonator response, exposes the qubit to greatly suppressed noise, which will
increase its lifetime. From an engineer’s point of view, we wo
saying the resonator filters the environmental noise. Connecting to the terminology of cavity
QED, the reduction of the qubit lifetime by the resonant cavity is known as the Purcell effect
(which we discuss in Section 6.8). The enhancement of the lifetime in the
is sometimes referred to as the anti-Purcell effect.

A more subtle advantage

uld describe this simply by

dispersive regime

is that working in the dispersive regime reduces the backaction
of the readout on the qubit, minimizing the disturbance to the qubit state. As the state of
the qubit affects the resonance frequency of the cavity,
the transition frequency of the qubit. This can be seen by grouping the interaction (last)
term of Eq. (6.87) with the qubit term, which together look like a shift in the qubit energy
proportional to the photon number &'4. We typically readout the system by driving the
resonator with a coherent state, which is a superposition of different photon numbers. This
implies that the readout inherently drives fluctuations of the qubit frequency, which we want
to minimize. Some amount of backaction is required in all quantum measurements, and the
backaction implied by Eq. (6.87) can approach the quantum limit. However, if the coupling
is too strong — for instance, because the detuning is too small —
contribute additional back

so does the state of the cavity affect

higher-order processes can
action without improving the measurement.

We end this section by enumerating different regimes of the Jaynes—Cumming
which are often referred to in the literature. If we let y refer to the decohere
of the qubit, and « the same for a cavity, then we ¢
frequencies Wy, W,
g Ky K, 0wy, @y,

s model
nce rate
an compare them to the respective
and the interaction strength &. In the weak coupling regime, where
decoherence dominates the coherent dynamics between the qubit and the
cavity represented by g. In the strong coupling regime, where y, x < g K wy,
quantum dynamics of light matter coupling can be observed. The strong cou

still generally represents a perturbative coupling between light and matter. [
J/: K << g i a)l]aa)l‘)

wy, the truly
pling regime
n the regime
sometimes called the ultrastrong coupling regime, the rotating-wave
approximation breaks down and the coupling is no longer perturbative. Tl

his regime has
only recently been observed experimentally.

6.5 Initialization

_\

Superconducting qubits are initialized by brute-force cooling of the qubits to the ground
state. A characteristic frequency of 5 GHz implies that the qubits must be cooled to a

temperature 7' < fiw/kg ~ 250 mK. This is far below the temperature of the liquid helium,
~4 K, used for the superconducting magnets in Cl

hapter 3. We therefore require a specialized
cryostat, a dilution refrigerator that can reach base temperatures of 10 mK. Other t
cryostats can reach the low temperatures required, but dilution refrigerators are pr.
because they offer continuous operation, remaining
several months.

ypes of
eferred
at low temperatures for periods of




198

6 Superconducting Circuits

Despite the ultra-low temperatures achieved by the dilution refrigerator, experimentalists
typically find that the residual excitation of the excited state is much higher then would be
predicted by simple thermodynamic calculations. There are a number of possible reasons
for this, including stray electromagnetic radiation that reaches the qubits from higher
temperatures. A recent strategy to mitigate this has been to use real-time feedback to
improve the quality of the ground-state preparation. These are often called active reset
protocols. The basic idea is to perform a high-fidelity measurement of the qubit’s state, and
if the qubit is found to be excited, to apply a w-pulse to flip the qubit to the ground state.
This technique relies both on having (nearly) quantum-limited amplifiers® for the readout
as well as high-speed digital electronics that can analyze the readout result and apply the
conditional 7 -pulse in a time much less than the qubit’s 77.

6.6 Qubit Control

Having initialized our qubit, we turn to controlling it. First, we explain how single-qubit
gates can be implemented using a microwave drive (Section 6.6.1). In Section 3.3.4 we
introduced some techniques to mitigate pulse errors; we build on that discussion here. Next,
we explain how two-qubit gates are implemented in Section 6.6.2. As we’ll explain, the
exact approach will depend on whether we're using tunable or fixed-frequency qubits.

6.6.1 Single-Qubit Gates

High-fidelity single-qubit gates have been implemented using a range of techniques. Broadly
speaking, gates are implemented either by applying microwave control pulses or by fast
tuning of the qubit transition frequencies. While we will focus on transmon qubits below,
many of the techniques we describe are applicable to a range of different superconducting
qubits.

Single-qubit gates, other than z-rotations (see below), are most commonly implemented
by driving the qubits with resonant microwave signals that will drive Rabi oscillations. Apart
from the control frequency, this is in strict analogy to single-qubit gates in NMR and jon
traps.

All that needs to be done then is to show how we come to the Rabi Hamiltonian for a
superconducting qubit. Let’s start with the simplified example of the CPB. Consider the CPB
Hamiltonian Eq. (6.57). We can couple the microwave drive through the same gate capacitor
that we use for the gate voltage, which sets ng. (In practice, we might use distinct gate
capacitances to allow for better optimization.) For the signal applied to the gate capacitance,

we then combine the DC bias and the microwave drive, giving ng = ngo + 8ng cos(wt + ¢).

If we work around ngg = 1/2 (and rotate to the qubit eigenbasis), Eq. (6.57) reduces to
~ E 3
H= ~7J&Z + 4E8ng cos(wt + ¢y, (6.92)

5 A quantum-limited amplifier adds the minimum amount of noise allowed by quantum mechanics during the
amplification (measurement) process.

6.6 Qubit Control

which is identical in form to the Rabi Hamilt
the context of NMR.

