Chapitre 0

Introduction

?17tfwn

CDPetrescu 0/1

Chapitre 0

Le contexte

De nos jours, dans une société ou la digitalisation est devenue incontournable, le calcul scientifique est présent
(dans une mesure plus ou moins importante et d'une maniere plus ou moins transparente) dans la plupart des
activités professionnelles (l'ingénierie, les sciences fondamentales, la médecine, les sciences humaines et

sociales, les beaux-arts, le divertissement et les jeux, etc.), voire non professionnelles.

Le calcul scientifique utilise de plus en plus l'informatique qui intervient de manicre essentielle dans la
résolution de problemes par des méthodes numériques, la modélisation et la simulation numérique, I'analyse

et le traitement des données, etc.

Il convient de souligner le fait que l'informatique :
» ne se réduit pas seulement a I'algorithmique ou a la programmation ;
» représente un domaine extrémement vaste ou la science est difficilement séparable de la technologie et

la théorie est étroitement liée a la pratique.

CDPetrescu Introduction 0/2

Chapitre 0

Le cours d'Informatique et calcul scientifique (ICS)

Les principaux objectifs du cours d'ICS :
» comprendre les fondements de la programmation en langage Python ;
» acquérir une pensée algorithmique ;

» comprendre et utiliser des méthodes numériques élémentaires.

A la fin de I'année, I'é¢tudiant sera a méme de concevoir et d'analyser des programmes qui font intervenir des
algorithmes et des méthodes numériques codés en langage Python.

Le contenu du cours d'ICS est organisé en quatre parties :
1. Programmation Python
2. Algorithmique
3. Bibliotheques scientifiques et graphiques Python
4. Méthodes numériques

La bibliographie (facultative et minimale) pour la premiére partie :
» Documentation for Python 3 (https://docs.python.org/3/) ;
» G. Swinnen, Apprendre a programmer avec Python 3, Eyrolles, 2012, ISBN : 9782212134346 ;
» J. Guttag, Introduction to Computation and Programming Using Python : With Application to
Understanding Data, Second Edition, MIT Press, 2016, ISBN : 9780262529624 ;
» J. P. Forestier, Programming with Python 3, OSYX, 2017.

CDPetrescu Introduction 0/3

https://docs.python.org/3/

Chapitre 0

CDPetrescu Introduction 0/4

Chapitre 1

Notions générales et caractéristiques du langage Python

Pt;tiwn

CDPetrescu 1/1

Chapitre 1

Langage de programmation

Remarque : le contenu de ce premier chapitre sera de mieux en mieux compris au fur et a mesure de

I'avancement du cours théorique et, surtout, des travaux pratiques associeés.

Un langage de programmation est :
- un langage formel qui représente un code de communication entre un humain et un ordinateur ;
- destiné a écrire des programmes ;
- compos¢, comme les langages naturels, d'un alphabet, d'un vocabulaire ainsi que des regles de

grammaire (définissant surtout la syntaxe) et d'une sémantique associée.

Les langages dits de bas niveau sont proches du processeur et au plus bas niveau on trouve le langage machine
qui contient des instructions qui sont directement exécutables par un processeur spécifique (central ou

graphique).

Ces langages sont tres efficaces mais ils sont €crits pour et utilisés par des ordinateurs spécifiques.

CDPetrescu Notions générales 1/2

Chapitre 1

Langage de programmation (suite)

Les langages dits de haut niveau utilisent une abstraction ¢€levée et ignorent les détails spécifiques a un

processeur, voire un ordinateur, en particulier.

Ces langages sont :
» plus proches de la logique humaine (voire du langage naturel) ;

» ne dépendent pas d'un certain type de processeur ou d'ordinateur.

En revanche, ils sont moins efficaces, mais il y a des techniques qui peuvent pallier cet inconvénient

(abstraction penality en anglais).

Exemples de langages de programmation de haut niveau : Python, Java, Scala, C++, C#, etc.

