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5.9 Photon-coupled traps: In the text we mention the possibility of coupling different
traps with the use of photons. We explore this idea further in this exercise. Consider

two traps, each with an ion labelled the communication ion. These two ions are

irradiated, emitting a photon whose frequency depends on the ion's state. If the ion
is in the ground state l0), the photon is blue (âlh" l0h, :: luru")). If the ion is in the

ground state l1) the photon is red (âl"o l0)r :: lu..a)). The photons arrive at a 50/50

beam splitter. We then measure one photon at each detector. The measurements are

done in the Bell basis. What Bell state needs to be measured for the two ions to be

entangled? What is the final state of the communication ions?

5.10 Ramsey interferometry with ions: An early application of trapped-ion quantum

computers was metrology, the science of more precise measurements. One notable

example of this is Ramsey interferometry. Say you begin with a single ion in the

ground state, l0) . If left to evolve for some time t, the ion's excited state will accumu-

late a phase Q rclative to the ground state. With only the use of single-qubit rotations

and projective measurements, create a protocol to determine @.

rl

In the previous chapters we selected our qubits from naturar systems: nuclear spins, photons,and ions. By doing so, we worked with qubits that have fixed properties. However, whatcould we do if we could tune the parameters of these qubits to ,no* 
"onu.nient 

values? wewill take this idea further by building qubits using a similar approach to classical computing.As a first guess' we cantry to build a qubit from an eleciricat circuit - for instance, anLC oscillator. By doing so, we could tune the energy levels of our qubit by modif,iingthe capacitance or the inductance. However, this ffiach *""ta *r"rt two challenges.The first is that conventional LC circuits have an internal resistance that would inducedecoherence in the quantum setting. The second is that an LC circuit is a harmonic oscillator,which means that the energy difference between energy levels is constant, so it,s challengingto isolate two energy levels to use as our qubit. Fortunately, we can solve these challengesby using superconducting materials and making tunable qubits, known as superconductingqubits.
This chapter introduces how we can use superconducting qubits for quantum computing.we begin with a brief introduction to superconductivity lslciion o. r) ano superconducting

circuits (section 6'2). This section introduces a critical circuit element called the Josephsonjunction' In section 6.3 we see how we can use it to build an electrical circuit with an energyspectrum suitable to construct a qubit. There are many types ofsuperconducting qubits.This chapter focuses on the transmon and briefly mentioÀ othe. superconducting qubitarchitectures' we will initialize the transmon using brute-forc" 
"ooling 

machines calleddilution refrigerators (Section 6.5). In Section 6.4 weintroduce the field of circuit quantumelectrodynamics (eED). with this, we can then explain how the qubits are controlled(section 6'6) and'measured (Section 6.7). Next, we discuss the noise ,à*.", in section 6.g.Like in chapter 3, we use concrete examples to discuss noise in superconducting qubits,but the methods outlined here are general and can be applied to other types of qubits. weconclude in Section 6'9 with a sunrmary of the chapter and an overvi.. orth. strengths andweaknesses of superconducting qubit quantum computing.

6.1 Superconductivity

superconductors have enabled many technorogies. we,ve seen examples of this in earlierchapters' In NMR we found they can be useà to produce powerful magnetic fields. Inoptics we found they can operate as sensitive detectors. To study superconducting qubits,
16'l

%-=-*:*

Supercon du cti,ng Circuits6



7
\,

't62 6 Superconducting Circuits

ffi

we'|l need a more detailed introduction to the properties of superconductors and a theory

that explains how these properties emerge. We introduce two characteristic macroscopic

properties of superconductivity in Section 6.1.1. In Section 6.l.2we outline the Bardeen-

Cooper-schrieffer (BCS) theory ofsuperconductivity that describes how superconductivity

emerges from microscopic effects. We conclude this section by demonstrating an important

property of superconducting systems: Magnetic flux can be quantized under the right

conditions (Section 6. 1.3).

6.1.1 Properties of Superconductors

Quantum mechanics is usually thought of as the physics of very small things; super-

conductivity challenges this notion. Superconductivity is characlerized by two distinct

macroscopic properties: perfect conductivity and perfect diamagnetism. (A diamagnetic

material partially expels external magnetic fields.)

Most metals are superconductors at sufficiently low temperatures. There are different

types of superconductors. Here, we will consider conventional low-temperature supercon-

ductors described by BCS theory. Metallic elements, such as aluminum or niobium, or

alloys of these, such as niobium-litanium, are the typical low-temperature superconductors.

The more exotic high-temperature superconductors are made from ceramic materials

doped into a conducting state.

The perfect conductivity of superconductors was discovered by Heike Kamerlingh Onnes

in 1911, earning him the Nobel Prize in 1913 for his discovery. This discovery was enabled

by Onnes' earlier discovery of a process to liquefy helium and achieve the record low

temperatures necessary for discovering superconductors. It had previously been observed

that the resistivity of metals decreased smoothly as they were cooled but what Onnes was

surprised to find was that, as the temperature dropped below 4.2K,Ihe resistance of mercury

suddenly dropped to zero (Fig. 6.1). The temperature where this sudden drop occurs is

(a) Superconductivity (b) Meisner effect

:>

'6
(u

6u
ûg
U

5*psr{:rn{jil{lcr

WUsual metal

0 Tc

Temperature Above?a Below?a

rcI Superconductivity and the Meissner effect. (a) Sketch 0f the electrical resistivity of typical metals plotted against

temperature. Superconducting systems are distinguished bytheir resistivity suddenly dropping to zero at a critical

temperature, I,. (b) Diagram ofthe Meissner effect. 0nce a system becomes superconducting, it expels all external

magnetic field lines.
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known as the critical temperature , T".Itwas later understood that this change represented
a phase transitionl of the conduction electrons in the metal.

The perfect diamagnetism of superconductors was later discovered by Walther Meissner
and Robert Ochsenfeld, in 1933. Meissner and Ochsenfeld found that superconductors
expel externally applied magnetic fields when cooled through their critical temperature.
This expulsion of magnetic fields is known as the Meissner effect. It is what enables the
popular science demonstration of superconductors levitating magnets. It,s important to
emphasize that perfect diamagnetism is distinct from perfect conductiviry although the
difference can be subtle. Classical electromagnetism allows a magnetic field to become
trapped in a perfect conductor. That is, according to Lenz's law (which says that a changing
magnetic field induces a voltage which will drive a current in a conductor that opposes the
change in the magnetic field), if a cooled metal became a perfect conductor, it would trap an
externally applied magnetic field inside of it. However, Meissner and Ochsenfeld found this
was not true in superconductors. The magnetic field is expelled from them. This implies
that the Meissner effect is not a consequence of perfect conductivity but is a distinct effect.
The microscopic mechanism of the Meissner effect is that the superconductor generates a
screening current on its surface that shields the body ofthe superconductor from the existing
external field.

Superconductors are characterizedby three critical parameters that describe the external
conditions necessary for the metal to be superconducting. The most recognized of these
conditions is that the material must be cooled below a particular temperature; this is
the critical temperature, which is mostly in the range of 0-20 K for low_temperature
superconductors. The second parameter is that the strength of the magnetic field surrounding
the superconductor must be below a certain point, known as the critical field, n".2 lt i
typically in the range 10-l-101 T. The final parameter is that the electrical current passing
through the metal must be below a critical current, 1". Since 1" depends on the cross-
sectional area of the metal, A, we often talk about the critical current density J" : I"/A,
which is an intrinsic property. The critical current density of typical low-temperature
superconductors is in the range of 102-104 Nmt#. While the values of these three critical
parameters depend on the microscopic details of the superconductor, they are all a proxy
for the superconductivity's "strength" in the metal. Therefore, these parameters are highly
correlated and depend on each other. We define these critical puru-rt"r. as the maximum
value when only one external condition is applied. These values won't be observed if more
than' one external condition is applied. For example, the maximum observed supercurrent
depends on the magnetic field and temperature. This dependence is important in applications
such as the high-field magnets used in NMR. A current produces a magnetic field in this
application, but the resulting magnetic field will reduce the critical current.

-

1 A phase transition is an abrupt change in a system's properties in response to a change in one or more of the

^ system's macroscopic variables, e.g. a solid melting into a liquid due to a temperatwe-change.2 Here, 11 is used instead of -B because it relates to the magnetic field in materials.
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6.1.2 BCS Theory of 5upercondudvity

The Bardeen-Cooper-schrieffer (BCS) theory of superconductivity describes how super-

conductivity emerges in conventional metals from microscopic effects. This theory was

proposed in 1957 by John Bardeen, Leon Cooper, and John Robert Schrieffer, 46 yearc aftet

the discovery of superconductivity. They were awarded the Nobel Prize for this work in

l972.Whlle we won't explore the details of BCS theory, we will use its main result, that

superconductivity emerges due to the formation of pairs of eleckons'

(ooper Pairs

Cooper pairs are pairs of electrons that, at low temperatures, experience a weak attractive

coupling to one another. In!956, Leon Cooperproved that the electrons could lower

their energy compared to the normal-metal ground state by forming bound pairs, even

if the attractive potential is weak. The exact form of the interaction is quite complex

mathematically. However, it was understood early on that it was likely that the crystal

lattice's phonons were mediating the attractive interaction between electrons. The role of
the crystal lattice in supercondqctivity was confirmed by the discovery of the isotope effect,

which showed that bulk superconducting properties, such as T" and H", change with the

isotopic mass of the ions in the lattice.

Despite the complexity of a rigorous mathematical description, there is an intuitive picture

of the microscopic origin of the attractive electron potential that produces Cooper pairs.

Inside a metal, the negative charge of the conduction electrons is balanced by the positive

charge of the ions that make up the crystal lattice. This balance makes the total system

charge neutral on average. However, on short timescales, an electron passing through the

lattice of positive ions will pull the ions toward it (Fig. 6.2). This will result in the electron

leaving a slightly positive charge density hail behind it. This region of positive charge can

atiu:aclasecond electron, thus giving rise to an attractive electron-electron interaction. The

two electrons correlated by the lattice deformation can have a separation of 100 nm or

more, much larger than the distance between the ions in the lattice, which is -0.1 nm' In

fully quantum language, we would describe the interaction as arising from the exchange

0e oOOgogo
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ffiDepictionoftheattraCtiveinte]actionthatfomsCooperpairc.Amovingelectronattractsthep0sitiVely

charged ions in the lattice. The lattice is slightly distorted, creating a positively charged region in the wake ofthe

moving electron. Another electron is attracted t0 that region, creating an effective coupling between the two electrons'
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ofphonons between the two electrons, in analogy to how electrons interact by exchanging
photons in quantum electrodlmamics.

BCS Ground State and Condensate Wavefunction

More than 45 years elapsed between the experimental discovery of superconductivity
and its explanation by the BCS theory. part of the difficulty *u, th. complexity of the
phonon-mediated interaction between the electrons. BCS cleverly avoided these details.
They "guessed" the form of the ground-state wavefunction of the suierconducting state with
unknown coefficients characteizing the probability amplitudes of particular momentum
states being occupied or unoccupied by Cooper pairs. They then used variational techniques
to minimize the energy of this ansatz wavefunction in terms of the probability amplitudes.
with an explicit form for the probability amplitudes, they now haâ the complete form of
the BCS ground-state wavefunction. The variational technique used by BCS has become an
important tool in theoretical physics. For instance, it was used by Robert Laughlin to derive
the ground-state wavefunction of the fractional quantum Hall effect, earning him the Nobel
Prize in 1998.

The BCS ground-state wavefunction describes a collection of globally phase-coherent
electrons' That is, the quantum phase ofeach Cooper pair has a well-defined relation to
every other' In this way, the Cooper pairs form a macroscopic quantum state often referred
to as the BCS condensate. This is very different from the noimal (not superconducting)
state of electrons in a metal, where the constant scattering of electrons by the crystal lattice
and other electrons scrambles the electrons'phases, leaving them largely incoherent. The
emergence ofphase coherence in the BCS condensate, therefore, hints at the suppression of
electron scattering. This is formalized in the BCS theory by the emergence of an energy
gaP, Ascs, between the BCS ground state and the first excited state of the electronic system.
This energy gap, related to the binding energy of the cooper pairs, means that cooper pairs
are immune to low-energy scattering events that scramble the phases of the normal-state
electrons and cause electrical resistance in normal metals. This suppression of scattering
gives rise to the perfect conductivity of the superconducting state. Furthermore, the global
coherence of the phases of the Cooper pairs in the condensate, along with the fundamental
coupling of the electron's phase to the magnetic vector potential, gives rise to the unusual
magnetic properties of superconductors.

It's possible to understand many of the macroscopic properties of superconductors by
postulating that a single wavefirnction describes the condensate of Cooper pairs. We will
follow this phenomenological approach here, inspired by the Feynman Lectures on physics.
Still, we note that the concept of the macroscopic condensate wavefunction can be made
rigorous by a theory invented by two Russian physicists, Vitaly Ginzburg and Lev Landau.
The Ginzburg-Landau theory derived the properties ofthe superconducting condensate by
treating the onset of superconductivity as a phase transition of the electrons, using the more
general Landau theory ofphase transitions. The Ginzburg-Landau theory was published in
the former Soviet Union in 1950 but didn't receive much attention in the West until a few
decades later.
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In this treatment, we start by writing the macroscopic wavefunction for the supercon-

ducting condensate, ry'@), where I is the position within the superconductor' We define

po) : ,ha)*rh@),which is the modulus squafe of the wavefunction, as the density of

Cooper pairs. Finally, we can write the fuIl wavefunction as

,lr/) : 
^f 
Pçlrie7), (6'1)

including 0@) as its phase. For microscoplc wavefunctions, we would interpfet p as a

probability density. However, here we can interpret p as aparticle density because it's the

wavefunction of a large collection of Cooper pairs'

we postulate that the srale $@) obeys the Schrôdinger equation for a particle of charge

4 coupled to an electromagnetic field. The Hamiltonian for such a particle (written in the

position representation) is well known to be

qÀô)(iu -
2

H
1

2*
+ sôG), (6.2)

wtrere ,i@; is the vector potential of the magnetic field aû Ô0) the scalar potential of the

electric field. From this point forward, we'll drop the explicit I dependence' In the full

Ginzburg-Landau theory, there arc nonlinear corrections to this basic Hamiltonian' which

we ignoÀ here' For a Coop"t pair' we have that Q :2e'where e is the charge of the electron'

We leave this constant g"n"tàt for now since the experimental determination of its value

provided important evidence that the superconducting state involved pairs of electrons'

using the schrôdinger equation, we can then derive a conservation law for cooper pairs

(charge),

fiorcr,tol) 
: -i 'i = 0, (6'3)

where i is the current describing the collective motion of the Cooper pairs'

i : *[*. (?u - ,Â),h +,b (-iu - ,4 r.f 6 4)

These last two equations would each have the same form for a microscopic wavefunction

but would be interpreted as a conservation law for probability' Using the ansalz' Eq' (6'1)'

we get the exPlicit form

i : L[n, - ftflo:ûu, (6.s)

where in the last step we have defined A :: ftlie - AÀl With the general observation

that a particle current can be defined as the density of particles times their velocity' we

can identiff d as the velocity of the fluid of Cooper pairs, also known as the condensate

velocity.

6.1.3 Magnetic Flux Quantization

An interesting and unique property of superconducting systems is that magnetic flux within

a superconducting loop becomes quantized. This is a consequence ofthe superconducting
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@Magneticfluxquantumtrappedinasuperconductingring.(a)Asuperconductingringinuniformlyapplied
external field, B, perpendicular to the plane ofthe ring. (b) The field will induce a current that travels along the surface

ofthe ring. This current maintains the flux quantization by generating its own field that adds to or subtracts from the

applied field. (c) For an arbitrary flux through the ring, the wavefunction would be multivalued, which is unphysical.

(d) With an integer number offlux quanta in the ring, the wavefunction is single-valued.

condensate having a coherent global phase. We'll examine flux quantization here because

it's a building block of many superconducting qubits.