The same derivation for the transmon is somewhat more in
the Rabi Hamiltonian for the transmon fo
Consider the Hamiltonian of the transmon
approximation but before the rotating-

volved, but we can also derive

coupled to a resonator written in the two-level
wave approximation, Eq. (6.77):

N . hw
o — S G~ A At =
Ic = hw,a'a > 0. — hgé(a' — a). (6.93)

We now-take the classical limit of the oscillator. We do s0 by essentially taking the partial
expectation lvalue 0{' the field with a coherent state at the frequency e with a large amplitud
). In the interaction frame of the oscillat b

or, where 4 at pi icit ti
et b o B ere @ and @' pick up an explicit time-

. hw, |
(a|Hcla) = —quz — 2Nigla| sin(wt + ¢)é,. (6.94)

Upt iS i in j ili
‘ (ie ct)ha tp.hase,. we see that this is again just our familiar Rabj Hamiltonian. As an aside, we
‘ atin going f.rom t.he second-quantized equation to the semiclassical Rabi Hamiltor;ian
WeI ?16 cssentially ignoring the vacuum fluctuations of the field ’
we’ . - * ’
fe using tunable transmons we can also Implement z-axis rotations by directly tuning

the value of w, so that w, — i
ue of w, @q — wq # 0. This can be done by inductivel i
transmission line to the loop of the transmon’s SQUID. A fas A

Fength of the pulse, we can control the accum
it’s possible to implement z-gates in this wa
gates introduced in Section 3.3.3.

There are a variety of techni
These generally combine a mi

ul.ated phase, i.e. the z-rotation angle. While
L IS now common to use the book-keeping

ques used to address multiple qubits in a single processor.
x of frequency multiplexing, meaning that the qubits are

quencies 50 a given pulse is only reson i
. - - . . ant
and individual wiring, meaning that each g ey

microwave drive line, As processors get la
lenging in a purely 2D architecture.
wiring with insulating layers in bet

: one qubit,
qubit (or a small number of them) has its own
rger, bringing signals to internal qubits is chal-
Conventional (classical) processors have many layers of

ween, allowing for arbitra i i
N : . Ty routing and connections. It
as generally been found that these msulators are lossy and add significant decoherence to

qui‘ntu.m processors. Solving this problem is currently a very active field of research
) rv1v :1}111;:16 tzztfzflil;iz roefd mfsf\}::t};l fotl}'1 tra_nsrr;ons is leakage to the higher energy states
: : ored. other implementations, we can use pulse shapi
reduce this leakage and improve the fidel ity of our single-qub;l ates. Th I:'nh ¥ “J
a transmm.l is small, 200-300 MHz compared to the qubit fr : uen:::iese ;hiZLMUBICIW "
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o 1y ‘.)ve k ¢ tail of tl!e p'ulses bandwidth overlaps with the transition frequency
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il ‘ : : ates a
rade-off with the coherence time of the qubit. A next step is to consider pulse shaping

onian (Eq. (3.10)) that we first considered in

llowing a standard method in quantum optics,
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For instance, rectangular pulses have a spectrum that decays very slowly (1/f) in frequency,
while a pulse with a Gaussian shape in time also has a Gaussian spectrum, meaning the
spectrum decays exponentially.

More sophisticated pulse-shaping techniques, based on optimal control theory, have
become increasingly common. One very common example is the Derivative Removal via
Adiabatic Gate (DRAG) technique. While the derivation of the DRAG protocol is beyond
the scope of this book, this technique has allowed for single-qubit gates to be routinely
implemented with greater than 0.99 fidelity.

6.6.2 Two-Qubit Gates

Numerous proposals exist for implementing two-qubit gates in superconducting systems,
many of which have been demonstrated and have achieved high fidelities. At the time of
writing this text, there is no dominant two-qubit gate design, and it’s still an active area of
research. Below we give an overview of the different types and focus on two well-developed
and illustrative examples.

In many of the previous chapters, we implemented our two-qubit gates by regulating
a natural interaction term in the system. Here, we need to first engineer the interaction
or coupling term using different circuits. Transmon qubits are typically coupled with
a capacitor. We previously derived the interaction Hamiltonian for capacitive coupling
between the transmon and a resonator [fig(6, @ +6_a') from Eq. (6.77)] when we discussed
the Jaynes—Cummings model in Section 6.4.3. The derivation for two transmons is nearly
identical, so we just write the result,

B = hge6We@ +6W6@), (6.95)
where

(6.96)

. J2e2C, (EJIEJZ )1/4
Cc = '
8 C1C; \EciEc

This expression describes the exchange of a single excitation between the two transmons. It is
valid in the context of a rotating-wave approximation which assumes |A| = |wg1 — ogp| K
gc. Other couplings can be used when controlling other types of qubits, e.g. inductive
couplings can be used with flux qubits. For the most common forms of coupling, the final
interaction Hamiltonian remains in the same form, albeit with a different detailed expression
of the coupling strength.

To go from an interaction to a gate, we need to be able to turn the interaction on and off
in a controlled fashion. One possibility is to use a tunable coupling element, like a tunable
capacitor or inductor, which would allow for the direct tuning of g¢. An alternative approach
is to tune the qubit frequencies, adjusting the ratio of gc to A (Fig. 6.18). When g¢ > (Al
the interaction is as described above, i.e. excitations are swapped between the qubits. In
the other regime, gc < |A|, the rotating-wave approximation is no longer valid and the
coherent swapping is sirongly suppressed. In this way, we can effectively turn the interaction
on and off, despite the constant presence of the fixed capacitive coupling.