En 1997, on comptait déja environ 2'350 langages de programmation.

CDPetrescu Notions générales 1/3

Chapitre 1

Programme - code - logiciel

Un programme informatique :

» est un ensemble d'instructions qui sont destinées a étre exécutées par un ordinateur afin de réaliser une
certaine tache ;

» est écrit normalement (par un programmeur humain ou par un autre programme) dans un langage de
programmation ;

» correspond le plus souvent a 'implémentation d'un certain algorithme.

Si le programme est :

» lisible par un humain (compétent), il s'appelle code source ;

» exécutable directement par l'ordinateur, il s'appelle code machine.

Un logiciel (software en anglais) est un ensemble de programmes (ou un seul programme) destiné a fournir

un service informatique.

En général, un programme est écrit par un programmeur, il est de taille relativement réduite et destiné a une

utilisation restreinte.

En revanche, un logiciel est écrit par une équipe de développeurs, a une taille consistante, est destiné a de

nombreux utilisateurs et dispose d'une documentation adéquate.

CDPetrescu Notions générales 1/4

Chapitre 1

Logiciels

Il y a des logiciels :
» gratuits ou payants ;
» ouverts (utilisant des standards et/ou formats ouverts) ou propriétaires ;
> libres (qui permet d'accéder au code source, d'étudier et d'adapter le fonctionnement, de redistribuer des

copies et d'améliorer le logiciel et de publier les améliorations) ou pas.

Quelques exemples de logiciels :
» un systéme d'exploitation ;
» un navigateur (comme Firefox, Chrome, Edge, Safari, etc.) ;
» un antivirus (comme McAfee, Norton, Bitdefender, Panda, etc.) ;
» un logiciel de communication (comme Discord, Telegram, WhatsApp, Skype, Zoom, etc.) ;
» une suite bureautique (MS Office, LibreOffice, Google Documents, iWork, etc.) ;
» un logiciel photo (Photoshop, Gimp, Paint, Lightroom, etc.) ;
» une base de données (MySQL, SAP, Access, Oracle, PostgreSQL, MS SQL Server, etc.) ;

» un jeu vidéo.

CDPetrescu Notions générales 1/5

Chapitre 1

Compilateur vs interpréteur

Le compilateur (est lui-méme un programme qui) traduit (ou transforme) le code source ¢crit dans un
certain langage de programmation (de haut niveau) en un code dit code compilé (ou code objet) écrit :

» soit en langage machine et, donc, exécutable directement par I'ordinateur ;
» soit en code intermédiaire (ou bytecode ou code objet) qui est destiné a un autre programme (nommé

parfois machine virtuelle VM - virtual machine en anglais) qui a un interpréteur intégre.

L'opération de traduction faite par le compilateur et décrite ci-dessus s'appelle compilation (voir 1'i'mage a
la page suivante) et elle :

» a lieu a un moment appelé couramment compile time ;

» réalise I'analyse syntaxique et I'analyse sémantique du code source et les éventuelles erreurs trouvées
s'appellent "erreurs a la compilation" ;

» génere le code compilé.

Un interpréteur :

» parcourt progressivement le code source ou le code intermédiaire ;
» fait une transformation similaire au compilateur (et produit surtout du code machine exécutable) mais
exécute les instructions "a la volée" ;

» permet que l'exécution du code se réalise au fur et a mesure.

CDPetrescu Notions générales 1/6

Chapitre 1

Exécution - runtime

Un programme réalise la tache pour laquelle il a été congcu au moment ou il est exécuté (directement ou apres

compilation et/ou interprétation) par le(s) processeur(s) de l'ordinateur et ce moment s'appelle couramment

runtime.

Les éventuelles erreurs produites a 1'exécution s'appellent "erreurs a 1'exécution" et celles qui peuvent étre

traitées s'appellent couramment "exceptions".