We'Il start by considering a superconducting ring that's threaded by a uniformly applied
magnetic field, É, oriented perpendicular to the plane of the ring (Fig. 6.3a). The Meissner
effect implies a screening current develops on the surface ofthe superconductor that cancels

the magnetic field in the bulk. (Experiments and detailed theory show this is the case.) Since

the current density is zero deep inside our superconducting ring, i.e. i :O,it follows that

i : L 
ln, - lÂ]o 

:o =+ ve : f,À. rc.6)

We now take the line integral of both sides of this equation around a closed contour, f , that
passes deep inside the superconducting ring, yielding

6 çt dt: ! $ ; at. rc.l)Jr ft' Jr

We can simpliff the right-hand side of this equation by applying Stokes' theorem çf À.dt :
Âfi " il_. OS), where S is the surface enclosed by f , a1d the definitions of the vector
pàtential 1i x Â: É; and the magnetic flux (o : ïrÈ. d31, fitrditrg

i6o.dt:?/rn"/).d3:1[Ê d3:+ (6.8)fLI hls' h,Js h

For the left-hand side, we can start again with a result from vector calculus:

p2_
I ve .dl : oz - ù, (6.9)

Jt

(d)(c)
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which would be zero for a closed contour if the field (phase) were simply connected. In a

multiply connected field, like the superconducting phase of our ring, it doesn't need to be'

To go further, we must add a physical requirement, which is that the wavefunction of the

superconductor is single-valued at any point in space and time. That is, if the phase starts

with a value 96, onc€ you return to the initial point, the phase can only take on values of
0o : 0o * 2ntt . Otherwise, the wavefunction would have a different value, as depicted in

Fig. 6.3c. This then implies

6 çt dt:2nn, (6.10)
JI

where z e %.Thus we find that the flux through the ring is equal to

e:2ohn:eor7, (6.11)
q

where q :2e andwe defined Qo :: [k : ft where ft is Planck's constant. That is, the flux

through the ring is quantized, taking on values that are integer multiples of Ôs. O6 is known

as the superconducting flux quantum. Physically, this flux quantization is enforced by the

screening current that flows in the superconducting ring, either adding or subtracting the

appropriate amount of flux.

6.2 Supetconducting Circuits

Equipped with this brief introduction to superconductiviry we can now consider supercon-

ducting circuits. We'll first describe some of the desired properties of an artificial atom

needed to build a qubit (Section 6.2.1). We'Il then try to build the qubit with a superconduct-

ing LC circuit. To do so, we'll first present the classical LC circuit in Section 6.2.2.Using

the canonical quantization procedure, we'll then find the Hamiltonian for the quanlized

LC circuit in Section 6.2.3. However, we'Il find that to build an artificial atom we will
require a nonlinear circuit element. The nonlinear element of,choice in superconducting

quantum computing is the Josephson junction, which we introduce in Section 6.2.4.Finally,

in Section 6.2.5 we introduce a type of tunable Josephson junction known as a DC-SQUID.

6.2.1 ArtificialAtom

First, let's outline our criteria for building an o'artificial atom" for quantum computing. This

is a system with an energy spectrum that is discrete, well-separated" and anharmonic. For

our first criterion, we need a Hamiltonian with a discrete spectrum, like a natural atom. For

our second criterion, we need the separation between adjacent energy levels to be much

larger than both the thermal fluctuations of the environment and any broadening of the

levels induced by coupling to the environment. (Small broadening implies weak coupling to

the environment.) Our third criterion, an anharmonic spectrum, is helpful for conholling the

qubit using Rabi oscillations or similar techniques. Consider a system that has a harmonic

(i.e. equidistant) spectrum,thatis, A,E: Et-Es - Ez-h: " ', wheteEnistheenergy

6.2 Superconducting ûrcuits

of the zth energy level. Now, assume that we'd like to excite the system from its ground
state to its first excited state. As we've seen many times in this text, we can do so by driving
the system resonantly ar a6 - (ù - Eù/rL. However, this is also the transition frequency
to the next level, and so forth. Thus, we would end up exciting the system to a superposition
of many energy levels. We avoid this outcome by making the levels anharmonic. These
three properties are characteristic of the spectrum of natural atoms, which is why we call
superconducting qubits "artifrcial atoms." Once built, our artificial atom will be a multilevel
system, but we will encode our qubit in two of its energy levels, typically the two lowest.

Given that classical computers are built with elechonic circuits, it's reasonable to contem-
plate quantum electronic circuits to build quantum computers. In the next section we'll first
consider one of the simplest circuits, an LC oscillator. We'll find that a superconducting
LC oscillator can satisfy our first two criteria for an artificial alom,but fails to satis$r the
requirement of anharmonicity. To achieve anharmonicity, we'll need to introduce a nonlinear
circuit element the Josephson junction.

6.2.2 Classical L( Oscillator

The two components of an LC oscillator are an inductor and a capacitor, which are
characterized by their inductance, L, and, capacitance, C. Atypical inductor consists of
a current-carrying wire that's been shaped into a coil. When a current moves through the
inductor, it induces a magnetic field in the inductor. Importantly, this magnetic field stores
energy, often referred to as inductive energy. The inductance, Z, is defined by the relation
between the current in the inductor, I, andthe magnetic flux through the inductor, <D. The
flux is given by the integral of the magnetic field over the cross-section.g of the inductor's
coil, i.e. a : ïsÈ. a3. tn detail, we have that

o
f_

I (6.12)

Combining this definition with Faraday's law of induction, we arrive at the so-called consti-
tutive relation for the inductor, which relates 1 to the voltage Z across the coil: f : LH.
In the context of superconducting quantum circuits, we will often find it convenient to use
the less-conventional integral form ofthis relation,

o(r): L v(/)d/, (6. l3)

where it's assumed that at time t : -6 the circuit is at rest with no stored energy.
A typical capacitor consists oftwo conducting plates separated by an insulating region,

which can be a vacuum or dielectric material. A voltage applied to acapacitor will cause
opposite charges to build up on the plates ofthe capacitor, producing an electric field in
the insulating region. Complementary to the inductive energy above, this electric field
also stores energy, commonly referred to as the charging energy. In fact, a capacitor can
be seen as an electromagnetic dual of an inductor in many ways. Gauss' law generally
relates the charge on the capacitor to the electric field through Q : eof, Ë . d where, in
this case, S is a closed surface containing one of the capacitor plates. For the simplified
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geometry of a parallel plate capacitor, lEl is approximately,rtrp t between the plates and

negligible outside of them, and Gauss' law reduces to Q: eslEla, where a is the area of the

capacitor plates. Further, from the definition ofelectrical potential, we have that the voltage

(potential difference) between the plates is the line integral of ,8, which for parallel plates

gives V : E I d, where d is the separation of the plates. Putting this together, we get

c:2 (6.14)vv'

where the capacitance, C, is the constant relating Q and V. For a parallel-plate capacitor

this reduces to C : esa/d. Due to the linearity of Maxwell's equations, this linear relation

between Q and V holds for a general geometry, even if the exact expression for C will depend

on the specific geometry. The charge QQ) on the conductor is given by the conservation of
charge,

Q(t): (6.15)

where 1(l) is the current flowing to the capacitor. Combining the differential of this relation

with Eq. (6.14) yields the constitutive relation for the capacitor: I : C#.
As we mentioned, inductors and capacitors store energy. This energy can be found by

taking the integral of the power

-

l'-*'r'ru'',

l:- v(t)I(t)dt,P(t)dtE L (6.16)

where we used Watt's law, P(r) : I/(t)I(t).Importantly, ideal capacitors and inductors are

considered to be lossless elements, meaning that all energy put into them can be extracted.

This is in contrast to a dissipative element like a resistor. We can write the energy of the

capacitor and inductor in terms of the flux and charge. For the inductor, we find

Ey(t): 
f'*r<r>rrr)o/ -- [*Q#)r()dt :+:#,, 6.17)

and for the capacitor, we find

Ecupo) : 
I'_*v()r()d/ 

: 
I:*rr,'t (c#) o, : + : # (6.18)

We will now find the classical Hamiltonian of this circuit by following the standard

prescription of classical mechanics. That is, we will start by writing down the Lagrangiarf
of the circuit and then derive the Hamiltonian using the Legendre transformation after
deriving the canonical variables ofthe circuit. In standard (classical) circuit analysis, we

typically work with the dynamical variables I and, V . In the context of the Lagrangian and

Hamiltonian formalisms, we will find it instead better to work with Q and Q, as explained

3 As a brief note on interpretation for those who are unfamiliar with Lagrangian and Hamiltonian formalisms,
in classical mechanics they are advanced methods for solving the dynamics of complex coupled systems. We

start by writing the Lagrangian in terms ofthe uncoupled circuit variables ofthe individual components. We

then derive the canonical variables, which can be seen as the "true" degrees offreedom ofthe coupled circuit,
including constraints imposed by the circuit topology, i.e. Kirchoff's laws. Finally, we write the Hamiltonian,
which essentially expresses the system's energy, in terms of these true degrees of freedom.
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below' In this context' Eq. (6.13) can be taken to define the flux, ô, across any circuit element
or ar any circuit node as the time integral ofthe voltage across it. In this general context, the
circuit variable <D no longer has the literal meaning of magnetic flux, but it is, nonetheless,
perfectly well defined. Finally, we remark that the Lagrangianand Hamiltonian formalisms
are a somewhat heavy-handed approach for a circuit as simple as the LC oscillator, but
the following derivation illustrates the formalism, which will be useful for more complex
circuits.

In classical mechanics, theLagrangian is taken to be a functional of the kinetic energy,f ,
and potential energy, V, of the system. We must then choose which roles our capacitive and
inductive energies will play in our electrical analogue. The choice is arbitrary in general, but
we will find it convenient in superconducting circuits to assign the energy of the capacitor
to T and the energy of the inductor to /. This is equivalent to choosing the flux to play the
role of position and the charge the role of momentum. The Lagrangian is thus,

L:T-V-lgoz- I 
5z2L* . (6.19)

(The over-dot is a commonly used notation for the time derivative.) Next, we find the
so-called canonically conjugate momentum, p, to the coordinate O:

, t: # : ce: e. (6.20)

In the case of this simple circuit, the canonical momentum is the charge on the capacitor.
In general, it will be a more complicated function of multiple circuit variables, although
maintaining units of charge. we can now obtain the Hamiltonian using the Legendre
transformation

Hyç::PA-L:4n!.= ,C + i, (6.21)

which is the expected form of the energy of an LC circuit. Note that we expressed the
Hamiltonian only in terms of the canonical variables, e and e; other variables, such as ô,
must be eliminated in the final expression;

We can recognize Eq. (6.21) as the Hamiltonian for the harmonic oscillator. When an
inductor is connected to a charged capacitor, the circuitb energy will oscillate between the
two components via simple harmonic oscillations. The voltage across the capacitor will
drop to zero as it drives a current through the inductor, causing the inductor to build up
a magnetic field (Fig. 6.4). As per Faraday-L enz's 7aw, this magnetic field will induce a
voltage in the inductor's coil that opposes the current flow, eventually reversing the current.
The energy stored in the inductor will thus fallto zero as it recharges the capacitor with the
opposite polarity. This cycle repeats, with the energy in the LC circuit oscillating between
the two components with a frequency

1,,: ft. (6.22)

6.2 SuperconductingCircuits
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@Energyoscil|atinginanLCcircuit.Thevoltageacrossthechargedcapacitordrivesacunentthroughtheinductor,
causing the inductor to build up a magneti( field. The current continues to flow in the same direction until the charge on

the capacitor has flipped and the current then stops. The process then begins again with the current flowing in the

opposite direction.

6.2.3 Quantized [C Oscillator

We will quantize our LC oscillator in the same way we did for the harmonic oscillator in
Section 2.6,that is, by following the procedure of canonical quanlizalion. Since O and Q are

canonically conjugate variables, we quantize our Hamiltonian by promoting these variables
to operators,

QtQ, <D-+ô,

and imposing the commutation relation

F^ ^"1

la'Ql: ih'

(6.23)

(6.24)

Here we see an intuitive motivation for using Q and Q as our canonical circuit variables,
instead of 1 and V: They have the correct units such that their commutator has the same

units as fi,.

We can now express our Hamiltonian operator as

^ I ^" Co]^"
HLC: zcq + ;r". (6.25)

We used the definition of a, ro write the Hamiltonian in terms of C to highlight how, in our
circuit analogy, C plays the role of mass. This is consistent with our choice to associate the
capacitive energy with the kinetic energy.

Now that we have expressed the circuit Hamiltonian in the form of a quantum harmonic
oscillator, we can solve the system as we have done previously. We start by defining the
ladder operators,

6 : a,pdàÏ + â) and Q: ig"o11àT - a1, 6.26)

where Ornl :: JFZJ2 and Q*ç :: Jîpf. are the zero-point fluctuations of the flux
and charge, respectively, and Z, : JLT1 is the characteristic impedance of the oscillator.

;

à

l +
I

3
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6.2.4 Josephson Jundion

The creation operaror àl : JUzW(a - izrQlthus creates an excitation of the oscillatorof frequency a4. The Hamiltonian of the LC oscilrator thus takes the usual form

È,, = ^, Q, 
u. j) 6 27)

usually, we think of quantum systems as being very small, of atomic scale, but theHamiltonian âI-6 can describe any scale. The validity of the quantization procedure for amesoscopic or even macroscopic system can be viewed u, u t yport 
"ris, 

but one that hasbeen extensivery tested and verified with a high degree orp..iirioo. At the same time, atheoretical motivation for this procedure is that the constitutive relations governing theinductor and capacitor have been derived directly from Maxwell,s equations, and theserelations serve as a convenient tool for calculating the behaviour ofthe electromagnetic fieldin the presence ofconductors and dielectrics. In that sense, what is really being quantized inEq. (6.25) is the electromagnetic field itself.
one way ofchoosing the scale ofour superconducting quantum devices is by choosing thefrequency a.r'BY choosing the right frequency for our circuit, we can ensure the separation

between energy levels is much greater than the thermal energy, i.e. ha, )) kaT.Thus, thetemperature that canpractically be achieved sets a lower bo*à oo ror.Forscale, a frequency
of 10 GHz corresponds to a temperature of about 480 mK. In practice, we want the thermal
energy to be several times smaller than the energy spacing so that the thermal excitationprobability is negligible. In a modern dilution refrigerator with state-of-the-art filtering,
it's possible to coor the circuit below z - 20 mK. All this together implies a minimum
operating frequency of a few gigahertz.

There exist some upper bounds on a4 too. First, if the frequency is too high, the excitationof the resonator will have sufficient energy to break cooper pairs, and the system willnot function ps a superconductor. This implies that we want a.r,^( Lscs/h.In aluminum,
for example, Lscs/h - 50 GHz. (In faci, the energy to break a cooper pair is 2ascs,
sometimes called the spectroscopic gap.) other.o-n,oo superconductors, such as niobium,
have much higher gaps. However, there is a technological cÀallenge in pushing operation to
rhe terahertz range, ruQ.l- r0 THz,between optical and microwaver, us the technologies forgenerating and detecting radiation are inefficient and impractical. Thus we,re bounded from
above by co - 100 GHz.

-In 
practice, most superconducting qubit systems operate approximately in the rangeof 5-10 GHz, which ûts nicely in the bounds above. This range also overraps with the

frequency bands of many important communication protocols, such as LTE for cellphones
and wi-Fi for computing, allowing superconducting quantum devices to exploit a rarge
amount of already existing technology.

our method to build a qubit is finding a quantum system with good control of two of its
states. In superconducting systems, the control is through coherent fields similar to NMR.
Unfortunately, a superconducting LC circuit behaves as a harmonic oscillator, and ourcontrol cannot isorate onry two levels as they all have the same spacing. we need to add
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lnsulator Superconductor

ffiJosephsonjunction.AJosephsonjunctionconsistsoftwosuperconductorsseparatedbyathininsulator.Cooperpairs
will cross the insulator via the effect 0f quantum tunnelling. This tunnelling causes the junction to have an inductive

energy; thus, it operationally behaves like a nonlinear inductor.

some anharmonicity from a nonlinear circuit element with very low dissipation to our

quantum system.

While there are many types of superconducting qubits, the Josephson junction (Fig 6.5)

is the nonlinear element of choice in qubit design. The Josephson junction is named after

Brian Josephson, who first predicted the existence ofa supercurrent for these devices while

still a Ph.D. candidate. He recgived the Nobel Prize for his work in 1973. The most common

form ofa Josephsonjunction is a tunnel junction with two superconducting electrodes. It is

a device built from two conductors separated by an insulating barrier. Classically, electrons

can't cross the insulating barrier. However, quantum mechanics allows electrons to tunnel

through the barrier. We can control the probability of tunnelling by adjusting, for example,

the insulator's thickness or the insulator's type, which determines the height of the energy

barrier. More generally, a Josephson junction can be formed by any "weak link" between

two superconductors. In a typical tunnel junction, the probability of an electron impinging

on the barrier tunnels is very small, in the range p - l0*s-10-6. Before Josephson, it
was assumed that the probability of a Cooper pair tunnelling would be -p2, implying

that any superconducting current through thejunction would be negligible. Contrary to

these expectations, Josephson predicted that, due to the phase coherence between electrons,

Cooper pairs tunnel with probability -p, just like single electrons in a normal-metal tunnel

junction.