6.6 Qubit Control

(b) & Coupler

o Ces
2T ot %}ﬁ

Transmon couplings. (a) Direct capaditive coupling of tunable transmons (b)
coupler, '

Coupling of tunable transmons via a

Let’s consider the type of gate produced b

specified time. Consider the action of this cou
basis

Y turning the capacitive coupling on for a
pling written as a unitary in the computational

Uc(f) = exp (—igd(&il) 694 50 553 )))

1 0 0 0
0 cos(ges) —isin(gct) 0
0 —isin(gcs) cos(get) 0O gy
0 0 0 1
If we choose our time ¢ = 7 /2gc, we get the so-called iSWAP gate
I 0 0 o0
T 0 0 —i 0
“()-o 4 -
22c 0 i 0 o= ISWAP, (6.98)
0 0 0 1

Its n '
ame follows from the fact that it Swaps an excitation between the two qubits while

adding an extra phase of i. From this, we can create the entangling /iSWAP
created from the same interaction done for half the time

the ~/iSWAP gate prepares a Bell state.

I . . )
ﬁrstrrilﬂinietr}lltmi (gw;-qublt gates with tunable qubits has some notable challenges. The
at the added tunability introduces another con .
trol parameter and, thus, intr

another channel for noise in the i b

' system, potentially decreasing the tr: y
time. Second, the performance of th i : S il

e gates relies very sensitivel th

o ctit ' y on the shape of the fast-
tilil]S?S used for tuning, which often have nanosecond timescales. It’s very difficult to
;:}Z)n rol or even measure the exact shape of the pulses that reach the qubits, since
rough long cables with frequency-dependent loss along with a number of other

components. Designing gate protocols th o
at mitigate the X d
research. 8 se problems is an act

gate, which is
: Uc(é). Applied to the [01) state,

they travel
microwave
ive area of

. Iilart of the issue with the pulse shapes of the fast-flux pulses used for tunable-qubit gates

st aat‘I th‘ey are extremely brqadband, with frequency components ranging from 0 I—i to

(s:::tl; tsxgahzxf:z. An alternative approach is to use more narrowband microwave pulses to
0-qubit gates, similar to how single-qubit gates are d ith mi

: ! one with microwave pulses. A

c::ar dtl,sadwint‘age of using more narrowband pulses is that they will tend to produf:’e slower

gates, but this is a natural trade-off between the speed and precision of control pulses.
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There are a variety of approaches to microwave-based two-qubit gateg, with prominent
examples being parametric gates and cross-resonance ga.tes. Parametric gat.es use a tun-
able qubit or a tunable coupler, but now tune them at microwave frequen(?les, often at
the frequency difference between a pair of qubits. Cross-resonance gates 1nst'ead wgrk
entirely with fixed frequency qubits, avoiding the extra decoherer'lce channel associated with
tunability. We will consider cross-resonance gates in more detail now. .

The cross-resonance gate still requires that the qubits have a fixed coupling to each oth.er,
e.g. capacitive coupling for transmons. Unlike with tunable—ql.lb.lt gates, however, t.he' qubits
are strongly detuned from each other, i.e. |A| > g¢. The gate is 1mplemenFed by drlymg one
qubit, the control qubit, at the frequency of the other qubit, the targe.t qubit. E.SSGII‘ElaH}./, the
control qubit acts as a state-dependent filter of the Rabi drive,. changing the drlvc? amplitude
and phase seen by the target qubit. Roughly the control gu‘.blt acts as a filter with a centfer
frequency equal to its transition frequency, which is wq1 10 its ground sta}te? and wy] — o in
its excited state. As we will see in detail below, the state-dependent driving of the target

qubit can entangle it with the control qubit. . ‘
We begin again with the Hamiltonian of two qubits coupled via a capacitor and add a

drive on the first qubit,

A (1) o A A2 ~ (1)
H=_ fiogn s — ﬁaz)qz 62 + nge66@ 4 64 '6) + h(0) cos(wg11)6{V,
? (6.99)
where wy is the frequency of the drive on the first qubit. To better see the effect of the

driving term, we use a transformation like the one introduced in Eq. (6.86) and explored in
the exercises. Doing so, we find the driving term becomes

~ C A ~
h(t) cos(wart) (6 + gKoz(l)af)) . (6.100)

We then see that the effective amplitude and phase of the Rabi drive on qubit 2, that is, the
coefficient of the 6, depends on the state of qubit 1. ' .
The cross-resonance gate can then be represented by the unitary matrix

cosf/2  —isinf/2 0 0
9 ADA@) Y _ —lsm0/2 COSG/Z 0 ) 0 ,
Ucr(®) = exp T % )= 0 0 cosf/2 isinf/2
0 0 isin6/2 cosf/2

(6.101)

where 0 depends on the strength of the coupling. This is clearly a two-qubit entangling gate.

6.7 Measurement

e ———————————— oy o e

This dispersive readout involves inferring the state of the qubit from its effect on a rejddout
cavity to which it is coupled. First demonstrated for charge qubits and transmons, it has
been adapted to a wide variety of qubits, including semiconductor qubits.