Code source ByteCode

& Uj compilateur VM

\‘x\i@g— S I 0100 >

CDPetrescu Notions générales 1/7

Chapitre 1

IDE

Un environnement de programmation intégreé (Integrated Development Environment — IDE en anglais) est
un ensemble d'outils qui facilitent le travail des programmeurs (aka développeurs ou codeurs) afin

d'augmenter la productivité dans la création des logiciels.

Plus précisément, un IDE prévoit au moins :
» un éditeur de texte (le plus souvent avec la coloration syntaxique — syntax highlighting en anglais, la
complétion automatique - code completion en anglais, etc.) ;
» une facon simple (par exemple un clic sur un bouton) pour compiler, éditer de liens et/ou exécuter un
programme ;
» un débuggeur en ligne ;
» d'autres outils (pour la création des interfaces graphiques, pour des tests automatiques, pour I'analyse du

code, pour le controle des versions, etc.).

Certains IDE sont dédiés a un langage de programmation en particulier tandis que d'autres peuvent étre utilisés

avec de nombreux langages différents.

CDPetrescu Notions générales 1/8

Chapitre 1

Langage Python
Guido van Rossum est le principal auteur du langage Python.

Il est assisté par une équipe de développeurs du noyau (core developers en anglais) qui ont un acces en €criture

au dépot de CPython (voir plus bas).

La fondation Python Software Foundation (PSF) :
» est une société a but non lucratif qui détient les droits de propriété intellectuelle du langage de
programmation Python ;
» a pour mission de "promouvoir, protéger et faire progresser le langage de programmation Python, et de
soutenir et de faciliter la croissance d'une communauté diversifiée et internationale de programmeurs

Python".

La version de référence du Python est €crite en langage C et s'appelle CPython.

CDPetrescu Notions générales 1/9

Chapitre 1

Implémentations et distribution Python

Il y a plusieurs implémentations et distributions Python :

» CPython est I'implémentation de référence de Python écrite en langage C, produite par le groupe central
responsable de toutes les décisions de haut niveau concernant le langage Python et disponible a 1'adresse
python.org ;

» Anaconda est une distribution gratuite et open-source des langages de programmation Python et R pour
le calcul scientifique produite par Anaconda Inc. et qui vise a simplifier la gestion et le déploiement des
packages ;

» PyPy est un interpréteur Python écrit en Python, qui remplace l'interpréteur CPython et utilise une
compilation juste-a-temps (JIT) pour accélérer 1'exécution des programmes Python (avec des gains de
performances significatifs) ;

» Jython est une implémentation de Python pour la JVM (Java Virtual Machine) et qui peut accéder a
'environnement de développement Java ;

» IronPython est une implémentation de Python pour la CLR (Common Language Runtime) et qui peut

accéder a I'environnement de développement .Net.

CDPetrescu Notions générales 1/10

Chapitre 1

IDE libres qui supportent Python
» Jupyter Notebook (Windows, Linux, MacOS) (intégré ou pas dans Anaconda) :

o est destiné a la fois aux débutants et aux professionnels qui travaillent surtout dans la science des
données (Data Science) ;

o supporte plus de 40 langages de programmation (notamment les langages Julia, Python et R qui
ont donn¢ le nom de cette application web) ;

o apart I'éditeur, est muni aussi d'outils €ducationnels et de présentation ;

» PyCharm (Windows, Linux, MacOS X) contient une API (Application Programming Interface) qui peut
étre utilisée par les développeurs pour écrire leurs propres plugins Python pour qu'ils puissent étendre les
fonctionnalités de base ;

» Spyder (Windows, Linux, MacOS) est écrit en Python pour Python et disponible via Anaconda ;

» PyDev est un plug-in pour Eclipse (Windows/Linux/MacOS) qui peut étre utilisé¢ avec Python, Jython et
[ronPython ;

» Visual Studio Code (Windows, Linux, MacOS) est un environnement open-source développé par
Microsoft et qui supporte plusieurs langages de programmation, y compris Python ;

» Xcode (Mac OS X 10.5 ou plus récent) est un environnement gratuit développé par Apple et qui supporte
une dizaine de langages de programmation, y compris Python ;

» IDLE (Windows/Linux/MacOS) est un éditeur par défaut fourni avec Python et dont le nom est une
abréviation pour Integrated Development and Learning Environment.