Josephson further derived a pair of constitutive equations, now known as the Josephson

equations, that describe the dynamics of a Josephson junction in terms of the current and

voltage across it. These elements' nonlinearity is needed to build a superconducting qubit.

Josephson's derivations ofthe Josephson equations are beyond the scope ofthis textbook.

In that derivation, Josephson used microscopic tunnelling theory while accounting for the

superconducting electrodes' quantum coherence. Here, we will motivate the Josephson

equations using a phenomenological approach, due to Feynman, based on the macroscopic

wavefunction concept we introduced above.

To motivate the Josephson equations, we start by writing down a minimal model

(Schrôdinger equation) for coupled electrodes:

,r+:Ertbr*Krhz to+:Ezthz*Kût,and (6.28)

^rG@

175

-

6.2 Superconducting Circuits

where {ri is the superconducting wavefunction of elechode i, À; is the self-energy (chemical
potential) of electrode i, and, K is a coupling constant (tunnelling amplitude) that,s deter_
mined by the tunnel barrier. The second term ofeach equation is often called the tunnelling
term, as it represents the tunnelling of cooper pairs between the electrodes. If we now
imagine applying a voltage Z across the electrodes, then the energy difference between the
two superconductors is E1 - Ez :2eV, since each Cooperpair has charge Q : Ze.

By substituting the ansatz wavefunction, Eq. (6.1), into the schrôdinger equation for
the electrodes' Eq. (6.28), we find that the time evolution of the density and phase of the
wavefunction in each elechode is

)
O t : +--O,K J p1 p2sin(@),

.2P2: -iK\/p1p2sin(Q),

^ K[pz eVat:-il'-:cos(Q)- 
h,

e, : -{ 14 costa + uv 
.- rL\ Pz 

---''' h'
where / :: 02 - d1 is the superconducting phase difference. We see from the first pair of
equations that p1 : -i2, i.e. as we expect from charge conservation. Thus the current
across the junction is

2cKI : cpt : 
O Joroz sin(@) : I"sin(g), (6.33)

where c is a constant of proportionality and we defined 1" :: 2S 
1ot n This is known as

the first Josephson equation. It gives the current from the coôp"rpult, tunnelling across
the juaction as a function of the macroscopic phase difference between the electrodes. 1" is
the critical current, the maximum current that canflow before the Cooper pairs break and
superconductivity is lost. We also frequently encounter the related criticalcurrent density,
J" : I"/A,wherel is the area of the tunnel junction. The magnitude of the critical current is
determined by the tunnel barrier and the material properties of the electrodes. Microscopic
calculations, due to Vinay Ambegaokar and. Alexis Baratofl show 1" : n A,sçsf2Rre,
where Asç5 is the superconducting energy gap of the electrodes and R, is the normal-state
resistance of the tunnel junction. That is,.R, is the ohmic resistance of the tunnel junction
when both electrodes are in the normal-metal state. It gives us a phenomenological measure
of the strength of the tunnelling.

We can now find a relationship between the rate of change of the phase difference across
the junction and the voltage across the junction by combining nqs. 1a.: ry and (6.32). rn
doing so, we find

ô : d, - d, :'j, :?r, \6.34)' h <Ds''

where we have assumedthat p1 and p2 are approximatery constant and equal. Assum-
ing they're constant is a good approximation so long as the effect of tunnelling is small.
Moreover, they are equal when we use the same metal on both sides of the junction.

(6.2e)

(6.30)

(6.31)

(6.32)
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This relationship is known as the second Josephson equation. By integrating over the

second Josephson equation, we also find that the superconducting phase difference, @, is

proportional to the flux across thejunction,

(6.3s)

where in the last step we used Eq. (6.13) to get the result that V : # and assume an initial

condition V(t : -æ) : Q.

Using the Josephson equations, we can demonstrate that the inductance of a Josephson

junction is nonlinear with respect to O. To do so, we first substitute the first Josephson

equation and the second Josephson equation into the definition for inductance,

L:v(y\-' :!(dsinrdr\-' : __, :,r,,*, - tro,, 
(6.36)

\dr/ /" \ dt / I,QcosQ 2nVl"cos$ cosf

where we define Z7e : Qsl(2nl.), which is known as the Josephson inductance. Then,

by substituting the definition of @ into the equation for the inductance, we find

IL1(ô): LLo *rprqlaù. 
(6.37)

Thus the Josephson junction has an inductance which is nonlinear with respect to the flux,

with a linearized value of Lrs.
We can also find the energy stored in a Josephson junction. We assume the junction starts

from rest with @ :0 at t: 0. We can then find the energy at alater time, t, by again using

Watt's law and integrating the power P : IV.By substituting the first and second Josephson

equations into this equation, we find

u: [' re')v(t'td/: t*o 
[Ô sin(6')dQ' - Er ( I - cos(d)), (6.38)

Jo 2n Jo

wherc E1 : Qol"l2n is known as the Josephson energy.

6.2.s DC-SQUTD

An interesting and useful feature of engineered qubits is that they can have a high degree of
in situ tvnabllity.4 We can take advantage of this tunability to implement gates more quickly

and with higher fidelity. For example, as we will see when we perform a two-qubit gate, we

will at times want to bring two qubits into resonance with one another for some period of
time and then take them out of resonance.

In superconducting qubits, this tunability is frequently enabled by replacing a simple

Josephson junction by a related device known as a DC-SQUID (superconducting quantum

interference device). The DC-SQUID effectively makes a Josephson junction with a value of
I" that canbe tuned with a magnetic field. The SQUID consists of two Josephson junctions

put in parallel to form a ring. Referring to Fig. 6.7, a Cooper pair entering on the left

a This is a tunability which is possible after the system has been fabricated.

ô: L odt :'âl:-
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rirt !t. f,,

irr' r;i-.+

The total current across the circuit is then

.--".--'. o . fout(j" 

-
^ --t

DC superconducting quantum interference device (DC-SQUID). A DC-SQUID consists oftwo Josephson junctions
connected in parallel to form a loop, A D(-SQUID operates like a Josephson junction whose Josephson energy can be
tuned after it's fabricated, by adjusting the flux through the SQUlD,s loop.

has two choices, going throughpath a or ô, leading to the potential interference of the
superconducting phases

Llo: u" *+ ["' n .ât : xe6: ôa * ] [o'*' À .0,. (6.3s)n Jp-q h Jp-q

whereiis the vectorpotential associated with the flux (D, and ôo (ô6) is the phase difference
across junction a (b). So that the Cooper pair wavefunction is single-valued, we physically
require these two phases to be the same, i.e. A,Oq : A06, which leads to

2eô
--O-2n'hôof,o ai

4otar : Ie[sin ôo * sin ô6] : 10 sin 
)tu" *ô6) cos 

]fu" - uul

: ro.o,(o9).r,

(6.40)

(6.41)

(6.42)

(6.43): 1c(<D) sin ô,

where we have defined ô : (ôo + 6t)12. We see that this indeed looks like a Josephson
junction that can be luned by the flux <D.

6.3 Qubit

With all the ingredients in hand, we can now introduce one of the first superconducting
qubits, the cooper-pair box (cpB) (Section 6.3.1). The derivation of its properties as
a qubit is relatively straightforward and serves as a pedagogical application of circuit
quantization. However' the CPB is generally no longer used as a q.rbii because it is highly
susceptible to environmental charge noise. We will then introduce an alternative qubit design
which is more resistant to charge noise: the transmon (Section 6.3.2).Ithas the same basic
Hamiltonian as the CPB, but is designed with very different parameters. We'll conclude this
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(a) (b)

: i:,' '.:..!,.::,i :: ;l Miaographs of superconducting quantum devices. (a) A micrograph of a small superconducting quantum

processor with four transmon qubits (see Section 6.3.2). The brighter areas are aluminum and the darker areas are the

silicon substrate below. The transm0ns are the structures with "teeth," that is, interdigitated capacitors that form the

shunt capacitors ofthe transmons. The solid aluminum lines and the surrounding ground planes, which are perforated

with square holes, form microwave waveguides (see Section 6.4.2). The pitch ofthe squares is about 20 pm. (b) An

electron micrograph ofa SQUID, Ihe center ofthe SQUID loop is the center ofthe micrograph. The Josephson junctions,

symmetrically placed in the vertical center of the image, are formed by the overlap of two aluminum layers. The height

ofthejunctions is about 300 nm.

section with a brief discussion of two other prominent types of superconducting qubits in
Section 6.3.4.

6.3.1 Cooper-Pair Box

The CPB is the canonical example of a charge qubit. We will first introduce the Hamiltonian
of the general charge qubit. We'll then consider different regimes of this Hamiltonian, one

of which describes the CPB.

Hamiltonian

So far, we have considered anidealized notion ofa Josephsonjunction in which they
are solely nonlinear inductors. However, as one might expect from their physical resem-

blance to capacitors, Josephsonjunctions based on tunneljunctions always have a parasitic

capacitance. Thus, we take the model of a physical Josephson junction to consist of an

"ideal Josephson element" that's connected in parallel to a capacitor, CJ, as shown in
Fig. 6.8. I

Charge qubits are a family of superconducting qubits which have a similar circuit design.

This circuit consists of a gate capacitor, Cg, connected in series with a Josephson junction,

as shown in Fig. 6.9a. We label a portion of this circuit as the island and another portion
as the reservoir. As seen from Fig. 6.9a,Ihe island is a piece of superconducting material
that is physically separated from the rest ofthe circuit by a spatial gap and by an insulator.

The conductor that is separated from the island by the insulator is known as the reservoir,
implying that it is physically much larger, and we assume that its state is not affected by the

tunnelling of Cooper pairs on to, or off of, the island.

178 179 6.3 Qubit€-ffiéffi@

PhysicatJJ ldeal JJ
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cj

- ffi* Physical and idealJosephson junction. A physical Josephson junction consists of an ideal Josephson junction with
a small parasitic capacitor c0nnected in parallel. The capacitor represents the geometric capacitance ofthe Josephson
junction's electrodes.

cs

\'.; {!}

Reservoir

(a) circuit with physicat J"I (b) The istand (c) circuit with idear JJ

{ll*ïl;$ll ftarge qubit. (a) A charge qubit consists of a volrage sOurce, a gate capacitor fn, and a Josephson junction. (b) The
island is a small piece 0f metal defined from the empty space in Ç to the insulatàr in the Josephsonlunction. The
reservoir is the other electrode ofthe Josephson junction that's not a part ofthe island, generally assumed to be a larger
piece of metal. (c) Ihis is the final circuit model ofthe cPB, including the ideal Josephson junction and its parasitic
capacitance, (r..

As with the LC circuit, we'lr find the charge qubit Hamirtonian by using basic circuit
analysis andLagratgian mechanics applied to Fig. 6.9c. Introductory tr"t, on circuit analysis
will often introduce two equivalent methods to solve circuits: the node-voltage method
and the loop-current method. In the quantum context, if the only nonlinear elements in
our circuit are inductive elements, e.g. Josephson junctions, it is better to use the node-
voltage method. In the node-voltage method we start by identifying one particular node of
the circuit as "ground" which we take to be the zero of the electrical potential. All other
node voltages, and therefore fluxes, are then expressed relative to the ground. The voltages
across individual elements, known as branch voltages, are then the differences of node
voltages.

Referring to Fig. 6.9c, we will take the common node between the voltage source and the
Josephson junction as the ground. We will then denote the flux of the island as <D7 and the
flux ofthe node between the voltage source and c" as <D". Since there are no other inductive
elements in the circuit, the potential energy in our circuit is the energy of the Josephson
junction,

v : -Ei"",(frr., - o)) -4 "",(
2n_or
ô6

(6.44)

We include the -0 in the first step to remind us that the Josephson energy is a function
of the phase (flux) dffirence across it, even if we happen to have chosen one side of the
junction as the ground node. Next, we write down the kinetic energy of the circuit as the
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sum ofthe energies ofall the capacitors,

C, C-
7 : 7@L - 0)'+ 7@L - Qg)" : C.

f@t - vs)"

L:T -v - ?rr, *f ra, * vr),+ur""'(fror)

Cr,^
lai + (6.4s)

(6.46)

In the second step, we approximate the voltage source as ideal, which imposes that Qr : Vt,

introducing the classical control voltage Vr into the problem. Finally, our Lagrangian is

Next, we'll use the Lagrangian to find the Hamiltonian. To do so, we first need to calculate

the canonical momentum conjugate to <D7, which is the canonical charge

AL
Q: ] : CtQt * Cp(Q1 - Vo\: C2Q; - C,Vo, 6'47)

àQ7 6' " ô ô'

where C5 : Cs I C7. As mentioned previously, we see that in this case, the canonical

charge has a more complicated form than the charge on any individual capacitor, reflecting

the constraints imposed by the circuit topology. We also note that this canonical charge can

be interpreted as the charge on the island of the CPB. We now calculate the Hamiltonian as

H:ear-L
: cr,a2r - cgvgol - ?rl - 7r*, - vù' - ", ""'(âîrr)
:'{" - sr"o"(?or\, (6.48)2 " \oo "/'

where in the last line we dropped the term -Csf| 12 because it does not contribute to

the dynamics of the system. The final step in the process is to express the Hamiltonian
only in terms of canonical variables, substituting At : (Q * CgVg) / Cy. By doing so, and

promoting Q and Q to quantum operators, we find the Hamiltonian of the charge qubit
to be

" ô + c.v-\2 /2r ^\,: Ê -r:cos(*o/ (6.4e)

We can now write the Hamiltonian in a more standard form by making a series of
definitions and substitutions. First, we would like to work in terms of the number of
Cooper pairs instead of the charge and in terms of the Josephson phase instead of the

flux. To do so, we introduce the Cooper-pair number operator, â (beware, this is not the

harmonic oscillator number operator), and the phase difference operator, $. th" operator

fr relates to the number of Cooper pairs that have tunnelled across the junction; in other

words, the excess number of Cooper pairs on the island. The operator f relates to the

superconducting phase dif;lerence across thejunction. Importantly, because these operators

relate to the differences ofnode variables across thejunction, they are branch operators

and not node operators, which introduces some subtleties. For our particular choice of

18i 6.3 Qubit

-
ground" we can write fr :: -Q1Ze and $ :: Zn6 yOs. Second, we define the gate charge
u." lr t:-Qs/2e : crvgf 2e, which is controiled by the classical voltage bias. Finally, wedeflne the charging energy as Eg :: e212c2. This is the energy n.Ia"a to charge theisland capacitance when adding one electron to the box. Qr{ote the energy to add a Cooperpair is (2e)2 /2Cz - 4Ec)Wirhthese definitions, our Hamiltonian becomes

fr : 4Ec@. - nù2 - Er cos$. (6.50)
Be careful that some references will define Eg as the charging energy of a cooper pair
instead of a single electron, and so the factor of 4 is dropped in front of.&6,.

Charge Qubit Regimes

Equation (6'50) is the Hamiltonian for a general charge qubit. Different types of charge
qubits are distinguished by their ratio Er/Eç. The difference in this ratio will result in
different system dynamics. For example, when Et/Ec (( l, charging effects dominate
tunnelling effects, with the implications that the number of cooperpairs on the island is well
defined and the energy ofthe system is very sensitive to the gate 

"t 
u.g" (or environmental

charge)' In the simplest circuit, with just a Josephson junctùn und g-ute capacitance, this
ratio is controlled by varying the area, A, andcriticar current density, [, of the jun ction. (J"
is in turn controlled by the oxidation time and pressure used to form the tunnel barrier.) ForafixedJ",Et - AandEç - l/A,implying Et/Ec - A2.Forfixed,A,h/Ec_.r". (Since
'r" depends exponentially on the thickness of the barrier, while cr depenas linearly, there is
not a large change in c7 when we change -/".) If we desire to fi'ther decouple E1 and Eç,
we can increase the island capacitanceby connecting a shunt capacitor, c'", inparallel to
our Josephson junction. The total capacitance of the island is then CE : C, * Ct * Cs.

we can start to understand the effect of Er /Eç on the circuit dynamics by recafling
that k and' f are conjugate variables. This implies that if the uncertainty in one of these
variables is small, the uncertainty in the other must be rarge. In the regime h /Ec 11 r,often referred to as the charge regime, the number of the cooper pairs on the island has a
sharply peaked distribution, i.e. it is well defined. Conversely, ihe fluctuations of the phase
are large. Because of this difference, the cooper pair number basis is a good one in which
to express the state of the system. (we sometimes then say that the cooper-pair number is
a good quantum number for the system.) In the context of charge qubits, the regime with
80 a EJ / Ec )) I is often referred to as the transmon regime. In this regime, the qubit is
less sensitive to charge noise, and cooper pairs are not well localizedon the island and
instead, @ becomes a good quantum number.