By far the most common form of superconducting qubit readout derives from circuit QED.
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Dispersive readout. The resonator's frequency experiences a shift depending on the qubit’s state, The frequency of the
resonator will be either o/ + orwy — x, depending on if the qubitisin the |e) or |g) state, respectively, This
property allows us to measure the qubit’s state by probing the resonator with a microwave tone to infer its resonance
frequency. The figure shows the magnitude (left axis) and phase response (right axis) of the resonator for the two-qubit
states. If we probe at either one of the shifted cavity frequencies, the state information will be encoded in the
magnitude of the microwave signal, If we probe at the bare cavity frequency, with oy = w;, the information will
instead be in the phase of the microwaves,

To understand how dispersive readout is done, we’ll return to the Hamiltonian of our

transmon in the dispersive regime, Eq. (6.87). By collecting certain terms we can write
this as

/
q

= he

Hiisp = Ww] — x6,)ata - T&z, (6.102)
Written in this way, it’s clear that the resonator’s frequency experiences a shift depending on
the qubit’s state. The frequency of the resonator will be either w, — x or w, + X, depending
on if the qubit is in the le) or |g) state, respectively (Fig. 6.19). This property also allows us
to measure the qubit’s state by measuring the frequency of the resonator.

One could imagine measurin g the resonance frequency by measuring at many different
frequencies and fitting a resonance curve, but this is inefficient and unnecessary. It is
sufficient to probe the resonator at a single, well-chosen frequency. Perhaps the most obvious
strategy is to send a microwave pulse to the resonator at one of its possible frequencies,
@, == x, and measure the resulting transmission intensity. For example, we could probe the
resonator with a pulse of frequency wy = w, — X If the transmission of the microwaves
through the cavity is large, then we know that the frequency of the pulse matched that of
the resonator, and so the qubit is in the |g) state, On the other hand, if the transmission of
the microwaves is near zero, then we know that the qubit is in the |e) state. Alternatively,
we could probe the resonator with a frequency of wy = w,. In this case, the transmitted
magnitude will be the same for both qubit states. However, the microwave pulse will
experience a phase shift as it moves through the resonator, and this phase shift will now
depend on the qubit states (This phase shift will depend on the frequency of the resonator,
and thus on the qubit’s state — see Fig. 6.19.) If the dispersive shift of the resonator is large
compared to its linewidth, the microwaves will experience a /2 or —z /2 phase shift when

B —
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the qubit is in the |e) or [g) state, respectively. (Note that in this limit, most of the probe
signal is reflected since it is off-resonance with the shifted cavity frequency, implying that
it’s better to measure the reflected signal instead.) The change in phase can be measured by
comparing the output pulse to a phase reference, ¢.g., using a mixer. While both approaches
are possible, the magnitude-based approach has some disadvantages. Most significantly, it
strongly entangles the state of the qubit with the state of the readout cavity, since the two
states of the cavity corresponding to the two qubit states are very different. This can be
undesirable.

We have reduced the problem of discriminating the qubit states to that of measuring
the phase of the microwave signal. How well we can do that depends on how large our
microwave signal is compared to how noisy our measurement apparatus is. That is, it depends
on the signal-to-noise ratio of a microwave phase measurement. Detailed calculations and
experiments show that the power of the probe signal must be kept very low, in the tens
of photons level, otherwise the measurement backaction is too large and the qubit state is
destroyed before being measured. At this power, even the best semiconductor microwave
amplifiers are too noisy. This fact has driven the development of a new generation of
superconducting amplifiers, known broadly as Josephson parametric amplifiers. These
amplifiers now routinely operate near the standard quantum limit of noise, which implies
only adding a unit of vacuum noise (half of a photon) during the measurement process.

6.8 Noise

D =~ - e

We conclude our final chapter on a quantum hardware with a deeper dive into noise and
decoherence. In Section 3.7 we introduced the effects of noise and decoherence using the
phenomenological 71 and 73 decay times added to the Bloch equations. In Section 6.8.1 we
explore the microscopic physical processes that underlie 7y and 7. Using superconducting
qubits as an example, we will derive explicit formulas for 7} and 7>. Further, we discuss
prominent environmental noise sources in solid-state devices in Section 6.8.2. We emphasize
that the general discussion and techniques in this section apply to other types of qubits. This
discussion of noise is a natural bridge to our final chapter on quantum benchmarking, which
discusses the ways in which we understand how well our qubits are performing.

6.8.1 Decoherence

The conceptual starting point for exploring decoherence is that we imagine a small quantum
system, e.g. our qubit, coupled to a very large quantum system, i.e. the environment (ofien
called the “bath” or “reservoir” in this context). The total quantum system may evolve
coherently, but since we cannot keep track of a very large number (~10%3) of degrees of
freedom in the environment, we are left to consider only its average properties. As we
explained in Section 2.3.1, we express this by saying that we trace over the degrees of
freedom of the environment. When we do this, the state of the qubit must be represented by
a mixed-state density operator.

6.8 Noise

the Markovian app
Markovian.

Wlth thesn:s approximations (and some others), the equations of motion for the (reduced)
density matrix of the qubit can be derived, leading to a so-called master equation. The f?xll
quant:um versiop of the Bloch equations, including 7} and Ty, are an example of‘a master
equation, Wf_: will take a simplified, ;.:hysical approach to deriving 7} and 75, giving results
that agree with the full master equation calculations given the stated approximations

We take the‘HamiItonian of our qubit, A(1), to depend on a number of pararﬁeters
(opferators), A (1), such as the gate charge, ny, of the CPB, The environment then introduc
noise (ﬂll:ctuations) in these parameters, which in turn causes (1) to fluctuate This ?S
the physical source of decoherence. Since we assume the coupling between tl.le qu;‘

a ; . . .
rld' cnvironment is weak, we take the coupling Hamiltonian between the qubit and the
environment to have the form

there AJ. is an operator representing the environmental degrees of freedom.
o understand the eﬂject o.f this coupling, it is useful to now restrict the qubit Hamiltonian
to the two-level approximation. With this restriction, we define