CDPetrescu Notions générales /11

Chapitre 1

Historique et caractéristiques du langage Python

Versions Python — Historique :

» début de l'implémentation en décembre 1989 ;

» version 1.0 - janvier 1994 ;

» version 2.0 - octobre 2000 ;

» version 3.0 - décembre 2008 ;

» version 3.9 - octobre 2020 ;

» version 3.10 - octobre 2021 ;

» version 3.10.7 - le 6 septembre 2022 (derniére version).

Python est un langage :
» généraliste (mais largement préféré aujourd'hui a d'autres langages dans certains domaines mentionnés
a la fin de cette liste) ;

» de haut niveau ;

> interprété :
o le code peut étre (directement) interpréteé a I'exécution ;
o cependant, le code peut étre compilé (transformé en bytecode) avant I'exécution (ce qui améliore

les performances).

CDPetrescu Notions générales 1/12

Chapitre 1

Caractéristiques du langage Python (suite)

Python est un langage :
» qui utilise un typage dynamique fort :

o pas de vérification de type a la compilation (donc pas de typage statique) ;
o les types sont vérifiés a I'exécution ;

> orienté objets :

o cependant, on peut €crire de petits scripts sans créer ni instancier de classes ;
o permet de programmer aussi en style fonctionnel ;
» indépendant de plateforme (cross-platform en anglais) : Python fonctionne sur les principales

plateforme hardware et avec les principaux systémes d'exploitation ;

» utilisation des indentations pour structurer le code ;

» existence d'une multitude de bibliothéques (libraries en anglais) standard (écrites ou, au moins,
accessibles en) Python et utilisables dans les plus divers domaines et notamment en :

= science des données (Data Science en anglais) ;

= apprentissage automatique (Machine Learning en anglais) ;

= intelligence artificielle (Artificial Intelligence en anglais) ;

= techniques d'exploration de données massives (Data Mining en anglais).

CDPetrescu Notions générales 1/13

Chapitre 1

Python aujourd'hui

L'application IEEE Spectrum Top Programming Languages synthétise 11 métriques provenant de huit
sources pour arriver (en pondérant et en combinant ces métriques) a un classement géneral de la popularité

des langages de programmation.

Les sources couvrent des contextes qui incluent les échanges sur les médias sociaux, la production de code

open source et les offres d'emploi.

Pour I'année 2022, Python est en téte de liste (devant les langages C et C++).

S

Python

9]

96.8
C++ 88.58
86.99

7]
H*

|‘

Java 70.22
SQL 47 .37
JavaScript 40.48
18.92

=

CDPetrescu Notions générales 1/14

Chapitre 1

Python aujourd'hui (suite)
L'index TIOBE est calculé et mis a jour une fois par mois par l'entreprise TIOBE Software BV (basée aux

Pays-Bas) et il mesure aussi la popularité des langages de programmation.

Le calcul est basé sur le nombre de pages web retournées par les principaux moteurs de recherche quand on
recherche un certain langage de programmation et le classement prend en compte le nombre d'ingénieurs

qualifiés dans le monde, de cours et de fournisseurs tiers.

Au mois de septembre 2022, Python se place en premicre position (devant les langages C et Java).

Sep 2022 Sep 2021 Change Programming Language Ratings Change
1 2 = Python 15.74% +4.07%
2 1 v G c 13.96% +213%

3 3 u Java MN72% +0.60%
4 4 \ﬂ C++ 9.76% +2.63%
5 5 @ C# 4.88% -0.89%
6 6 @ Visual Basic 4.39% -0.22%
7 7 JS JavaScript 2.82% +0.27%
8 8 @ Assembly language 2.49% +0.07%

CDPetrescu Notions générales 1/15

Chapitre 1

Python aujourd'hui (suite)

Dans la figure ci-dessous, on peut voir l'historique de 1'évolution de la popularité des langages de

programmation et, en particulier, du langage Python selon l'index TIOBE.