The cPB is a charge qubit in the regime of Er/Eç (1 l. Accordingly, it is useful to
analyze the cPB starting in the charge basis, that is, using the eigenstates of â,

filnl:n1q1. (6.51)
Here, ln) represents the state with n excess cooper pairs on the isrand" i.e. n :0 would
represent a charge-neutral island. Note that n canalsobe negative since Cooperpairs can be
removed from the neutral state.
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To express the Josephson term in the lz) basis, we first define the phase difference basis

through the Fourier transform pair:

ld) :,Ë "intlr), lnl : * lot" 
ur"-*rpr. (6.s2)

(We note that the discrete nature of n implies that @ is only well defined modulo 2n.)With
these relations and the exponential operator,

"'Q: 
I

2n I,* aô"ia lù \ô1, (6.53)

it is easy to show (see the exercises) thate+iÔ ln) : ln + l) or, equivalently,

^oo
etiô = D l"+t)(nl. (6.s4)

n:-oo

The Josephson term can then be expressed as

z'r.o,(ô) : 7r', + e-iô)= Ë uly,x,* 
r I + tn + l)(nt). (6.5s)

n:-æ

We see that the Josephson term explicitly takes the form of a tunnelling term when written
in the charge basis. That is, it increases or decreases the number of Cooper pairs on the

island by one when a tunnelling event occurs. Importantly, all the possible tunnelling events

are summed coherently.

Using the language introduced in Section 2.6.5,we see that ,i Ir ttr" generator of transla-

tionsin k.Thatsaid,wemention againthatâand$arebranchoperators,andnotnecessarily
canonical variables of our system, which is quantized in terms of node operators. Still,
they are linear functions of the node operators, so we can still explicitly calculate their
commutation relation based on the canonical commutation relations of the node operators.

It is easy to see that the charging (kinetic) part of the Hamiltonian is diagonal in the

charge basis. We can thus write the total Hamiltonian of the charge qubit as

oo

îr : f ourçn - nr)2 ln)lnl - 
u4qrxr+ 

tl + ln + l)\nl). (6.s6)
z

The charging *.-'r;; rise to a series of parabolas (one for each value of n) for the

energy as a function of n" (Fig. 6. I 0a). These parabolas intersect at half-integer values of
ng; these points are commonly referred to as the charge degeneracy points. However, the

degeneracies disappear and we instead find a series ofavoided crossings because ofthe
Josephson term, which couples the different charging parabolas.

We can see this explicitly by analyzing the Hamiltonian near a degeneracy point, i.e.

ns : | 12.In the CPB regime, we can restrict the analysis to only two states sirrce Ec >) Et.
These two states corresponding to n:0 andn: I are denoted as l0) and ll). We have

H :4Ec (,r _;) u,
Es^
To*

(6.s7)
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(a) CPB band diagram
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(b) ErlE"=

-1
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r't;ta;;;'',i' :: ''i tt'.':: Different regimes for the charge qubitt energy band diagram. (a) The energy band diagram for a cpB. (lnset)
ln the two-levelapproximation near ns - 1/2, the energies are Erln _ +i (a+4 fun _ l, + f?)t/r rho*n in
grey' (b) The energy diagrams for charge qubits with different E1 / Eç. A, rrZr? i),,r*,, ta ,i, urn'iJn regime, rheenergy levels become less affected by variations in nn and the syitem becomes more harmonic.

where we have dropped terms proportional to 11. This Hamiltonian also has eigenvalues
E"/E : 4 (*+ Qr - +)' * ut)" we can see from the eigenvarues that the energies
are not ott:lttu:". at nr : j, instead forming two hyperbolic bands with a minimum energysplitting of Er. The next energy levels are ,"pu.utà by _ 4Eç.Thus, for Ec ) Et, wehave two well-isolated energy levels which.'" 

"un 
ur" à 

"n"od" 
a qubit.

6.3.2 Transmon

The cPB was the first superconducting circuit to successfully be used as a qubit. Howeveq itbecame clear that environmental charge noise placed strong iimits on the potential coherencetimes of the cPB' This led to the development of the so-calred transmon. Historically, thetransmon was viewed as a charge qubit in the regime of Er /Es _ 20_g0. As we will seebelow in detail' it can also naturally be viewed as an anharmonic oscillator. we can developa qualitative appreciation for working in this regime by studying the transmonb spectrum.when studying a qubit's spectrum, what we measure are the transition frequencies between
:nergy 

levels hro4 - Ei - E;. The effect of different values of fu/ic on the transitionfrequencies between the ground state and theTth excited state as u fun"tùn of z" are shownin Fig' 6' 1 0b' These plots were produced by numerically sorving for the eigenvalues of theHamiltonian in Eq. (6.50).
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As we can see from Fig. 6.10b, there is one major advantage and one major disadvantage

to increasing the value of EslEç. The advantage is that the variation of the energy with

respect to n* decreases as Er lEç increases. This is crucial as environmental charge noise

effectively leads to fluctuations in nr and thus the qubit's transition frequency, leading

to dephasing. The disadvantage is that, as Et lÛc increases, the spectrum becomes more

harmonic, which is something we want to avoid. If the anharmonicity decreases too much,

the system simply stops being usable as a qubit, as the third and higher levels wi1l be excited

during qubit operations. More generally, limited anharmonicity implies limited control

bandwidth and, thus, speed of gates.

Fortunately,thereexistsasweetspotforthevalue of E1 lEç tominimizetheerrors
and maintain adequate nonlinearity, which is the transmon regime. This sweet spot exists

because the anharmonicity decrease s as (Er lEç)-r/z while the charge sensitivity decreases

exponentially.

Complementary to the CPB, since Et )) Ec for the transmon, it's better to analyze the

transmon in the continuous fr basis. Doing so, we can think of the dynamics of the system in

analogy to a particle moving in a potential defined by the Josephson term of the Hamiltonian.

For small oscillations around the equilibrium point (ô) : o' we can Taylor expand the

Josephson energy and truncate it to fourth order, rewriting the Hamiltonian (Eq. (6.50)) as

^ Et^^ Er^^
i-{t :48cfr' *;ô' - ;ô., (6.s8)

where we have dropped the nr term since its effects are small in the transmon regime and

dropped a constant faclor 81.

The Hamiltonian Eq. (6.58) has the form of a harmonic oscillator with an anharmonic

correction. Therefore, we will solve the Hamiltonian using perturbation theory, starting

from the solution to the harmonic part. Accordingly, we introduce the following ladder

operators:

4 : 4,*çîI + î,7 and k : in,pt(bf - b), (6.59)

where @"01 and nr6 are the magnitudes of the zero-point fluctuations given by

ôzpr:#(Y)''^ and '"o,:i.(#)''^ (6'60)

Here, we denote the transmon ladder operators as ôT and â to distinguish them from ladder

operators we'll encounter later. From the result that lô,kl: l, it follows thaTlb,bll : l,

, : :lô,kf: :(Y)"^ (#)"0 Sî, 
*î,,î,ï _ r,f:lt,tt) (6 6r)

Using these ladder operators we can write our Hamiltonian as

ît,: -Ec(#)"' ,,b' - 0," +E| (H'/' çît +b," -';@gï +bva

(6.62)

(6.63)

ffi

SEtEc (a'a* l) -';,t, *ry
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Written in this way, the transmon's resemblance to a harmonic oscillator with a small
anharmonic deviation is clear. The harmonic resonance frequency of the oscillator is
hao - JgEiEc. The prefactor of the nonlinear term is ff , which is small compared to
fi24 when

JBErEc rr 
u: + y I

t2 Eç >> 
(122X8) 

æ 9 x lo-a' (6'64)

This clearly holds in the transmon regime of ErlEç - 20-80. We will also drop terms
with an unequal number of raising and lowering operators. In the interaction picture of
the unperturbed harmonic oscillator Hamiltonian, the creation operator acquires a time
dependence 

"iaqt$t 
where o4 is the oscillator frequency. Therefore, any terms with an

unequal number of creation and annihilation operators will have a time-dependent phase,
such as 

"t2iant. 
We can apply arotating-wave approximation to drop these terms so long as

hrDq >> Eç / ,which is true in the transmon regime. Thus, we find the transmon Hamiltonian
to be

îlr : haq (ro + \\ * )trtrn, (6.6s)\ z/ z

where we have dropped a constant term of -ff that appears and introduced the anharmo-
nicity cu :: at2 - @01,wherc a;i1 : (Ej - E)/rt,is the transition frequency (see exercises).
we have also defined the qubit frequency â.s @q i: rrtu : JgEcEJ - Ec, (which includes
the fust-order energy shift, E6), since we encode the qubit in the ground state and the first
excited state, lg) and le).

The anharmonicity of the transmon is a key parameter. First, we require cv )) f2, f 1

(lr : l/Tt,lz : l/Tz). Otherwise, the circuit will not behave as a qubit. Second, a
limits how fast the transmon can be controlled. Roughly, the minimum gate time is æ
l/4. If this speed limit is violated, the spectrum of a control pulse centered at rr.161 will
still have significant power at ar12. (See the discussion ofhard and soft control pulses in
chapter 3.) The anharmonicity of a transmon is typicalty designed to be in the range
u/2r x 100-400MHz.withthisrangeforcv,wecanmaintainalarge rarioof Er/Eswith
a qubit frequency of on/2r ev 4-8 GHz. Since lal 11 aq, we have that the transmon is
essentially an anharmonic oscillator. As we'll find in the exercises , o : -E : -#.
This relation makes it clear that there is a design trade-offbetween the anharmonicity, wËic1h
controls the gate speed, and the sensitivity to charge noise, which grows with Ec,.

At different points of this chapter we will simplify our Hamiltonian by making the two-
level approximation, in which we restrict ourselves to the two-qubit levels of the transmon.
We can justi$r such an approximation by suppressing excitations to higher noncomputational
states. we can achieve this suppression by making lal larger or by using pulse-shaping
techniques as we introduced in NMR. In this two-level approximation, the raising operator,s
only function is to map the ground state to the excited sta@, îI : leXgl : â1 and the
lower operators is to map the excited.state to the ground state î, : 1gy1"1 : ô_. As a
result we also find that 8f b : p)(el, ît6f : pytf1, îi î,|bît : 0. For consistency with the
other chapters, we encode the logical 0 in the ground state and the logical I in the excited
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state. Thus, -â" : ît|î, - î,,îtT :261î - î. 1.ne transmon Hamiltonian under the two-level
approximation reduces to

^haHt: -'ffa,' rc'66)

This approxirnation assumes that bT le) :0, which makes sense if we have high anharmo-

nicity. Still, we should keep in mind that higher energy levels do exist. We will later use

these higher energy levels for qubit control and measurement, similar to what we did with
trapped ions.

6.3.3 Tunable Transmon

An important variant of the transmon is the tunable transmon, also known as the split
transmon. Building a tunabie transmon involves replacing the Josephson junction in the

transmon with a DC-SQUID. Thus, its Hamiltonian is

Èrt : 48cfr2 - Esl cos$1 - Er2cos$2, 6.61)

where E1 and $1 are, respectively, the Josephson energy and the phase difference across the

ith Josephsonjunctions. In the presence ofan external flux Qsx1, flux quantization requires

that $1 - ôz + f, t"*, : }mod(2n). By defining ô"t i: ft ô"*, and the average phase

difference ôoug:: (ù + ôùl2,we can rewrite Eq. (6.67) as

îI,t: 48cfi2 - Et(ô"*t).or(ô,", - or), (6.68)

where

El(Ô"*t): EJz cos2(4"*1) + tl2 sin274"*11 , (6.6e)

812 '.: ELt * Etz, d :: (EJ2 - Ett)lEtz, and @s '.: dtan(ô"*ù. By adjusting an external
flux, Q.*1, applied to the transmon, we can tune @gr1, adjust its effective E1 and thus its
qubit frequency a.ro.

6.3.4 Other Superconducting Qubits

As of writing this text, the transmon is the most developed of the superconducting qubits. It
is the one most used. While the transrnon is the focus of this chapter, we'Il briefly survey

some of the other superconducting qubits here.

The simplest flux qubit is the RF-SQUID qubit, which, in many ways, can be thought
of as the electromagnetic dual of the CPB. An RF-SQUID qubit (depicted in Fig. 6.11a)
is made fi'om a superconducting loop with inductance Z interrupted by a single Josephson
junction. Complementary to the charge bias gate capacitively coupled to the CPB island the

flux qubit is biased by an external magnetic flux inductively coupled to the flux qubit loop.

Comparing the circuit in Fig. 6.1 1a to the CPB, the inductol has replaced the capacitor

and a magnetic flux bias has replaced the voltage bias. For the CPB, the applied voltage
controls the tunnelling of Cooper pairs on or off of the CPB's island. Here, the applied flux
controls the tunnelling of magnetic flux quanta in to or out of the loop.

Flux qubits. (a) Ihe circuit diagram for the RF-SQUlD flux qubit. Ihe qubit loop is penetrated by an external magneric
flux that controls the flux bias, @.p. (b) The potential for the RF_SQU|D flux qubit. The two lowest energy level states are
used to encode the qubit. k) The three-junction flux qubit, which essentially replaces the magnetic inductance ofthe
RF-SQUID with the Josephson inductance ofthe additional junctions. Qualitatively, its potentiailandscape is very similar
t0 (b)' (d) Ihe fluxonium is a more recent qubit that replaces the two large junctions ofthe flux qubit with an array of
many junctions' While still controlled by a flux bias, the dynamics are substantially different from the other flux qubits.
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(a) (b) E (c) (d)

l1)
o),-,

ô
RF-SQUtD fhree-JJ Fluxonium

E
Phase qubit

(a) (b)

ô

Phase qubit. (a) The circuit diagtam for the phase qubit, showing a large Josephson junction biased by a cunent
source' (b) The potential for the phase qubit. The junction is biased until only a few states remain in the metastable well
The lowest two states are used as the qubit states.

l1)

l0)

Dual to the CPB, it is convenient to describe the flux qubit in the phase basis. With an
external flux bias near one halr of a flux quantum, the low-energy part of the flux qubit
potential forms a double-well potential. Roughly, the two states of thÀ qubit, one in each well,
represent a persistent current circulating in the loop either clockwise or counterclockwise.
Alternatively, this can be thought of as a small rr-ragnetic moment pointing up or dow', not
unlike a spin. Because of quanturn tunnelling between the wells, however, these two states
hybridize, with the final qubit states being the even and odd superposition of the clockwise
and counter-clockwise states.

The most notable variation of the flux qubit is the three-junction flux qubit, which is
often referred to as the flux qubit (see Fig. 6.I lc). The relatively large inductance value
required to make the RF-SeUID flux qubit requires having a physically large inductor
coil, which unfortunately also serves as a good antenna for electromagnetic interfere'ce.
The three-jr"urction flux qubit removes the large, geometric inductor.and replaces it with
additional Josephson junctions, using their Josephson inductance in place of the geometric
inductance.

Another historical qubit archetype is the phase qubit. The phase qubit is essentially a
large, current-biased Josephson ju'ction (Fig. 6.r2a). The phase qulit, huu" an Er/Eg
ratio which is many orders of magnitude larger than the other qubits we,ve studie4 ,'10à.



188 6 Superconducting Circuits

Its potential energy has a washboard shape, as seen in Fig. 6.12b. when properly current
biased, one well of the washboard potential will host only a few quantum states. The
two qubit levels of the phase qubit are then the two lowest energy levels in the well.
Other auxiliary levels can be used, e.g. for readout. Phase qubits were one of the early
superconducting qubits, producing many important results. However, like the CPB, they are

rarely used now because they suffered from low coherence times related to defects in the
lar ge-arca tunnel barriers.

A relatively recent addition to the superconducting qubit zoo is the so-called fluxonium.
The fluxonium takes the basic idea of the three-junction flux qubit much further, adding a
long array ofjunctions (see Fig. 6.11d). V/hile still controlled by a flux bias, the dynamics
and energy-level diagram are substantially different from the other flux qubits. Despite the
relative complexity of the array ofjunctions, fluxonium has demonstrated coherence times
approaching those of transmons. It also offers some potential advantages, such as the ability
to operate at lower frequencies than transmons, where the cost and complexity of control
electronics is potentially lower.

6.4 (ircuit Quantum Electrodynamics

We will now introduce an important paradigm within superconducting quantum circuits,
known as circuit quantum electrodynamics (QED). At a fundamental level, circuit QED is
the study of the interaction between superconducting qubits and quantized electromagnetic
fields inside a resonator. At a practical level, circuit QED has played a major role in the
development of quantum computing with superconducting circuits. Among other things, it
allowed for stronger coupling between the qubits and photons, for mitigating the effects of
decoherence, and has led to new ways of performing two-qubit gates and measurements.