(6.104)

where the components of 1 can be found as D; = — tr(&,-%{i) in the computational basis of

.the qubit, Written in this form, it is clear that D; leads to fluctuations in the qubit energy,
Le. dephasing parameterized by 7. Conversely, the transverse components, Dy and D),
are responsible for qubit transitions. i.e relaxati itati ffe tem )
, i.e. ation and excitation (at fin

parameterized by Ty, ( R
" We can now.djrectly write down the relaxation rate, 'e = 1/Tp, and excitation rate
: E=1/ ng, using Fermi’s golden rule (see Section 5.2.2), which describes the transition
Fetwizen discrete levels of a system (the qubit) coupled to a continuum (the environment)
}fm'u s golden rule says that the transition rate is proportional to the magnitude squared of
the matr'lx element connecting the two discrete levels multiplied by the density of states of
the continuum at the transition energy. We find

T

. 2
Urip = 272 D S$i(£wy), (6.105)
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where D = /|Dy)* + |Dy|2 = 2| (0] %{ [1) | is the transverse component of D and S (w)
is the spectral density of fluctuations of A, defined as

S(w) = = / - dt (AL(0)AL(T)) exp(—iwT). (6.106)
27 J_ s
(Note that other normalizations are possible.) The spectral density I.neasu.res the. strength of
fluctuations in A as a function of frequency but, through the fluctuation—dissipation theorem,
also quantifies the density of states in the environment which can absorb energy from the
quzllte.lssically, S(w) is a symmetric function of freque.ncy, but this i§ .nolt the case in
the quantum description. In fact, for the environment in .thermal equ111l:?r1um, we have
S(—w)/S(w) = exp(—hw/kT). We can interpret the nega.tlve frequency side of the §pzc—
trum as representing real excitations in the environment, w}.uch' only have nonzero magnlltu e
at finite temperature. Conversely, the positive frequency side includes vacuum fluctuations,
which can induce spontaneous emission (relaxation) even at zero .tempera.ture, and repre-
sents the ability of the environment to absorb energy from the qubit. At ﬁn1t§ temperature,
it is the quantity Iy = 1/T] = T'g + I'g that enters intf) the Bloch equatlogs. At zero
temperature, I'j = I'p and is often referred to as the 1.rela'xat10n rate, even though it generally
parameterizes the effects of both relaxation and excitation. . .

The treatment of dephasing depends on the origin of the fluctuations. .That 1.s, we can
imagine A as a purely classical control parameter, like a g'ate or ﬂu.x.blas, with purely
classical fluctuations. Alternatively, we can treat the fluctuations as arising from quantum
fluctuations in the environment. We outline both treatments here. o

In the classical case, AA = AX and its coupling through D, just produces fluctuations in
the qubit energy level. A superposition of the qubit states then acquires a phase

o(t) = / f wqgdt’ = (wy)t + S¢(1) (6.107)
0

!
So(t) = % /0 AME)dE . (6.108)

We see then that the fluctuations in the qubit’s energy lead to a random walk in the nglt
phase. We can compute the average of this phase for an ensemble of measurements, finding

1
{exp(ide(n)) = exp(—i(&v(t)z)), (6.109)

where we have assumed that the fluctuations of AA have a Gaussian distribution, Importantly,
averaging over the ensemble of noise converts the oscillatory function on the left to a

decaying exponential function on the right. . ; .
We are left, then, to calculate the variance of the phase fluctuations (8¢ (¢)*). We can write

the general result

2 poo
Bo(t)?) = (%) /_ N dwS) (w) sinc*(wt/2), (6.110)

6.8 Noise

where sinc(x) = sin(x) /x. The sinc function arises from the filtering effect of integrating A2,
and indicates that fluctuations of A within a bandwidth of ~ 1/ contribute to dephasing.

To evaluate the integral, we need to specify the form of S (w). We can show that the
Markovian approximation mentioned above for the environment implies that Sy (w) is
approximately constant at relevant frequencies. (That is, the spectrum of the noise is “white”

which implies that its correlation function is a delta function.) With this approximation, we
find

exp(—%(5¢(1)2)> = exp(—r‘(pz) 6.111)

with the dephasing rate

D 2
Fp=nm (€> Silw =0). (6.112)

We have finally recovered a simple exponential decay of the qubit coherence, consistent
with the form of the Bloch equations. We note that this “pure” dephasing is added to the
homogeneous contribution, I'; /2, to give the total rate Iy=r,/2+ Iy, which would be
observed, e.g. in a Ramsey experiment.

In fact, as we discuss in more detail below, solid-state systems often have noise that
is not white. Instead, so-called 1 // noise (read “onc over ) is common, which has a
spectrum Sy (w) ~ 1 /w. We've seen above that dephasing is dominated by the low-frequency
components of the noise spectrum, making | /f noise particularly problematic for dephasing.
The strong frequency dependence of 1// noise breaks the assumptions of the Markovian
approximation, and we can no longer recover a simple exponential decay. That is, we cannot

define a simple dephasing rate, I"p. Still, we can calculate the decay and find instead a
Gaussian envelope:

2
exp<_%<3¢(t)2)> = exr><—% (%) r2<AA2>>, (6.113)

where (AA?) is the variance of A,

We will now briefly discuss the quantum treatment of dephasing, To do this, we need
to have a more detailed model of the environment. One standard approach is to treat the
environment as a bath of harmonic oscillators with a dense (approximately continuous)
distribution of frequencies. This approach is often called the spin-boson model, with a
two-level system (a spin or qubit) interacting with the bath of bosonic excitations of the
oscillators. Describing the bath degrees of freedom as harmonic oscillators may seem
contrived but, in fact, it is rather general. Even for a complicated nonlinear system, the
dynamics of small deviations or fluctuations from the steady state can generically be
described by a harmonic oscillator. Within the limits of the approximations for the master
equation, e.g. weak coupling, modelling the bath as harmonic oscillators is a well-justified
approximation.