30

25

20

Ratings (%)

2002

Python

== Visual Basic

CDPetrescu

2004

TIOBE Programming Community Index

2006

—
JavaScript

2008

Source: www.tiobe.com

2010 2012

Java
== Assembly language

Notions générales

2014

C++
= SQL

Thursday, Sep 1, 2022
Python: 15.74%

N

V‘!

2016 2018 2020 2022

w CH#
PHP

1/16

Chapitre 1

Compléments

Motto : La programmation est la branche la plus difficile des mathématiques appliquées. (Edsger W. Dijkstra)
Remarque : on présente ci-dessous quelques €léments de vocabulaires utiles par la suite.

Informatique
L'informatique est définie dans le Larousse en ligne comme la " science du traitement automatique et rationnel
de l'information considérée comme le support des connaissances et des communications" ou, encore,

I'ensemble "des applications de cette science, mettant en ceuvre des matériels (ordinateurs) et des logiciels".

Le terme informatique :
- a ¢té utilisé pour la premicre fois en 1962 par Philippe Dreyfus, ancien directeur du Centre national de
calcul ¢électronique de Bull ;
- peut étre vu comme une combinaison des termes "information" et "automatique" afin de désigner le
"traitement automatique de l'information" ;

- aplusieurs équivalents anglais comme informatics ou computer science.

CDPetrescu Notions générales 1/17

Chapitre 1

Informatique et ordinateur

Concernant le syntagme largement utilis¢ computer science, le professeur Hal Abelson du MIT mentionnait :

" Computer science is no more about computers than astronomy is about telescopes".

Dans cet esprit, selon Wikipédia, l'informatique "est un domaine d'activité scientifique, technique, et
industrielle concernant le traitement automatique de Il'information par I'exécution de programmes

informatiques par des machines ...".

Ordinateur

n

L'ordinateur est défini dans le Larousse en ligne comme une " machine automatique de traitement de
I'information, obéissant a des programmes formeés par des suites d'opérations arithmetiques et logiques."
Le terme ordinateur :
- a éte utilisé pour la premicre fois en 1955 par IBM France (suite a la suggestion du professeur de lettres
Jacques Perret) ;
- peut étre vu comme dérivant du mot "ordonnateur" (c'est-a-dire celui qui "met en ordre") ;

- acomme équivalent anglais computer (qui ne doit pas donc étre traduit dans le sens mentionné ci-dessus

par calculateur ou calculatrice).

CDPetrescu Notions générales 1/18

Chapitre 1

Hardware et software

Hardware

Le hardware est un anglicisme qui désigne le matériel informatique dans son ensemble.

Le hardware correspond aux parties physiques (électroniques, €lectriques, magnétiques, mécaniques, etc.) de
'ordinateur comme : le boitier, la carte mere, le(s) processeur(s), d'autres cartes (son, vidéo, réseau, etc.), le
clavier, I'écran, les unités de stockage de données (comme les disques HHD ou SSD, les barrettes de mémoires

RAM, les clés USB), etc.
Software - Logiciels
Le software est un anglicisme qui désigne en frangais les logiciels dans leur ensemble.

Le software est une collection d'instructions et d'informations qui gerent le travail d'un ordinateur, comme :
des programmes, des bibliothéques (libraries en anglais), de la documentation en ligne, des données

numeériques, etc.

CDPetrescu Notions générales 1/19

Chapitre 1

Systéme d'exploitation

Systeme d'exploitation
Un systeme d'exploitation (operating system en anglais) est un logiciel dit systéme qui gere le hardware et
les ressources software de I'ordinateur, tout en fournissant les services et 'accés aux ressources nécessaires a

d'autres programmes pour qu'ils puissent €tre exécutés par 1'ordinateur.