Throughout this section, we'Il build up to the central Hamiltonian of circuit QED, the one
which describes the interaction between a superconducting qubit and a resonator. We'1l first
use circuit QED's predecessor, cavity QED, as a springboard into the topic (Section 6.4.1).
It provides a simpler setting to introduce the underlying physics of the interaction. In
Section 6.4.2, we'll study a waveguide resonator's structure and Hamiltonian. Using these
Hamiltonians, we'll then find that the interaction between the qubits and the resonator
takes the form of the well-studied Jaynes-cummings Hamiltonian, which we study in
Section 6.4.3. This Hamiltonian can take different forms depending on the defuning between
the qubit and the resonator. Finally, we'll conclude in Section 6.4.4by exploring aparticular
detuning useful for quantum computing, the so-called dispersive regime.

6.4.1 Cavity QED

circuit QED was inspired by and closely resembles cavity QED. In cavity eED, we place
atoms inside an electromagnetic cavity formed by two mirrors. Vy'e then study the quantum
interaction between the atom and the quantized electromagnetic field in the cavity. The
cavities can operate at optical or microwave frequencies, interacting with the corresponding
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@WorkingprincipleofaFabry-Pérotcavity.(a)Aninputfieldisincidentonthecavity.(b)Thefieldismostly
reflected, and a small portion is transmitted. k)The field reflects multiple times inside the cavity. (d)The multiple
reflections lead to constructive and destructive interference, leaving only discrete modes with a stable field
configuration' The existence ofthese discrete modes leads to a serieiof peaks when we meâsure the transmission ofthe
cavity as a function offrequency, as shown in Fig.6.14.

transitions in the atom. cavity QED provides a way to study the interaction between singleatoms and single photons. until this point in the text, when studying the interaction betweenlight and qubits, we heated the interaction semiclassic ary, i.e.ignoring the light,s quantum
nature. In this section, we,ll no longer do this.

The primary purpose of the cavity in cavity eED is to increase the coupling strengthbetween the atom and photons in the cavity. colloquiafly, the cavify allows a single photonto interact with the atom multiple times as the photon bounces back ana forth between themirrors that form the cavity. In this way, cavity eED allows us to observe the interaction ofa single photon with a single atom. At the same time, the cavity causes the spectrum of theelectromagnetic field inside to become discrete. in contrast to the continuous spectrum offree space. It also helps in isolating the atom from the noise of the environment.
How an optical cavity discretizes the electromagnetic field can be understood by studying

a simple electromagnetic cavity, the Fabry-Pérot cavity. It consists of two mirrors facing
one another' one or both mirrors will be made slightly transparent so that a small fraction oflight incident on the mirror can enter or leave the cavity, as shown in Fig. 6. r 3. once insidethe cavity, the light will reflect between the two mirrors many times-before leaking out.These multiple reflections interfere with each other, and only a discrete set of frequencieswill interfere constructively. These frequencies correspond to wavelengths À, :2lf n,where/ is the length of the cavity and z is a positive integer. These wavelengths correspond to theresonant modes of the cavity (Fig' 6. 13d). The resonant frequencies can be experimentally
determined by measuring the intensity of light transmitted through the cavity (assuming
it has two slightly leaky mirrors). similar to what is depicted in rrg. o. t+ for a waveguide
cavity, the transmission measured as a function of frequency ,lr-o*, u series of peaks
corresponding to the resonant frequencies.

In both circuit and cavity eED, we often work in the single-mode approximation. Inthis approximation, we focus on the coupling between the atom and just a single mode of thecavity. within this approximation, we then treat the mode of interest as a quantum harmonic
oscillator' To work in this approximation, we set the bandwidth of the input field to be in therange of only one of the cavityb modes, selecting that single mode.

At a conceptual level, circuit QED is essentially identicar to cavity eED. Experimentally,
in circuit QED we use an artificial atom (a superconducting qubit) inrtàa of a natural atom
and an on-chip microwave waveguide resonator in place of a :O cavity.

-
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Cavity transmission intensity. The transmission peaks as a function of the frequency. ln this figure, the line widths

increase for subsequent peaks. What's depicted here is the steady-state behaviour ofthe cavity. Figure 6.1 3 describes

how the cavity reaches the steady state.

6.4.2 Waveguide Resonators

To move from cavity QED to circuit QED, we replace the 3D cavity by a microfabricated
waveguide resonator typically operating in the microwave regime. A waveguide is a structure
that confines and guides electromagnetic waves. In circuit QED they are typically made by
patterning superconducting films on dielectric substrates. By adding boundary conditions at

two euds of our waveguide, we turn it into a waveguide resonator. In cavities, the mirrors
impose a boundary condition on the electromagnetic field specifically that the electric
field is zero aI the surface of the mirrors. The waveguide resonators operate in a similar
way, irnposing either an open-circuit (zero current) or short-cilcuit(zero voltage) boundary
condition at the ends of the resonator. The resonators are typically designed in the miclowave
regime consistent with the qubit fi'equencies.

There exist different types of on-chip waveguides. The most common is the coplanar
waveguide, which is illustrated in Fig. 6.15a. It consists of a center conductor with a spatial
gap on each side of it separating it from the ground-plane conductors. One can imagine a

slice of the coaxial cable bringing TV signals into your house. Like the cable, the waveguide
tightly confines the miclowaves in the two transverse dimensions while allowing them to
propagate along the third dimension. Typical superconducting metals are aluminum or
niobium. Typically substrate materials are sapphire or undoped silicon.

We can consider a resonator with two open-circuit boundary conditions, like the otre

depicted in Fig. 6. 1 5a. It is known as a ), 12 resonator, having resonant wavelengths defined
by Ln, - 2d l(m -f 1), where nz is a nonnegative integer and d is the length of the resonatot'.

For each wavelength, there will be a corresponding frequency. The spectrum ofthe resonator'

is illustrated in Fig. 6.14. The lowest resonance frequency, often called the fundarnental
fi'equency and corresponding to Àe, is given by -fo : u l2d with all resonance fi'equencies
givenby .f,,, - (m 1- 1)/f . Here, u : 1 I $ico is the speed of light in the waveguide, c0 is

the capacitance per unit length, and /9 is the inductance per unit length of the waveguicle.
Both c6 and i0 are design parameters, but typically u - I x 108 m/s, about one-third of the

speed of light in a vacuum.

2D coplanar waveguide resonator. lt consists of a central conductor with a spatial gap on each side separating it
from ground-plane conductors. The outer ground planes extend much farther than are shown in the diagram and are
ideally semi-infinite. Note that the drawing is not to scale. Ihe waveguides are made from thin metal films
(-100 nm), forming an approximately two-dimensional structure. The coplanar waveguide can 0perate as a res'nat'r
by imposing boundary conditions on the central conductor. These boundary conditions can be imposed by either
patterning open gaps in the central conductor, which result in open-circuit (zero current) boundary conditions, or by
connecting the central c0nductor t0 the ground planes, resulting in short-circuit (zero voltage) boundary conditions. The
open-circuit boundary condition is illustrated in the figure.

0 10 20

Frequency (GHz)

30

As with the 3D cavity modes above, we can apply the singre-mode approximation to
describe the coplanar waveguide resonator as a lumped-element LC oscillator. We refer
to devices as "lumped-element" when we can ignore the spatial extent of their modes.
The particular values of the rumped-erement inductance, L,., and, capacitance, c,., catt
be derived in different ways, e.g. as the weighted average of /s and c0 over the spatial-
mode structure. This implies that the values of L,. and, C,. are functions of the mode
number, m'The Hamiltonian of a single mode of the cavity can be written in the sta'dard
way as

H,:ha,(;a.\). rc.70)\ 2/

where âT denotes the creation operator of the resonator mocle and. at,.its angular frequency.
To add the artificial atom to our system, we typically capacitivery couple a transmon to

the waveguide resonator. In early designs, the transmon was placed inside the gap betwee'
the center conductor anci the ground plane of the waveguide resonator. while the network of
physical capacitance can be complex, standard circuit techniques allow us to represent the
coupling by a single ',coupling', capacitance, C".

While 2D waveguides will be the focus of this chapter, we can also consider using 3D
resonators in the microwave regime. Each dimension of these resonators is made to be on the
order of centimetres to produce resonance fi'equencies in the microwave range. Historically,
so-called 3D transmon architectures made an important contr.ibution to understalding
decoherence in superconducting qubits and resonators. The lesson was that 

'ruch 
ofthe

decoherence at the time came fi'om material clefects on the surfaces ancl interfaces of the
metals and substrate used to make the qubit. using a 3D resonator, less of the fielcl energy
is stored at the surface ancl interfaces, so less loss occurs. The lessons learned fi.om 3D
transmons were successfully translatecl back into two-dimensional architectures, such as
transmon alrays, which continue to dominate. Still, 3D architectures are used for some
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alternative approaches where the qubits are encoded in the cavity modes. For pedagogical
purposes, it's sufficient to focus on the simpler 2D design.

6.4.3 Jaynes-Cummings Model

Equipped with the Hamiltonian of the transmon and the waveguide resonator, we can now
study their interaction, which is given by the Jaynes-Cummings Hamiltonian. This is
a well-studied Hamiltonian that represents the exchange of a single photon between a

harmonic oscillator and a twolevel system.
To derive the Jaynes-Cummings Hamiltonian, we consider a transmon and waveguide

resonator that are capacitively coupled. Since the resonator is an extended obiect, the full
treatment is somewhat complex, but we can reduce the problem to that of a lumped-element
LC resonator coupled to the transmon through a capacitance C" (Fig. 6. 16).

Vy'e can now derive the full Hamiltonian for the transmon, resonator, and coupling
interaction. To do so, we need to determine the new terms to be added to the Lagrangian
of the circuit and then derive the Hamiltonian using the Legendre transformation. First,
consider how Cc would add to the circuit's Lagrangian. O, and (D; are the resonator and
transmon flux. Recall that ô," and ô1 are the voltages across the resonator and transmon,
and then (ô" - ô,) is the voltage across C". The energy contributed by C" is

T^,: *(ô, - ô,), . \6.jt)2

The terms that are proportional to ôl and, Ol willjust add to the capacitive energies of
the transmon and resonator, producing static frequency shifts. The cross term C"o,.e, 12
is then the interaction energy resulting from the coupling. To find the exact expression for
the Hamiltonian with Eq. (6.71) included in the Lagrangian requires using the Legendre
transformation. We don't include this calculation here, but give the expression for the new
term after assuming that Cc 11 Cy,Cy. When we transform to the Hamiltonian and quantize
the circuit, this leads to the interaction Hamiltonian

îIint: f?g,9, : -h.s(61 - î,yçal - ay, rc.72)LrL t

cc

where g is known as the oscilrator-transmon coupling consfanf or the right_mattercoupling constant,

Zre2 C" Er 1/4
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6-
2h C2 2Ec (6.73)

Thus, the full Hamiltonian for the system consists of the Hamiltonians of the resonator,Eq. (6.70), the transmon (before the two-level approximation), Eq. (6.65), and the capacirive
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coupling interaction. Together

p:È,tilttÈint,
we have

',,,,,, ''Ttansmoncapactivelycoupledtoawaveguideresonator.Herewemodel onemodeoftheresonatorasa

lumped-element LC resonator. The capacitance ofthe transmon (> : Ct * O includes a component from the

capacitance ofthe transmon's Josephson junction Ç.

: ha,àTà + h-s (;T6.:) - k2,r6r2,6 _ hgçgr _ g],çar _ a:. (6.74)
We can now simplify the Hamiltonian in two sfens Tha ffror .+^- ..

waveapproximationrntherotaringrrame"rï,::i!t:Ë*ii;iil'd^Ê:r:T,,:;':î
hoqiTô+ j) trre â (âT) operutn;;il;r;; -i^t çaï rr,,t,,and the 6 (br) operator evorves
as 6e-ioqt çîT ei'n'1. Thus, in this rotating frame, the interaction term has the form

È{:l : ns (îf ar ei{,n+,,r)t + $t 6ni(an-a,)t _t $6î ui(-ao+a,)t a $6"i(_an_,),) . (6.7s)
Assuming we are nealres:nalce, i.e. lrn - r,l <{ lrn * arl, we drop the quickryoscillating terms. Transforming back to the iab frame, we find

È : 6ar6T6 + h-s (îjb . :) - k2,r2;2,6 + hgçî)ta + ôât). (6.76)
The next step is to apply the two-revel approximation for the transmon and find

Èy t- ha),àta - !u, + h.g(ôaà + ô_at). 6.77)
This is the Jaynes-cummings Hamiltonian, Êrç. this is a well_studied Hamilton ianthatis exactly solvable. The last term corresponor ro our transmon and resonator interactingthrough a coherent exchange ofa pho*ton in the resonator and ofan excitation ofthe transmon.Some texts will flip the 

lisn.of 
t.h 

" ryô,rerm in the Jaynes-c;;;;, Hamiltonian. wechoose the sign convention that is coisisient with the rest ofthis text.we now furn to finding the eigenstates and eigenvalues of the Jaynes_cummings Hamil_tonian' we start by writing È1ç inthe basis of the bare states. The bare srates are the jointeigenstates of the qubit and the resonator when there is no coupling term. These states takethe form of lg/e) g lz), where n is the photon number of the resonator.
we can introduce the operator û* thàt counts the total number of excitations in the barestates, û1, : à+à- + âI;.I" d"it;;",;" iro",n" ir has rwo pertinent properties. The firsris that, since the pairs ofstates 1",i - t7 and lg,n) have an 

"quut 
nun'ur. ofexcitations, theeigenvalues of the operato r fr* are degeneratel s""".a *r.-"i--",", îun È, and È1 andwith the futl Èrc,

lrn,*"f :p^',uo]: hsba* + àrô-,ârà+ ôaâ-] : o, (6.7s)
and therefore the total number of excitations is conserved by Ètc.

ttr, c,



r
194

ffiffi
6 Superconducting fi rcuits

Because of these two properties, we can write Ifiç as a block-diagonal matrix in the basis

of the bare states ordered as, {19,0) , le,0) ,lg,l) ,le,Ilrlg,z) , . . .l.The diagonal blocks
willoccurineachofthedegenerate2 x 2subspaces of{le,n - l),lg,n)},exceptforthe
n : 0 case in which thereb only one state, lg,0). Thus, we have the matrix:

ffi (6.7e)

Each block-diagonal component (, > l) can be written as

H:L' : 
lt"',r;,#,2',7:;," "',r,,,'lïi,Z',î"f

. h[@ - t)ar+ ! sJ" I''l- cJn ,,, - ry)

: hn,(n - )lt + Tu" * rrs"fnô,, (6.80)

where Â i: e)q - ar, is the detuning between the qubit and the resonator. Note that in this
latter equation, the Pauli matrices à" and ô" belong to the Hilbert space of the states lg, z)

and le,n - l). To be clear, this ô, is not in the qubit basis. The block Hamiltonian Êr(p frut

the form of a coupled two-state system. We also note that each subspace of states lg, nl and

le,n - ll is decoupled from all other states.

Finding the eigenvalues and eigenstates of .âlc is now straightforward given its decompo-

sition into diagonal blocks lhat are sums of Pauli matrices. Using Eq. (2.161), we find that

tner. n!! has eigenvalues,

t-Êi3

îIrr:L "*

l-,n): -sin (6.83)

where 0, : arctan(2gJilA). fne states l*, n ) are known as the dressed states, with the

idea that the bare matter (qubit) states are "dressed" by the photons. The dressed ground
state equals the ground state, l-,0) :: ;g,0), and it has an energy -ft!.

6.4.4 Detuning Regimes

The Jaynes-Cummings Hamiltonian (Eq. (6.80)) has two different behaviours depending on

the value of A: the on-resonance and dispersive regimes.

E+,, : n-rf, - )l +
^62g'n+ 4, (6.81)

(6.82)

and eigenstates,

l*,n) : cos 7)
(7

te,n - t) * "t^(!) w,,t ,

) v,, - tt * *,(7) e,o ,

------ 1.\

Il) :::=::
ô\ --:-T- 

ll)
lz) :==-: ur+q2lal

----ù-- r^t

I I ) *-=_=.-..--.-4.dllll 
I"i

. I uçg2lA
l0) +-:=

Isi rr j lst ,t

ffiJaynes-(ummingsHamiltoniantspectrum.Thespectrumforthe(a)resonantregime,A:0,and(b)the
dispersive regime 

I L /sl >> i. ln panel (a), the outer iine, ,r,0,, t u ,n,orpled energies, while the central lines showthe dressed energies' ln panel (b), the solid lines showthe uncoupr-J r".ùy rr*rr, whire the dotted rines show dressedenergies. This figure is adapted from Blais et al. (2004).