With this description of the environmental bath, we can now write down a simple linear
form for the noise operator:

Ab= 3 (b} + huby), (6.114)
n




6 Superconducting Circuits

which is appropriate in the weak coupling limitl..Here, Bi% is., thte annihilation operator for the
ir ntal oscillator and 2, is its coupling coefficient. o
nﬂzji)l;vcl;;sziy, the quantum calculation of dephasing pro?eeds in a very similar malfnr:':r
as the classical calculation, although the mathematical details are beyond the scope of this
book. In the end, though, we arrive at the same form as in Eqns. (6.11 1.) and .(6.1.12), (tjhe
difference being that S; () is now interpreted as a quantum spectral density, which 1nf:lu. es
quantum noise. The most important difference, then, is that the guantu{n treatment plCdlC.tS
a finite dephasing rate even at zero temperature, where the c}asswal noise would go tlo zlel to.
Everything stated so far applies equally well to any qubit. As a concrete ex?m?p e, lets
consider how classical noise in #g, the scaled gate voltage, effefsts the CPB or tlansn.lon,
both of which are described by the Hamiltonian in Eq. (6.50). This noise could come ﬁ(;m,
e.g. noise in the room-temperature electronics u§ed .to control .th’e gate. .Voltage.t Weh(i:?;: :V ?101
use noise in 1, to model (classical) charge noise in the qubit’s environment, w
me way. X
001"}];1)112 Eist:l th?) is to Zalculate the components of D. We find first of all that 94 [Ong =
—8Ec(it — ng). Projecting onto the qubit subspace {|e), lg)}, we find

Dy =16Ecl{glitle)| ; D.=—8Ec (lelfile) — (gli]g). (6.115)

In the CPB regime (E¢ > Ey), it is instructive to further simplify by explif:itly calcultatmg
the matrix elements in these expressions. To do so, we first write the qubit eigenstates in the

charge basis {|1),0)} as

lg) = cos(6/2)]0) + sin(8/2) |1}, (6.116)
le) = sin(6/2) |0) — cos(6/2) |1), (6.117)

with the mixing angle

6 = cos™! [ﬂ(fl—“ﬂ] (6.118)
iy

We then find D = 8E¢|sin@| and D, = —8E cos #, which gives the rates
Ly < Pl 119
Frjp= h—Z”Eg sin” 65, () = i sin’ Sy (a,), (6.119)

‘62—2”15% cos? 08, (wy = 0) = %ezxg cos® 8Sy(w, = 0),  (6.120)
where on the far right e is the electron’s charge, kg = Cg/Cx is the coupling of the CPB to
the fluctuations, and Sy(w) is the spectral density of the (unscaled) volt.age ﬂuctuatlons.rl

We can make a couple of comments on the form of these rates. First, if we tallke 1116
magnitude of S(w) as a given, we can still control the decoherence rates by 1'ed;cmg L:Z
coupling of the qubit to the environment by reducing Kg_' If we qnly hac'l one gate, this W(.) N
also, for instance, reduce the Rabi frequency of the qubit for a given drive §t1‘ength, that ls,ff
would increase the single-qubit gate time of the qubit. This creates an engineering t1'e.t;1.e-0t0,
balancing gate speed versus decoherence rate. However, we usually have the al?l 1tythe
increase the output power of the room-temperature microwave generator that drives
qubit in such a way as to keep the Rabi frequency unchanged.

Ly =

6.8 Noise

Further, consider the two bias points ng = 0 and ny = 1/2, which gives 6 ~ ( and
0 =mn/2, respectively. At ng = 0, we see that Ur/e ~ 0 while I'y is maximized. This
makes sense, because here the qubit states are very close to pure charge states, such that
fluctuations of the gate charge predominately change the qubit energy, causing dephasing.
Conversely, at ng = 1/2 we find that 'y = 0 while U/ 1s maximized. We can understand
that ', = 0 at this point in two ways. First, referring to Fig. 6.10, we see that dog/ong =
0 at this point, so the qubit energy is insensitive (to first order) to charge fluctuations
at this bias point. Second, we can observe that the matrix elements that go into D, in
Eq. (6.115) are just the expectation values of the normalized charge of the qubit states,
implying that D, for charge noise is just proportional to the difference of the charge
of the qubit states, At ng = 1/2, the charge of the qubit states is equal, so the charge
noise doesn’t couple to the qubit energy. This is an example of what is generally called
a decoherence-free subspace. Because of the presence of a variety of prominent noise
sources in the solid-state environment, as described below, finding and exploiting this type

of insensitive point, or “sweet spot,” has been critical to the advancement of superconducting
qubits,

6.8.2 Physical Noise Sources

In this section we review a number of different physical noise sources that affect solid-
state qubits. This includes superconducting qubits, but also applies to other types, e.g.
semiconductor quantum dots,

Dissipative elements in our quantum circuit, e.g. bias resistors, will add noise to the
system. This is a fundamental result known as the ﬂuctuation—dissipation theorem. In
circuits, we typically describe dissipation in terms of resistors, and this noise is referred to
as Johnson-Nyquist noise. Classically, or for frequencies w <« kT/H, the spectral density of
this noise is white and proportional to temperature. The quantum version for @ > kT'/ is
vacuum noise, with a spectral density proportional to frequency for positive frequencies and
approximately zero for negative frequencies. For a resistance, R, which can also be the real

part of an impedance Re Z(w), the full quantum spectral density of the voltage fluctuations
of the resistor is

Sy(w) = %’ﬂi’ [coth(%) + IJR. (6.121)

We note that even though the noise is not white in the quantum regime, its variation is
typically small enough in the bandwidth of the coupling to the qubit that the Markovian

results apply. That is, we can define simple exponential decoherence rates for Johnson—-
Nyquist noise,
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additional cavities in series with the readout cavity to further filter the Johnson—Nyquist
noise. These are often referred to as Purcell filters.