Le systéme d'exploitation, appelé aussi plateforme (d'exploitation), offre l'interface de communication

(graphique ou non) entre 1'utilisateur et I'ordinateur.

Exemples de systemes d'exploitation : Windows, Mac OS, Linux, Android, Unix, etc.

Pour les postes clients, on fait parfois la distinction entre un ordinateur Mac (qui est produit par la compagnie
Apple Inc. et qui utilise MAC OS comme systeme d'exploitation) et tout autre ordinateur qui est nommeé
génériquement PC - Personal Computer en anglais — et qui utilise le plus souvent Windows ou Linux comme

systeme d'exploitation.

CDPetrescu Notions générales 1/20

Chapitre 2

Introduction a la programmation orientée objets

Pyt[um

2/1
CDPetrescu

Chapitre 2

Objets
Vu le mode¢le de données qu'il utilise, Python est un langage orienté objets.

En Python tout est objet dans le sens ou les briques fondamentales de la conception de tout programme Python

sont des objets.

Le langage Python réalise 1'abstraction de données par l'intermédiaire des objets et tout programme

représente les données par des objets ou par des relations entre les objets.

Un objet est une entité qui :

» peut étre clairement identifiée, reconnue et manipulée ;
» correspond a une notion concréte ou abstraite ;
> aune certaine valeur ;

» aun certain type.

Exemples d’objets :

- un nombre entier, un nombre réel ou un nombre complexe ;
- une fonction mathématique ;

- un message, une photo ou un fichier.

CDPetrescu Introduction a la programmation orientée objets 2/2

Chapitre 2

Objets (suite)

Exemples d’objets (suite) :

» 1’année de fabrication, la couleur ou le nombre de places d’une voiture ;
» le moteur, la boite a vitesse ou la carrosserie d’une voiture ;

» une voiture (vue dans son ensemble) ;

» la capacité d’une voiture d’accélérer, de freiner ou de reculer ;

» le plan d'ingénieur utilisé pour construire un certain type de voiture ;

» un parc, une collection ou une liste de voitures.

Il y a des objets :
» simples (voire trés simples) comme la hauteur ou la largeur d’une fenétre affichée a 1’écran durant un
jeu vidéo ;
» complexes (voire trés complexes) comme un jeu vidéo dans son ensemble - avec tout son design
graphique et toutes ses interactions (par l'intermédiaire de la souris, du clavier, du joystick, de la voix,

des gestes, du mouvement des yeux, etc.) avec le joueur local ou les joueurs en ligne.

Chaque objet doit avoir un certain type qui est lui-méme un objet.

CDPetrescu Introduction a la programmation orientée objets 2/3

Chapitre 2

Classes et instances

Plus précisément, a un méme objet peuvent correspondre (éventuellement) plusieurs types (si on prend en

compte un mécanisme appelé polymorphisme) et, dans un tel cas, on dit que 1’objet est polymorphe.

Prenons un exemple : une maison construite a partir d’un certain plan d’architecte est un objet mais aussi le

plan utilis¢ pour la construction de la maison est lui-méme un objet.

Dans un tel cas, on dit que le plan d’architecte est un objet classe qui est le type de I’objet instance maison.

Le plus souvent, de manicre simplifiée mais moins précise, on se contente de dire que 1’objet (qui correspond

a la) maison est une instance de la classe (qui correspond au) plan d’architecte.

Dans cette optique, la classe est une sorte de moule a partir duquel on fabrique des objets (similaires mais pas

forcément identiques) qui sont des instances de la classe.

La construction (ou la création) d’un objet selon le plan prévu par une classe est appelée instanciation de la

classe et I’objet construit (ou crée€) a partir de la classe est appelé une instance de la classe.