In the on-resonance regime, the frequency of the transmon and the resonator are equal,(Dr : @q and A : 0. In that case,0, : n/2and Eqs. (6.g2) and(6.g3) reduce to theresonant eigenstates,
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(b) Dispersive

I+,n) : 
ftUr,n) I le,n - t)),

l-,n) : 
ftUr,n) - le,n - t)).

(6.84)

(6.85)
Their spectrum and the spectrum of the bare states are given in Fig. 6.l7a.For the resonanteigenstates, the states of the transmon and the resonator are maximaily entangled, whichcomplicates encoding the qubit in the resonant eigenstates. Furthermore, in the resonantregime the cavity will greatly enhance the relaxation rate of the qubit; this is known as thePurcell effect (which we discuss in Section 6.g).

In this regime' it's easy to observe an interesting quantum effect known as vacuum Rabioscillations' consider-placing an excited qubit in a resonator in tn" uu"rru_ state, givingthe initial state le'0)' we tnow from trre laynes-cummings Hamiltonian that this state will
i:iT:ri,,',i,tJ;J""rtrr 

periodic oscilrations berween the two. rhese are known as vacuum

Even though the on-resonance regime isn't fypically used directly in quantum computing,

"t"mËglt 
model of light-mÀer interaction and is seen tn uuriou, orher applications

one common regime we.lork in is the dispersive regime, where the detuning betweenthe transmon and resonator islarge with respeâ to the coupling u"twenit"m, r^r/rsr >> 1.As a result, in this regime the lubit und'r"ronutor energy eigenstates are only weakryentangled. Different protocols for measurements and two_qubit gates become possible infhis regime. The large difference i" rt.qrr"n"y makes it such ,tiut tt 
" 

transmon and theresonator cannot exchange excitations directly.
we now look to find solutions to the Jaynes-cummings model in the dispersive regime.In the two-level approximation, Eqs. (6.8i)-(6.g3) are exact, and we 

"u' 
nna expressions
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for the energies and states by expanding them for lll/lgl >> I' At the satne time, it is
instr.uctive to find an approxirnate form of the Harniltonian in the dispersive regime, which

can be done in different ways. One approach, valid in the two-level approximation, is to

apply the dispelsive transfolmation

û : .*ol9r a- a - a-ài t1. (6.86)- -'La' I

We'1l explore this approach in detail in the exercises, but for now we just write the result.

We find that the transmon Hamiltonian in the dispersive regirne is

hu'
11a;,p : tu,,,',.à1à - |a' - Ttxô,àl à, (6'87)

where

noise' including quantum fluctuations' Ifour qubit is in resonance with this enhanced noise,it will have a much shorter rifetirne. wor-king at a fi-equenc y awayfi.om this peak, in thewings of the resonator response, exposes the qubit to greatry suppr.rr.a noise, which wilincrease its lifetime. From an engineer's poini of view, .'" ."orrtà describe this simply bysaying the resonator filters the environmental noise. connecting to the terminology of cavity
QED' the reduction of the qubit lifetime by the resonant cavity is known as the purcell effect(which we discuss in Section 6.8). The enhancement of the lifetirne in the clispersive regimeis sometimes referred to as the anti_purcell efl.ect.

A more subtle advantage is that working in the dispersive regime reduces the backactionof the readout on the qubit, minimizing the disturbance to the qubit state. As the state ofthe qubit affects the resonance fi'equency ofthe caviry so does the state ofthe cavity affectthe transition fi'equency of the qubit. This can be seen by grouping the interaction (last)term of Eq' (6'87) with the qubit term, which together look like a strift i,r rhe qubit energyproportional to the photon number â1 â.wetypicalry readout the system by driving theresonator with a coherent state, which is a superposition of clifferent i6o,on numbe.s. Thisimplies that the readout inherently drives fluctuations of the qubit fi.equency, which we wantto minimize. Some amount of backaction is requirecl in all quantur, ,r"ururr-.nts, and thebackaction implied by Eq' (6.87) can app.oach the quanturnlimit. However, if the coupli'gis too strong - for instance, because the detuning is too small - higher-orcler processes cancontribute additional backaction without i'rp.oving the'reasurernent.
we end this section by enumerating cliffere't regimes of the Jaynes cummings modelwhich are often referred to in the literature. If we let y refer. to the decoherence rateof the q'bit, and r the same for a cavity, then we can compare them to the r.espective

fi'equencies an,a, aîd the interactio'strength g. In the weak coupling regime, wher.eg << y , K , aq 
' 
at , decoherence dominates the coherent dynamics between the qr.rbit and thecavity represented byg. In the strong coupling regime, where 7, r ( g {{ aqlct)r,the trulyquantum dy'amics of right-matter coupling can be observed.'The strJng coupling regi'restill generally represents a pertulbative coupling between light and ,r.utt".. ln the regirne

Y ' 
K 11. g - atr,rr.r,., sornetirnes called the ultrastrong coupling regime, the rotating_wave

approxirnation breaks down and the coupling is no longer per-turùative. This regime hasonly recently been observed experimentallv.
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6.5 lnitialization

6.5 lnitialization

L - Eslfr

From this Hamiltonian, we can cletermine the spectrum in the dispersive regime, which is

a'-.
E+ : h,(o;',. * fin + h|, (6.89)

where E4 is the energy lor lt, n) .

We can see that the filst term of Eq. (6.89) looks like the spectrum of a harrnonic oscillator

but with a frequency that clepends on the state of the clubit. This will be the basis of qubit

reaclout in circuit QED, which we discnss in detail in Section 6.7. Fol now, let's comment on

the structure of the state-clependent dispersive frequency shift, X, hel'e. The first term in

X, g2 I L, is the lesrilt obtainecl for a pure two-level system. The second tet'rn is a correctiotr

for the limiteci anhalmonicity of the transmon. To leading order, the magnitude of thr:

transmon's anharmonicity is 86. We see that for Ec )) L, i.e. large anharmonicity, the

correction teln tends to zeïo, ancl we recover the result for the two-level systen-r. In the othel'

lirnit, with L )) Ec, we instead find that the collection cancels the leading term and X x 0,

This recovers the resuit that, although coupling halmonic oscillators will produce frequency

shifts, those shifts are not state-dependent.

U1like the on-lesonance case, the dressed states in the dispersive legime are not rnaximally

rnixed states. This can be seen by substituting the definition of 0,, into Eqs. (6.82) and (6.8-i).

For A >> sJi,wecan perform the series expansions to find cos(a..tatt(*)) æ r ana

sin(arctan(*)) = + rhus, we find

/ ,c/t,\

r-,n) .=c (k.rt-s{le.,i-r)). (6')l)
\" a /

where Ca are nortnalization constants.

The most straightforward advantage of working in the dispersive regime is a large

enhancement of the qubit lifetin,e cornpared to the resonant regime. Recall that the resotlator

will greatly enhance signals at its resonant frequency, ar,.. This also applies to environnrcntal

Superconducting qubits are initialized by brute-force cooling ofthe qubits to the ground
state. A characteristic fi'equency of 5 GHz implies that the qubits must be cooled to atemperature T ({ rta I ke - 250 mK. This is far below the temperatLrre of the liquid heliurn,
-4 K, used for the superconducting lnagnets in chapter 3. we therefore require a specializecl
cryostat, a dilution refrigerator that can reach base temperatures of 10 rnK. other types ofcryostats can reach the low temperatures required, but clilution refriger.ators are preferred
becanse they offer continuous operation, r-emaining at low ten.rperlrur., tbr periods of
several months.



198 6 Superconducting Circuits

Despite the ultra-low temperatures achieved by the dilution refi'igerator; expelimentalists

typically find that the residual excitation of the excited state is much higher then would be

predicted by simple thermodynamic calculations. There are a nutnbel of possible reasons

for this, including stray electromagnetic radiation that reaches the qubits fi'om higher

temperatures. A recent strategy to mitigate this has been to use real-time feedback to

improve the quality of the ground-state preparation. These are often called active reset

protocols. The basic idea is to perform a high-fidelity measurement of the qubit's state, and

if the qubit is found to be excited, to apply a n-pulse to flip the qubit to the ground state.

This technique relies both on having (nearly) quantum-limited arnplifierss fol the readout

as well as high-speed digital electronics that can analyze the readout t'esult and apply the

conditional n-pulse in a tirne much less than the qubit's Z1 .

6.6 Qubit (ontrol

Having initialized our qubit, we turn to controlling it. First, we explain how single-qubit

gates can be implemented using a microwave drive (Section 6.6.1). In Section 3.3.4 we

introduced some techniques to mitigate pulse erroLs; we build on that discussion here. Next,

we explain how two-qubit gates are irnplemented in Section 6.6.2. As we'll explain, the

exact approach will depend on whether we're using tunable or flxed-frequency qubits.

6.6.1 5ingle-QubitGates

High-fidelity single-qubit gates have been irnplemented using a range of techniques. Broadly

speaking, gates are implemented eithel by applying microwave control pulses or by fast

tuning of the qubit transition fi'equencies. While we will focus on transmon qubits belorv,

rnany ofthe techniques we describe are applicable to a range oldifferent supelconducting
qubits.

Single-qubit gates, other than z-rotations (see below), are most commonly implernented

by driving the qubits with resonant microwave signals that will dlive Rabi oscillations. Apalt
fi'om the control frequency, this is in strict analogy to single-qubit gates in NMR and ion

traps.

All that needs to be done then is to show how we come to the Rabi Hamiltonian for a

superconducting qubit. Let's start with the simplified exarnple of the CPB. Consider the CPB

Hamiltonian Eq. (6.57). We can couple the miçrowave drive through the same gate capacitctt'

that we use for the gate voltage, which sets nr. (ln practice, we might use distinct gate

capacitances to a1low for better optimization.) For the signal applied to the gate capacitatice,

we then combine the DC bias and the microwave drive, giving n* : nsl l6nrcosQot -l tb).

If we work around ngo: lf2 (and rotate to the qubit eigenbasis), Eq. (6.57) reduces to

, : *?;, t 4lçSnrcos(a;/ j- ô)ô,, (6.1)2)
2'

5 A quantum-lirnited arnplifier adds the minimurn amount of noise allowecl by quantum mechanics cluring the

amplifi cation (rneasurement) process.

which is identical in forrn to the Rabi Hamiltonian (Eq. (3. r 0)) that we first considered inthe colttext of NMR.
The same derivation for the transmon is so'rewhat more involved, but we can also derivethe Rabi Hamiltonian for the transmon following a standard m"iroo in qua'tum optics.consider the Hamiltonian of the transmon coupled to a resonator written in the two_levelapproximation but before the rotating_wave approximation, Eq. (6.17):

È1ç ,: ltro,.àI fi - '!u, - îrg&,1;i - 6,,. (6.93)
we now take the classical limit of the oscillator. we do so by essentially taking the par.tialexpectation value of tlie fieid with a coherent state at the fi'equency a witha iarge amplitudela). In the interaction fi.ame of the oscillator, where â and à1. pick up an explicit time_dependent phase, we find

@l%tclo) - -tu'r- -2 _- 2hglalsin(ott * ô)6,. 6.94)
Up to a phase, we see that this is again just our familiar Rabi Hamiltonian. As an aside, wenote that in going frorn the second-quantized equation to the serniclassical Rabi Hamiltonian,we are essentially ignoring the vacuum fluctuations of the field.If we're using tunable transmons we can also irnpleme rt z-axisrotations by directly tunurgthe value of co, so that on - toa f 0. This can be do'e by ind'ctively coupling anothertransmission line to the loop of the transmon's seulD. A fast pulse on that line will createa fast-flux purse which detunes the qubit. By controlling the amount of detuning and thelength of the prlse, we can control the accumulatecl phase, i.e. the z_rotationangle. whileit's possible to i'rplemert z-gates in this way, it,s now common to use the bookJceepinggates introduced in Section 3.3.3.

There are a variety of techniques used to address multiple qubits in a single pr.ocessor.These generally co'rbine a 
'rix of frequency multiplexing, meaning that the qubits aredesigned to have different fi'eque'cies ,o u g,u.n pulse iùnry 

'."roîun, 
with one qubit,and individual wiring, meaning that each qriit 1o. a small n.,-b.. of them) has its ownmicrowave drive line' As,processors get larger, bringing signals to internal qubits is chal-lenging in a purely 2D architecture. conventànal (classiùl)-pro..r.o^ have many layers ofwiring with insulating layers in between, allowing for arbitrary routing and connections. Ithas generally been found that these insulators are lossy and add significant c-lecoherence toquantum processo.s. Solving this problern is currentry a very active fierd of research.An important source of infidelity for transmons is leakage to the higher energy statesthat we have so far ignored. es wiitr other imprementationf we can use purse shaping toreduce this leakage a'd irnptove the fidelity of our single-qubit gates. The anharmo'icity ofa transmon is smarl, 200-300 MHz compared to the qubit fi.equencies, which are on theorder of gigahe.rz. Since the conrrol p'rses have 

" 
fi"l;; *i;;,;;", they arso have afinite bandwidth in frequency, with the bandwiclth inversely proportional to the wiclth ofthe pulse in time' If the tail of the pr.rlses' bandwidth overlaps with the transition fi.equencyfrorn l1) to J2), we can get excitations out of the computational basis. The simplest wayto prevent this is just to use longer pulses and thus smaller uanawlain, but this creates atrade-off with the coherence time of the qubit. A next step is to ,onrid". pulse shaping.
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For instance, rectangular pulses have a spectrum that decays very slowly (llf) in frequency,

while a pulse with a Gaussian shape in time also has a Gaussian spectrum, meaning the

spectrum decays exponentially.

More sophisticated puise-shaping techniques, based on optimal control theory, have

become increasingly common. One very common example is the Derivative Removal via

Adiabatic Gate (DRAG) technique. While the derivation of the DRAG protocol is beyond

the scope of this book, this technique has allowed for single-qubit gates to be routinely

implemented with greater than 0.99 fidelity.

6.6.2 Two-Qubit Gates

Numerous proposals exist for implementing two-qubit gates in superconducting systems,

many of which have been demonstrated and have achieved high fidelities. At the time of
writing this text, there is no dominant two-qubit gate design, and it's still an active area of
research. Below we give an overview of the different types and focus on two well-developed

and illustrative examples.

In many of the previous chapters, we implemented our two-qubit gates by regulating

a natural interaction term in the system. Here, we need to first engineer the interaction

or coupling term using different circuits. Transmon qubits are typically coupled with

a capacitor. We previously derived the interaction Hamiltonian for capacitive coupling

between the transmon and a resonator [Ttg(ôaà1_6-;I; from Eq. (6.77)]when we discussed

the Jaynes-Cummings model in Section 6.4.3.The derivation for two transmons is nearly

identical, so we just write the result,

n : rrsc@Pa9 + a!)af)), (6.es)

where

, J1"2C, 1 E_LtE_Lz\t/a . (6.90)ttgç ": c,c, \EcrEcz /
This expression describes the exchange of a single excitation between the two transmons. It is

valid in the context of a rotating-wave approximation which assumes I Ll : la4 - coqzl 11

96. Other couplings can be used when controlling other types of qubits, e.g. inductive

couplings can be used with flux qubits. For the most common forms of coupling, the fina1

interaction Hamiltonian remains in the same form, albeit with a different detailed expressioti

of the coupling strength.

To go frorn an interaction to a gate, we need to be able to turn the interaction on and off

in a controlled fashion. One possibility is to use a tunable coupling element, like a tunable

capacitor or inductoq which would allow for the direct tuning of 96'. An alternative approach

is to tune the qubit frequencies, adjusting the ratio of 96 to Â (Fig. 6.18)' When gc >> lA l,

the interaction is as described above, i.e. excitations are swapped between the qubits' Itt

the other regime, gc << lAl, the rotating-wave approximation is no longer valid and the

coherent swapping is strongly suppressed. In this way, we can effectively turn the interaction

on and off, despite the constant presence ofthe fixed capacitive coupling.

Transmon couplings' (a) Direct capacitive coupling oftunable transm0ns. (b) (oupling oftunable transmons via acoupler.

Let's consider the type of gate produced by turning the capacitive coupling on for a

;or::Joro 
time. consider rhe action of this coupring wrirten u, u u.ritu.y in the compurarionar

uç(t): exp(-;ggtqâf à!r, +;!)af ,r)
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Its name follows frorn the fact that it swaps an excitation between the two qubits whileadding an extra phase ofl. From this, we can create the entangling /SWAP gate, which iscreated from the same interaction done for half the time, (/s(#i) Applied to the 101) state,
the iSWAP gate prepares a Bell state.