A ubiquitous form of noise in solid-state systems is charge noise, which results in
fluctuations in the 7 operator of our Hamiltonian. While the microscopic origin of charge
noise isn’t fully understood, it is generally thought to arise from mobile charges on the
surface of the device or substrate — for instance, from charged defects moving between two
defect states. Charge noise has an approximately 1/f spectrum. It can be shown thata 1/f
spectrum arises naturally from an ensemble of two-state fluctuators distributed randomly
in frequency. Each fluctuator contributes a Lorentzian spectrum centered at f = 0, with a
bandwidth corresponding to the inverse switching time of the fluctuator, 1/7. Incoherently
adding these individual spectra produces an ensemble 1/f spectrum. In fact, in detailed
measurements of charge noise, one can often find one or two charge fluctuators that are
strongly coupled to the qubit, such that their Lorentzian spectra standout from the 1/f
background.

Charge noise has been studied for decades in many types of systems, including supercon-
ducting and semiconducting systems, with a wide variety of materials. The magnitude has
been found to be almost mystically universal, which can be expressed as

27 x | Hz\ "2
by T (6.122)

_ 42
Sp(w) = Ay ( o

where A2, ~ (10 3e)? /Hz and yo ~ 1. The intransigence of charge noise was the motivation
for the development of the transmon, which is relatively insensitive to charge noise compared
to the CPB.

Another ubiquitous form of noise is flux noise, and it results in fluctuations in the (f)
operator of our Hamiltonian. It is most problematic for flux qubits, but also affects tunable
transmons. Like charge noise, flux noise has an approximately 1/f spectrum. Also like
charge noise, its microscopic origin is not well understood, although it is generally thought to
arise from magnetic defects, such as defect molecules with a net spin, that randomly change
their orientation. The ensemble of two-state magnetic fluctuators leads to the ensemble 1/f
flux noise, similar to the story for charge noise. As a last similarity, it is also mystically

universal, with a spectral density given by

(6.123)

3

2m x 1 Hz\"®
@

So(w) = A% (

where 4% ~ (11®¢)? /Hz and yo = 0.8-1.0.

While most of the electrons in the superconductor form into Cooper pairs, some electrons
remain unpaired. These excitations from the ideal superconducting ground state are known
as quasiparticles. (In fact, they are coherent superpositions of electrons and holes.) At finite
temperatures, the number of quasiparticles in thermal equilibrium is determined by basic
thermodynamics. At dilution refrigerator temperatures in aluminum, this thermal density
should be vanishingly small. Experimentally, the density of quasiparticles is universally
observed to be orders of magnitude higher than the thermal number. Stray black-body
radiation leaking from higher temperature stages of the cryostat is one contribution to
this nonequilibrium background. However, even in the most carefully shielded systems

6.9 Conclusion

ab " : I
”ackgroun(? rerrfafns. One potential culprit is lomzing radiation, either from natural
terrestrial radioactivity or from cosmic rays. ’
" S(g)?ss;pzr(r;:ck?s can cause loss in a variety of ways. In superconducting films they can
oo n ; ;ssmate energy from the microwave fields of resonators and qubits. They can
SO tunne t. rough thel Josephson junctions that make up the qubits, exchanging energ
with the qubit and causing relaxation or excitation, ’
hgtlrcmt QI;D introduces another source of error: fluctuations in the resonator’s residual
Sxaczn nu_moel. Ideally, when not measuring the qubit, its readout resonator would have
o t}}/l n= l. However, therfe can often be a small residual photon population due to either
e lyd :r};:ja photons or res:c?ual readout photons. While the photon number may have a
efined average nf;mher, 1t will generally also fluctuate. In the dispersive regime, these
photons affect the qubit through the Hamiltonian ’
¥

ho!

Hyigp = hewlata — Tf’&z — hixé,ata. (6.124)
The last term can be interpreted as a shift of the qubit frequency proportional to th
number'of photons in the resonator. Therefore, fluctuations of the photon number ro(Ziuce
ﬂuctuan‘ons of the qubit frequency, leading to dephasing. In detail, the spectral d(ilsit s
Lorent?flan with a bandwidth of the cavity linewidth, «. Since, ty;sically Kk <o th{: -
ﬂucfuat:ons don’t contribute to relaxation, Conversely, since « is generally r,n.uch largér :h:::
the inverse measurement time, this noise looks effectively white ih our dephasing integrals
abov?,. melanmg that its noise can be described by a simple exponential dephasing rateg

Mmgat!ng photon fluctuations is typically done with better cryogenic engineerin :rl1'e
goal hem is to reduce the thermal photon fluctuations that come from the warmer ag;t i
the fridge. This type of refinement includes adding material to absorb stray thermal ]fhot:t?s
£

adding dissipative filters to assist wi izati
with thermalization, and optimizi
: n
Cryogenic attenuators. ’ P parmeters ofthe

6.9 Conclusion

\

We conclude this chapter with a summary of how we can use superconducting circuits
for quantu.m computing (Section 6.9.1) and a discussion on the strengths and weaknesses
of comp.utmg with superconducting circuits (Section 6.9.2). For further reading on super
conducting quantum computing, see Blais et al. (2021) or Krantz et al (2019) andp -
superconducting physics, see Tinkham (2004) or Van Duzer and Turner ( 1'981) ‘ o

6.9.1 Summary

In supercoudgcting qubit quantum computing, the qubits are encoded in the eigenstates of
superconductl'ng circuits whose energy spectrum is discrete, well separated, and anharmonic
A Joseph§0n Junction typically provides this anharmonicity. Many qubit architectures ha .
been studied, and the transmon has been one of the most successful ones to date for quantu\lllf
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Table 6.1 An overview of how a system of superconducting qupits can satisfy each of
the DiVincenzo criteria for quantum computation

Criteria Realization

1. A scalable physical system “Qubit: electronic states of a superconducting circuit
with well-characterized qubits

2. The ability to initialize the Cooling in a dilution refrigerator

state of the qubits to a simple

fiducial state

3. A universal set of quantum One-qubit gates: resonant microwaves dri.ve Rabi rotations
. Two-qubit gate: a combination of fast tuning pulses and
microwave drives, or only microwaves

gates

4. A qubit-specific measurement Dispersive readout through a coupled resonator
capability
5. Long relevant decoherence Decoherence time: ~1 ms

times, much longer than the One-qubit gate time: 10-30 ns
gate operation time Two-qubit gate time: 10-100 ns

computing. We couple the transmon to a microwave wavegu?de ?esonator Whtlvln clo‘:ltrolgr(;g1
and measuring it. The study of this interaction is known a§ circuit QED, and the 1n1ef[ac o
is given by the Jaynes—Cummings Hamiltonian. To initialize the tr.ansm(?n, we coo 11 usS ti
a dilution refrigerator. Single-qubit control is achieve(.l by applying mlcrow?.ve 1pu sei o
the qubit. There exist numerous proposals for two-qubit gates. Gates can be implem

for example, by adjusting the frequency of tunable qubits or. by driYing the qublic]sn with
microwaves. Finally, sources of decoherence for superconducting nglts ?nclude Jo son’—
Nyquist noise, charge noise, flux noise, quasiparticles, and fluctuations in the resonator’s

residual photon number. ' o
An overview of the contents of this chapter is provided in Table 6.1.

6.9.2 Relative Strengths and Weaknesses

There are certain key advantages to using superconducting qu?)%ts. A notable.: one is tt}ilzst,
because the qubits are fabricated, we achieve a degrc?e of tunability to the their pro(;i)ertin B
such as their energy levels and coupling strength. Thls.ffeatl?re also makes superconduc = fgt
qubits more apt for quantum simulations. This tunability is not present wh.en webaf[e .
to choose from the qubits nature gives us. On a related note, superconducting qubits 1
be made to have much larger dipole moments than natural atoms and thus morelsuzztgezi’
couple to one another and to external controls. This h?s allowed for gates. to be 1mp‘ eriles -
faster than with trapped ions, while maintaining similar degrees of fidelity. These ga e
also controlled with microwave technologies, which are well developed and commerc

6.10 Exercises

available. High fidelity has also been achieved when performing qubit measurements. A
final major appeal of superconducting qubits is that they are fabricated using techniques
already used for silicon-based computer chips. The hope then is that the structure is already
present to scale these quantum computers like we have classical computers.

Superconducting qubits also have disadvantages. First, they require being cooled to near
absolute zero temperatures. The dilution refrigerators necessary to do this are costly and use
an exotic gas, *He, which doesn’t occur in large quantities in nature and has to be produced
through an expensive process. The second challenge of superconducting qubits is that they
generally have shorter coherence times than trapped ions. However, this drawback can be
compensated for by their much faster gate times. In the early days of superconducting qubits,
the decoherence times were very short (~ns); they’re now on the order of milliseconds and
still improving. The qubits’ added tunability also brings its own challenge. Since the qubits
are manufactured, there are variations in their properties and questions about reproducibility.
This is unlike trapped ions, in which al] the ions used are inherently identical. An issue
with the popular transmon qubit is its limited anharmonicity, which requires care when
performing qubit control and gates to avoid leakage.

6.10 Exercises

6.1 Energy Scales: Here we will consider some typical experimental energy scales of
superconducting qubits.

(a) A typical tunnel junction has a capacitance per unit area of 50 fF/ um?. Give the
dimensions of a square tunnel Junction with a Cooper-pair charging energy of
Ec/kg =30K.

(b) A typical current density for an aluminum Josephson junction is J, = 100 A/cm?.
Give the dimensions of a Josephson junction with a Josephson energy of £, /h =
5 GHz.

(¢) Consider a CPB with £, /h = 5 GHz biased at its degeneracy point g = 1/2.1f
the CPB is at 7' = 250 mK, what is the population of the first excited state when
the system is in equilibrium? What temperature is needed for the population of
the ground state to be greater than 99%2

The Josephson inductance: The constitutive relations of a Josephson junction are

the Josephson relations

I = [.sin(8), (6.125)

s 2e

&t A

By comparing these to the constitutive relation for an inductor, show that the J. osephson

Junction acts like an inductor for small oscillations. What is the expression for the

inductance, the so-called Josephson inductance? With Je = 100 A/em?, what is the

Josephson inductance of a Josephson junction that is 200 nm by 200 nm? Is this a big
or small inductance?

(6.126)