Implementing two-qubit gates with tunable qubits has some notable challenges. Thefirst is that the added tunability introduces another control parameter and, thus, i'troducesanother channel for noise in the system, potentially decreasing the transmon,s coherencetime' second the performance of the gates relies very sensitively on the shape of the fast-flux pulses used for tuning, which often have nanosecond timescales. It,s very difficult tocontrol or even measure the exact shape ofthe pulses that reach the qubits, since they travelthrough long cables with frequency-dependent los, along with a number of other microwavecomponents' Designing gate protocols that mitigate these problems is an active area ofresearch.

Part ofthe issue with the pulse shapes ofthe fast-flux pulses used for tunable-qubit gatesis that they are extremely broadband with frequency components ranging from 0 Hz toseveral gigahertz' An alternative approach is to use more narrowband microwave pulses tocreate two-qubit gates, similar to how single-qubit gates are done with microwave pulses. Aclear disadvantage of using more narrowband pulses is that they will tend to produce slowergates, but this is a natural trade-off between the speed and precision of control purses.
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There are a variely of approaches to microwave-based two-qubit gates, with prominent
examples being parametric gates and cross-resonance gates. Parametric gates use a tun-
able qubit or a tunable coupler, but now tune them at microwave frequencies, often at
the frequency difference between a pair of qubits. Cross-resonance gates instead work
entirely with fixed frequency qubits, avoiding the extra decoherence channel associated with
tunability. We will consider cross-resonance gates in more detail now.

The cross-resonance gate still requires that the qubits have a fixed coupling to each other,
e.g. capacitive coupling for transmons. Unlike with tunable-qubit gates, however, the qubits
are strongly detuned from each otheq i.e. lA I ) gc. The gate is implemented by driving one
qubit, the control qubit, at the frequency ofthe other qubit, the target qubit. Essentially, the
control qubit acts as a state-dependent filter of the Rabi drive, changing the drive amplitude
and phase seen by the target qubit. Roughly the control qubit acts as a filter with a center
frequency equal to its transition frequency, which is o;nt in its ground state and a4t - u in
its excited state. As we will see in detail below, the state-dependent driving of the target
qubit can entangle it with the conhol qubit.

We begin again with the Hamiltonian of two qubits couple d, via a capacitor and add a
drive on the first qubit,

H : -htnt ^!D - 
h'u^"

2 '*-qz 6Q) + hgç1ô|ô9) + a!,al)) + ôor(n coskoalfiàj|),

(6.ee)

wherc a41 is the frequency of the drive on the first qubit. To better see the effect of the
driving term, we use a transformation like the one introduced in Eq. (6.86) and explored in
the exercises. Doing so, we find the driving term becomes

haR(t)cos(a,71l) (ujt, * Tu,,uY,). (6.100)

We then see that the effective amplitude and phase of the Rabi drive on qubit 2, that is, the
coefficient of the ô!2) , depends on the state of qubit I .

The cross-resonance gate canthen be represented by the unitary matrix

ri. jÈ-.-:.if l!iil!! r{it&

Uçp(9): s1p
.0

-t- 2
ô!t)6!zt

cos9 /2 -isin)12 0

-i sin? 12 cos 0 /2 0

0 0 cos?l2
0 0 isin)l2

3l
i sine /21 '
cosl /2 )

(6.101)

where d depends on the strength of the coupling. This is clearly a two-qubit entangling gate.

6.7 Measurement

By far the most common form of superconducting qubit readout derives from circuit eED.
This dispersive readout involves inferring the state ofthe qubit from its effect on a readout
cavity to which it is coupled. First demonstrated for charge qubits and transmonS, it has
been adapted to a wide variety of qubits, including semiconductor qubits.
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"!;Æî*'tî:i'f":fe Dispersive readout' Ihe res0nat'r's frequency experiences a shift depending on the qubir,s state. The frequency of theresonator will be either @l + x or al - x, depending on ittne qulit is in the le) or lg) state, respectivery. ïhisproperty allows us t0 measure the qubit! state by probing the resonator with a microwave t'ne to infer its resonancefrequency' The figure shows the magnitude (left axis) and phase response (right axis) ofthe resonator for the tw'_qubitstates' lf we probe at either one of the shifted cavity frequencier, ,rr. rar,, irrr.ation will be encoded in themagnitude of the microwave signal. lf we probe at the bare cavity freqr,r,r,r,vnn ata : al,theinformation willinstead be in the phase ofthe microwayes.

To understand how dispersive readout is done, we,ll return to the Hamiltonian of our

Ïiïi* 
in the dispersive regime, Eq. (6.87). By colrecting cerrain *r',', *" can wrire

â0,.0 : hta', - yà,5àI â - !4ô,2" (6.102)

written in this way, it's clear that the resonator's frequency experiences a shift depending onthe qubitb state. The frequency of the resonator will be either'r, _ X or ar * X dependingon if the qubit is in the le) or lg) state, respectively (Fig. 6.1g). This property also allows usto measure the qubit's state by measuring the frequency of the resonator.one could imagine measuring the resonance frequency uy *"uru.rng at many differentfrequencies and fitting a resonance curve, but this is inefficient and unnecessary. It issufficient to probe the resonator at a single, welr-chosen frequency. perhaps the most obviousstrategy is to send a microwave pulse to the resonator .i"r.ÏtlË oissibre flrequencies,a, t x, and measure the resulting transmission intensity. For example, we could probe theresonator with a pulse of frequency (ùcr : o)r - x. If the transmission of the microwavesthrough the cavity is large, then we know that the frequency of the pulse matched that ofthe resonator, and so the qubit is in the lg) state. on the other hand, if the transmission ofthe microwaves is near zero, then we know that the qubit is in theie) state. Alternatively,we could probe the resonator with a frequency of a4 - ar.. In this case, the transmittedmagnifude will be the same for both quoit ,tut"r. However, the microwave pulse willexperience a phase shift as it moves thràugh the resonator, and this phase shift will nowdepend on the qubit states (This phase shift"wilr depend on the frequàcy of the resonator,and thus on the qubit's state - see Fig. 6.1g.) If the dispersive ,hift ;f ;; resonator is largecompared to its linewidth, the microwaves will experie nce a n f 2 0, _o frphase shift when

ie)
.{
a1
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the qubit is in the le) or lg) state, respectively. (Note that in this limit, most of the probe
signal is reflected since it is off-resonance with the shifted cavity frequency, implying that
it's better to meastire the reflected signal instead.) The change in phase can be measured by
cornparing the output pulse to a phase reference, e.g., using a mixer. While both approaches
are possible, the magnitude-based approach has some disadvantages. Most significantly, it
strongly entangles the state of the qubit with the state of the readout cavity, since the two
states of the cavity corresponding to the two qubit states are very different. This can be
undesirable.

We have reduced the problem of discriminating the qubit states to that of measuring
the phase of the microwave signal. How well we can do that depends on how large our
microwave signal is compared to how noisy our measurement apparatus is. That is, it depends
on the signal-to-noise ratio of a microwave phase measurement. Detailecl calculations and
experiments show that the power of the probe signal must be kept very low, in the tens
of photons level, otherwise the measurement backaction is too large and the qubit state is
destroyed before being measured. At this power, even the best semiconductor microwave
amplifiers are too noisy. This fact has driven the development of a new generation of
superconducting amplifiers, known broadly as Josephson parametric amplifiers. These
amplifiers now routinely operate near the standard quantum limit of noise, which implies
only adding a unit of vacuum noise (half of a photon) during the measurement process.

6.8 Noise

We conclude our'finai chaptel on a quantum hardware with a deeper dive into noise ancl
decoherence. In Section 3.7 we introduced the effects ofnoise and decoherence using the
phenomenological T1 and T2 d,ecay times added to the Bloch equations. In Section 6.8.1 we
explore the rnicloscopic physical processes that underlie T1 and 72. Using supercondnctine
qubits as an example, we will derive explicit forrnulas for Z1 and 22. Further, we discuss
prominent environtnental noise sout'ces in solid-state devices in Section 6.8.2. We ernphasize
that the general discussion and techniques in this section apply to other types ofqubits. This
discussion of noise is a natural bridge to onr final chapter on quantum benchmarking, which
discusses the ways in which we understand how well our qubits are performing.

6.8.1 Decoherence

The conceptual starting point for exploring decoherence is that we imagine a small quauhrn
system, e.g. our qubit, coupled to a very large quanflrm systern, i.e. the environment (ofien
called the "bath" or "reservoir" in this context). The total quantum system may evolve
coherently, but since we cannot keep track of a very large number (-1023) of degrecs of
fi'eedom in the environment, we are left to consider only its average properties. As ive
explained in Section 2.3.7,we express this by saying that we trace over the clegrees of
freedom of the environment. When we do this, the state of the qubit must be representeel by

a mixed-state density operator.

20s

This conceptuar description can be ffanslated into mathematicar fonn in a very generalway' Irr o'der'1o fittd cottvcttient analyrical .esurls. we rn.st make two ir)portant appr.oxi-mations' First' in the weak-coupting approxi-ation, we assume that the coupii'g betweenthe qubit and environment is weak, which impries that we can treat the coupling to tlieenvironment perturbatively. Second rv" urr.,-. that the environment is so large tliat its

;:ff,ï,rrï#lvuarfected 
bv irs inreraction with the qubir. rn rhis wav, rrre srate of

the env i ro nrn.,,, i,,,,"-; l;i:.it if ,ï.i'ff ,lii,i:"^îîii:ffi i ffi ïiï ;*: ,#; *
l[,Tï[ï]'n 

app'oxirnarion is varid. tn. enurronm"n, uno 
',, 

or'iJ.,., are said ro be

with these approximations (and some others), the equations of motion fbr the (reducecl)density rnatrix of tire qubit cau be der.ived, r.uJi,rg to a so_called master equation. The fulrquantum version of the Bloch equations, including T1 and, T2,*feon 
"*u_pt" of a masterequation' we will take a sirnprified pirysicar appr.oacl.r to derivi'g z1 and 12, givittgresuitsthat agree witrr the fulr master equation calcurations given the statecr approxinations.we take the Ham'tonian of tur qubit, ilç'x.,to depe'd on u,r,,,-Jb.,. of parameters(operators), )' (Î), such as the gate 

"t.,u.g", 
,", ài,rr. cpg. rhe .nui.on,,'.n, the' introducesnoise (fl,ctuations) i'these parame,"rr, ,ir"r, in turn causes n6 tofluctuate. This isthe physical source of decoherence. Since we

and environmenr is weak, we take tr," "otpri,,gi:ffi"ff"r:T*::'t",rtJ;:î,|::Jîi'jenvironrnent to have the fon-n

6.8 Noise

aHt_
aL 

: -ro 'D,

u":!xî,' AÀ 
..'". (6. t0J)

where ÂÂ is an operator representing the environmerrtal degrees of fi.eedo'r.To undet'sta'cl the effect of this co'pling, it is useful to now restrict the q,bit Harnilto'ia'to the two-level approximation. With thislestr.iction, we defi'e

(6. 1 04)

where the components of ô can be found as D; : _,r(ô,#) in the cornputational basis olthe q'bit. written in this form, it is crear that Drreads to fluctuations in the qubit enelgy,i'e' dephasing pararneteri zedby 22. conver.sely, the transv"rr" rorr.io,rents, D, and. Dr,

fi:"1i"tÏ::iif,i*ott 
tra'sitions, i'e' relaxatio' and excitation 1rî nnit. ,"r"'"."i#j

We can now directly write clown the relaxation r.ate, f4 : l/Tn,and excitation rate,lz : 7/Tt, using Ferni's golden rule (see Section 5.2.2),whichdàscrlues the transitionbetween discrete ievels of a system 1tn" qurritj .o,pled to a co'tinuum (the environme't).Fe'ni's goiden rule says that the tran;itio; .ot. is p.opo,'tional to the rnagnitucle sq'ared ofthe matrix element connecting the two discrete levels mLrltiplied by the de'sity of states ofthe continuum at the transition enelgy. We find

_TI R/E : ,r,2DiSx(ta,,), (6.105)
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where D1 - lD,lz + lDyl2 : 2l Ql K l1) | is the transverse component of ô and S1(ar)

is the
where sinc(x) : sin(x) /x' The sinc function arises from the firtering efîèct of integ rating L),,and indicates that fluctuations of aÀ within a bandwidth of - l /7 cotntributeto dephasing.To evaluate the integral, we need to specify the form 

"rs^6r. w. can show that theMarkovian approximation 
'rentioned 

above for the environment impties that ,s1(ro) isapproximately constant at relevant frequencies. (That is, the spectrum of the noise is ,,white,,
whrch implies that its correlation fun"iion is a delta function) with this approximation, we

/ t ^\e*p( -t (6,p(t)') 
) 

: exp(-rrr) (6.1 I I )
with the dephasing rate

r, : n (?)' t*,:, (6 r12)
we have finally recovered a simple exponential decay ofthe qubit coherence, consistentwith the form of the Broch equations. we note that this ..pure,, 

dephasing is added to thehomogeneous contribution ,l r /2, to give the total rate lj : I t /2* fr, which would beobserved, e.g. in a Ramsey experiment.
In fact' as we discuss in more detail below, solid-state systems often have noise thatis not white. Instead, so-cailed r/f noise (read..one over f',) is common, which has aspectrum 

^sÀ(ar) - 1f a'we've seen above that dephasing is dominated by the low-frequencycomponents of the noise spectrum, making 1/f noiseparticularry problematic for dephasing.The strong frequency dependence of t 1/ niisebreaks the assumptions of the Markovianapproximation, and we can no longer recover a simple exponential àecay. That is, we cannotdefine a simple dephasing rate, fr. still, we can calculate the decay and find instead aGaussian envelope:

*'(-; avrtrt): *o(-i (+)' ,,(^)",)), (6 1r3)

where (ÂÀ2) is the variance of A,1,.
we will now briefly discuss the quantum treatment of dephasing. To do this, we needto have a more detailed model of the environment. one standard approach is to treat theenvironment as a bath of harmonic oscilrators with a dense (approximatety continuous)distribution of frequencies. This approach is often called the spin-boson model, with atwo-level system (a spin or qubit) interacting with the bath of bosonic excitations of theoscillators. Describing the bath degrees of freedom as harmonic oscillators may seemcontrived but, in fact, it is rather generar. Even for a complicated nonlinear system, thedynamics of small deviations or fluctuations from the steady state can genericalry bedescribed by a harmonic oscillator. within the limits of the approximations fbr the masterequation, e'g' weak coupling, modelling the bath as harmonic oscillators is a well-justifiedapproximation.

with this description of the environmental bath, we can now write down a simple linearform for the noise operator:

aÂ : f{ri B! + x,î,,1, rc.Iru)

density offluctuations ofÀ, defined as

I roo
Sr(co): ^ I dz(AÀ(0)AÀ(z))exp(-ia.rz)

Zn J--
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(Note that other normalizations are possible.) The spectral density measures the strength of
fluctuations in À as a function of frequency but, through the fluctuation-dissipation theorem,
also quantifies the density of states in the environment which can absorb energy from the
qubit.

Classically, S(ar) is a symmetric function of frequency, but this is not the case in
the quantum description. In fact, for the environment in thermal equilibrium, we have
S(-dt)/S(co) : exp(*h.rolkT).We can interpret the negative frequency side of the spec-
trum as representing real excitations in the environment, which only have nonzero magnitude
at finite temperature. Conversely, the positive frequency side includes vacuum fluctuations,
which can induce spontaneous emission (relaxation) even at zero temperafure, and repre-
sents the ability of the environment to absorb energy from the qubit. At finite temperature,
it is the quantity lr : llT: fn * f6 that enters into the Bloch equations. Atzero
temperature, f t : fR and is often referred to as the relaxation rate, even though it generally
parameterizes the efTects of both relaxation and excitation.

The treatment of dephasing depends on the origin of the fluctuations. That is, we can
imagine À as a purely classical control parameter, like a gate or flux bias, with purely
classical fluctuations. Alternatively, we can treat the fluctuations as arising from quantum
fluctuations in the environment. We outline both treatments here.

In the classical case, dl, : nl. and its coupling through D, justproduces fluctuations in
the qubit eneryy level. A superposition of the qubit states then acquires a phase

(6.106)

(6.r01)I,'ç(t) : ardt': (ron)t+6ç(t)

with

D,ft6çtt7:1 
J, 

o^rtYt. (6.10s)

We see then that the fluctuations in the qubit's energy lead to a random walk in the qubit
phase. We can compute the average of this phase for an ensemble of measurements, finding

(exp(iôrp(1))) :.-o(- j(ô,p(/)'z)), (6.t0e)

where we have assumed that the fluctuations of AÀ have a Gaussian distribution. Importantly,
averaging over the ensemble of noise converts the oscillatory function on the left to a

decaying exponential function on the right.
We are left, then, to calculate the variance of the phase fluctuations (Sç(t)2). We can write

the general result

(6ç(t)2t: (+)' f* a,s^{,)stnc2(at1z), (6.110)
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which is appropriate in the weak coupling limit. Hete, ô, is the annihilation operator for the
nth environmental oscillator and À,, is its coupling coefficient.

Conceptually, the quanturn caiculation of dephasing proceeds in a very similar lnanner
as the classical calculation, although the rnathematical details are beyond the scope of this
book. In the end, though, we arrive at the same form as in Eqns. (6. r I l) and (6.1 l2), the
difference being that S1(co) is now interpreted as a quantum spectral density, which includes
quantum noise. The most important difference, then, is that the quantum treatment predicts
a finite dephasing rate even at zerc temperature, where the classical noise would go to zero.

Everything stated so far applies equally weil to any qubit. As a concrete example, lets
consider how classical noise in n*, the scaled gate voltage, effects the CPB or transmon,
both of which are described by the Hamiltonian in Eq. (6.50). This noise could come fi.orn,
e.g. noise in the room-temperature electronics used to control the gate voltage. We can also
use noise in nr to model (classical) charge noise in the qubit's environment, which will
couple in the same way.

The first step is to calculate the components of D. we find first of all that a ii 1 anr :
-88c61- ir"). Projecting onto rhe qubit subspace {le),lg)}, we find

Dt: t6Ecl@lî'le)l ; D,- -8Ec(l\a?| _ klû lg)). (6.1ls)

In the CPB regime (Ec )> Eù, it is instructive to further simplify by explicitly calculating
the matrix eletnents in these expressions. To do so, we first write the qubit eigenstates in the
charge basis {l l), l0)} as

Further, consider tt
0 : r / 2, rc,' ";. i;: ii,"o î Jl#" l: ; ̂

i 
;::,, a i J#,: "y),i f,ï,ffi :fri:makes sense, because here tÀe qubit states u." u"., crose to pure charge states, such thatfluctuations of the gare^charge predomir*t 

iy"r_" 
the qubit ;nù;:causing dephasing.conversely, at nr - I /2 we finà that fe : 0ït ite ip76 ir^.u^'. iîâ,. *"can undersrandthat l, : 0 at this point in two ways. Ëirst, referring io rig. 6.1ô, ;" ;"" that ôotn f ônr :0 at this point, so the qubit energy is insensitive (to first order) to crrarge fluctuationsat this bias point. Second, we can observe that the matrix elements that go into D, inEq' (6' 1 15) are jusr rhe expectation values of the normalized ,hd ffi:il; ffJl

:1ru'ffiJlîl;,1ï,"n""e noise i' j;;;;p"rtionar to the cridrence or the charse

n oi s e dÀ e sn,, ..*, 
" 
àxî;#,i, ;l]1;# ïiî :: :T "xî[ i:ïï;; ",,;*:.:i; *itra decoherence-free sutrspace. Because of the

s ourc e s in rhe s or i d- s tate environ menr, as de s cri *i iffift fi 
l;ir 

:ï,'"",il;1î1 fiî:
;:;ït*ttt" 

point, or "sweet spot," has been critical to the advancJm.* orrup"..ondu*ing
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6.8.2 Physical Noise Sources

In this section we review a number of di fferent physical noise sources that affect solid-state qubits. This includes superconducting qubits, but also applies to other types, e.g.semiconductor quantum dots

0 : cos-l (6.1 1 8)

We then find D1 : SEcl sin 0 | and D, : -\Ec cos 0, which gives the rates

.^,__U 1 . 2n . "' K/L - 7,f 
E?sin'05,,r1Ia,,): 

fia'rc!sinz ?Sy1*.arl, (6. I lc))

"_44T.,)^^1,2- 
E? cos' 0Srr(.q - 0) : prt ri cosr gSr (cr.,o - 0). (6. 120)

where on the far right e is the electron's charge, rc, : Cgf C, is the coupling of the CpB to
the fluctuations, and S7(ro) is the spectral density ofthe (unscaled) voltage fluctuations.

We can make a couple of comments on the form of these rates. First, if we take the
magnitude of S(ar) as a given, we can still control the decoherence rates by reducing the
coupling of the qubit to the environment by reducing r". If we only had one gate, this would
also, fol instance, reduce the Rabi fi'equency ofthe qubit for a given drive strength, that is, it
would increase the single-qubit gate time of the qubit. This creates an engineering trade-off,
balancing gate speed versus decoherence rate. However, we usually have the ability to
increase the output power of the room-temperafure microwave generator that drives the
qubit in such a way as to keep the Rabi fi.equency unchanged.

Dissipative elements in our quantum circuit, e.g. bias resistors, wilr adcl noise to thesystem. Trris is a fundamentar result known as the fluctuation_dissipation theorem. Incircuits' we typically describe dissipation in terms of resistors, and this noise is referred toas Johnson-Nyquist noise. Ciassically, or for frequencies ar ( kT/h,,thespectral density ofthis noise is white and p.oportional à t"mperature. The quantum versio' fbr. a )) kT /h isvacuulll noise' with a spectral density proportional to f.equency forpositive fi.equencies andapproximately zero for negative fr..qu.n.i.r. For.a resistance, R, which can also be the real

#ii:ïljiliedance 
F.eZQo),rhe furl quantum specrral density of the vorrage flucruatio's

sy(a) : hWl 
rorr 

/ ho \ I
2' L"'"'l, ,o ) *')o (6.t2tt

we note that even though the noise is not white in the quanturn regirne, its variation istypically small enough in the bandwidth of the coupling to the q'bit that the Markovianresults appiy' That is, we can define simple exponeltial decoherence rates fbr Joh'son_Nyquist noise.
In circuit QED' the microwave transmission line used to couple to the qubit is taken tohave a real 50 Ç2 impedance and therefor.e g"n".ut", Joh'son-Nyquist 

'oise. 
I' fact, wetypically operate circr-rit QED systems in th-e dispersive regi're ,à inut the readout cavityfilters the Johnson-Nyq'ist noise of the transrnission line. rf the cavity were instead on-resonance with the qubit, it would enhance the r

rirerime. rrris is r.,'o*, as the purcer errect. .;ifïHiiiï,i:*ï;ïî,id::iJ

ld : cos(?12) i0) + sin(?12)11),

le) : srn(0 12) l0) - cos(0 12) 11) ,

(6.1 1 6)

(6.111)

with the mixing angle

I 4arl - 2ns)l

tr*hl
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additional cavities in series with the readout cavity to further lilter the Johnson Nyquist
noise. These are often referred to as Purcell filters.

A ubiquitous forrn of noise in solid-state systems is charge noise, which results in
fluctuations in the â operator of our Hamiltonian. While the microscopic origin of charge

noise isn't fully understood, it is generally thouglrt to arise from mobile charges on the

surface of the device or substrate for instance, fi'om charged defects moving between two

defect states. Charge noise has an approximately 1lf spectrum. It can be shown that a 1//
spectrum arises naturally frorn an ensemble of two-state fluctuators distributed randomly

in fi'equency. Each fluctuator contributes a Lorentzian spectrum centered atf : g,vti11't u

bandwidth corresponding to the inverse switching time of the fluctuator, 1/2.Incoherently
adding these individual spectra produces an ensemble 1// spectrum. In fact, in detailed

measurements of charge noise, one can often find one or two charge fluctuators that are

strongly coupled to the qubit, such that their Lorentzian spectra standout ftom the l lf
background.

Charge noise has been studied for decades in many types of systems, including supercon-

ducting and semiconducting systems, with a wide variety of materials. The magnitude has

been found to be almost rnystically universal, which can be expressed as

. /2r x lHz\/osç(at:^b\ . ) . (6.122)

whereA2nx ç10 
3e)2 lHzandyg ry l.Tlieintlansigenceofchargenoisewasthemotivation

for the development of the transmon, which is relatively insensitive to charge noise compared

to the CPB.

Another ubiquitous form of noise is flux noise, and it results in fluctuations in the t/
operator of our Hamiltonian. It is most problernatic for flux qubits, but also affects tunable

transmons. Like charge noise, flux noise has an approximaTely llf spectrum. Also like
charge noise, its rnicroscopic origin is not well understood, although it is generally thought to

arise fi'orn magnetic defects, such as defect rnolecules with a net spin, that randornly change

their orientation. The ensernble of two-state magnetic fluctuatols leads to the ensernble l//
flux noise, similar to the story lor charge noise. As a last similarity, it is aiso rnystically

universal, with a spectral density given by

so(ru):AL(2î(\tHz\Y*. (6.r2i)
\@/

where 12. x (l tLAùz Fz and y6 È 0.8-1.0.
While rnost of the electrons in the superconductol folm into Cooper pairs, some electrons

remain unpaired. These excitations from the ideal superconducting ground state are known

as quasiparticles. (In fact, they are coherent superpositions ofelectrons and holes.) At finite

temperatures, the number of quasiparticles in thermal equilibrium is determined by basic

thermodynamics. At dilution refrigeratol temperatures in alurninum, this thermal density

should be vanishingly small. Experimentally, the density of quasiparticles is universally

observed to be orders of magnitude higher than the thermal number. Stray black-body

radiation leaking from higher temperature stages of the cryostat is one contribution to

this nonequilibrium background. However, even in the most carefully shielded systelrs

a background remains' one potential culprit is ionizing radiation, either frorn natural,terrestrial radioactivity or fi.om cosmic rays.
Quasiparticles can cause loss in a variety of ways. I' superconducti'g fil'rs they ca'absorb and dissipate eneryy fi'om the rnicrowave fields of reso'ators and qubits. They ca'also tunnel through the Josephson junctions tliat make up the qubits, exchanging ener€ywith the qubit and causing relaxation or excitation.
circuit QED introduces another source of error': fluctuations in the resonator,s residualphoton number' Ideally, when not measuring the qubit, its readout resonator would haveexactly r : 0' However' there can often be a small residual photon population due to eitherstray thermal photons or residual readout photons. whire the photon number may rrave awell-defined average numbet, it will generaity atso fluctuate. In the dispersive regime, thesephotons affect the qubit through the Harniltonian,

4i.p : l,a',à*à -'$u, - ltxo,ùtu. 6.124)
The last term can be i'terpreted as a shift oir tn. qut ;t fr.equency proportionar to thenumbet'of photons in the resonator. Therefore, fluctuations of the photon number producefluctuations ofthe qubit fiequency, leading to dephasing. In detaii, the spectral density isLorentzian with a bandwidth of the cavitf linewiclth, r. Since, typically, r (( ar, thesefluctuations don't cont.ibute to relaxation. ôonue.rely, since r is generally rnuch larger tha'the inverse measurement tirne, this noise tooks .n .tiu.tf ;ilil;;ephasing inregrarsabove, meaning that its'oise can be described by a simple exponential dephasi'g rate.Mitigati'g photon fluctuations is typicalry done witrr better cryogenic engineering. Thegoal here is to reduce the thermal photon fluctuations that con-re fi.o=m the warmer parts ofthe fiidge' This type of refinetnent includes adding materiar to absorb stray thermal photons,addirg dissiparive firters ro assisr wirh rhermarilatio, ,ra 

"oi',ri;;;';r,;,,;;;;;;il'clyogenic atten ualors.

6.9 Conclusion

we concltide this chapter with a sttmmary of how we can use superconclucting circuitsfor quantum computing (Section 6.9.1) ani a cliscussion on the strËngths ancl weaknessesof conrputing with superconducting circuits (Section 6.9.2). Forfurtier reading on super_conducting quantum computing, see Blais ei:t aL (2021) or Krantz et ar. (2019),and onsupe.conducting physics, see Ti'kham (2004) or van Duzer and rurner (r9gr).
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6.9.1 Summary

In superconducting qubit quantum computing, the qubits are encoded in the eigenstates ofsuperconducting cilcuits whose energy spectrum is discrete, well separated and anharmonic.A Josephson junction typically provides this anhaunonicity. Many qubit architectures havebee'studied, and the rransmon has been one ofthe -ort ,u.".rriui il ;; date for quanrum



Table 6.1 An overview of how a 5ystem of supereondutting qubits can satisfy each 0f
tbe DiVincenzo criteri* for quanturn icrnpiltâtion
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'6.2

6.10 Exercises

6.1 Energy Scales: Here we will consider some typical experimental energy scales ofsuperconducting qubits.

Criæria Realirstiot

available' High fidelity has also been achieved when performing qubit measurements. Afinal major appeal of superconducting qubits is that they -" r"uriË"i"d using techniquesabeady used for silicon-based .orprrÀ cnips. rrre hope ihen is that the strucfure is alreadypresent to scale these quantum computers like we have crassical computers.
superconducting qubits also have disadvantages. First, they require being cooled to nearabsolute zero temperatures. The dilution refrigerators necessary to do this are costly and usean exotic gas, 3He, which doesn't occur io rur!" quantities in nature and has to be producedthrough an expensive process. The second challenge_ofsuperconducting qubits is that theygenerally have shorter coherence times than trapped ions. However, this drawback can becompensated for by their much faster gate times. Inthe early days of superconducting qubits,the decoherence times w€re very short 1-ns;. they,re now on the order of milriseconds andstill improving' The qubits' added tunabitity also brings its own challenge. Since the qubitsare manufactured' there are variations in theirproperties and questions aiout r"producibility.This is unlike happed ions, in which all thelons used are inherently identical. An issuewith the popular transmon qubit is its rimited anharmonicity, which requires care whenperforming qubit conhol and gates to avoid leakage.

6.10 Exercises

l. A scalable physieal systerr

witâ well-cbaracterizsd Subils

2. Tlre abitity tn initiafize'the
saæ of the qubits to a simple

flduciÈl state

3. A miveæal s€t of quanû.m

gates

4. A qubit-speciûc measur€mmt

capability

5. Long relevant decoherence

times, much longer tlar the

gate operationtime

. Qr$il elesEonie states of a supereoductirgcirrcuit

Cooling in adiltrtion refrigerator

One-qubit gaæs: re$onant misrowaves drive Rabi rotations

Tunqubit gate: a combination of fast tuning pulses aod

microwave drives, or ouly microaranes

Dispersive readout tlrough a coupled resonator

Decoheæacetime: -l ms

Onequbit gaæ tiae: 10-30 ns

Tboaubit gaæ tims 10-100 ns

computing. We couple the transmon to a microwave waveguide resonator when controlling
and measuring it. The study of this interaction is known as circuit QED, and the interaction

is given by the Jaynes-Cummings Hamiltonian. To initialize the transmon, we cool it using
a dilution refrigerator. Single-qubit control is achieved by applying microwave pulses to
the qubit. There exist numerous proposals for two-qubit gates. Gates can be implemented,
for example, by adjusting the frequency of tunable qubits or by driving the qubits with
microwaves. Finally, sources ofdecoherence for superconducting qubits include Johnson-
Nyquist noise, charge noise, flux noise, quasiparticles, and fluctuations in the resonator's

residual photon number.

An overview ofthe contents ofthis chapter is provided in Table 6.1.

6.9.2 Relative Strengths and Weaknesses

There are certain key advantages to using superconducting qubits. A notable one is that,

because the qubits are fabricated, we achieve a degree oftunability to the their properties,

such as their energy levels and coupling strength. This feature also makes superconducting

qubits more apt for quantum simulations. This tunability is not present when we are left
to choose from the qubits nature gives us. On a related note, superconducting qubits can

be made to have much larger dipole moments than natural atoms and thus more strongly
couple to one another and to external controls. This has allowed for gates to be implemented

faster than with trapped ions, while maintaining similar degrees of fidelity. These gates are

also controlled with microwave technologies, which are well developed and commercially

(a) A typical tunnel junction has a capacitance per unit area of 50 fF / stm2 .Give thedimensions of a square tunnel junction with a Cooper_pai."ùrring energy ofEc/kn = 30 K.
(b) A typical current density for an aruminum Josephson junction is J" - 100 Ncm2.Give the dimensions of a Josephson junction with a Josephson energy of Er /h :5 GHz.
(c) Consider a CpB with E7 /h : S GHz biased at its degeneracy point ns : | /2.1fthe cpB is at z = ,lg_ -K, what is the population of the fust excited state whenthe system is in equilibrium? what temperature is needed for the population ofthe ground state to be greater than99%i
The Josephson inductance: The constitutive rerations ofa Josephsonjunction arethe Josephson relations

I-
dô

dt

Ic

:
ô)sin( (6.12s)

(6.126)
2e 'r
h

By comparing these to the constitutive relation for an inductor, show that the Josephsonjunction acts like an inductor for smalr oscilations. what is trre exfression for theinductance, the so-called Josephson inductance? With -rc : 100 A/cm2, what is theJosephson inductance of a Josephson junction that is 200 nm o, ioô"îr'rs this a bigor small inductance?