CDPetrescu Introduction a la programmation orientée objets 2/4

Chapitre 2

Attributs

Tout objet (soit objet instance soit objet classe) doit avoir une identité unique qui :
» permet de reconnaitre l'objet sans ambiguité tout au long de son existence ;
» est précisée a la création de I'objet (et correspond a 1'adresse ou I'objet est stocké dans la mémoire de
l'ordinateur) ;

» ne change plus apres la création de I'objet.

De plus, assez souvent, un objet (surtout un objet instance d’une classe) est caractérisé€ par des attributs qui
précisent :

» son état défini a ’aide des attributs données ou, tout simplement, des données (plus précisément, des
"objets données" ou data objects en anglais) qui sont appelées (dans ce contexte) des variables
d’instance ou des champs ;

» son comportement défini a I’aide des attributs fonctions ou, tout simplement, des fonctions (plus
précisément, des "objets fonctions" ou function objects en anglais) qui sont appelées (dans ce contexte)

des méthodes d'instance.

CDPetrescu Introduction a la programmation orientée objets 2/5

Chapitre 2

Objets - exemples

Exemples d'objets :

e ma voiture qui a
o un nom ("myCar") ;
o un certain état (type "Renault", année fabrication "2022", couleur "rouge", nbVitesses "6", etc.) ;
o un certain comportement (accélérer, décéleérer, freiner, changer de vitesses, etc.).

Remarque : l'identité de ma voiture est donnée par la combinaison unique du numéro de chdssis et du numero
de série du moteur.

e mon compte en banque qui a :
o une référence ("monComptePostal") ;
o un certain état (type "personnel”, montant "2000000", dernier dépot "septembre2022", etc.) ;
o un certain comportement (déposer, soustraire, bloquer, etc.).

Remarque : l'identité de mon compte en banque est donnée par son numéro unique dans les registres de la
banque.

e une variable du programme qui correspond a un certain étudiant du CMS qui a :
o un nom ("toto") ;
o certains champs (adresse "Lausanne", section "CMS", note ICS "5.5", etc.) ;
o certaines méthodes (changer adresse, afficher section, lire note ICS, modifier note ICS, etc.).

Remarque : l'identité de ['étudiant correspond a l'adresse unique ou les informations qui le concernent sont
stockées dans la mémoire de ['ordinateur.

CDPetrescu Introduction a la programmation orientée objets 2/6

Chapitre 2

Modules et packages

Les objets construits a partir d'une méme classe sont similaires mais pas identiques.

Attention : afin d'utiliser (en lecture et/ou en écriture) les attributs d'un objet (soit variables d'instance soit
méthodes) en dehors de la classe ou il est défini, il faut préfixer le nom d'un tel attribut par le séparateur

point précédé par (le nom de) l'objet qui est concerné par cet attribut.

L'organisation du code Python est basée sur des objets nommegs :

» modules qui regroupent des objets (le plus souvent des fonctions et des classes) afin de les rendre
disponibles dans d'autres programmes (y compris dans l'interpréteur Python) ;
» packages qui sont des modules spéciaux qui regroupent d'autres modules (voire des sous-packages).

Les modules et les packages sont des espaces de noms et un programme qui en a besoin peut importer tout

un tel espace (avec tout son contenu) ou seulement certains de ces ¢léments.

Exemples d'objets modules (ou simplement de modules) et d'objets packages (ou simplement de packages) :

- sys — module qui permet I'acces a certaines variables et fonctions liées étroitement a l'interpréteur ;
- math — module qui permet l'acces a des fonctions mathématiques (définies en langage C standard) ;
- datetime — module qui fournit des classes qui permettent la manipulation des dates et du "temps" ;
- dateutil - package qui est une extension du module standard datetime.

CDPetrescu Introduction a la programmation orientée objets 2/7

Chapitre 2

Fonctions et méthodes

Afin de simplifier le travail du programmeur, le langage Python met a sa disposition :
» un certain nombre d’objets prédéfinis natifs (built-in en anglais) qui sont disponibles (directement) dans
tout programme Python ;
» un certain nombre d’objets prédéfinis dans des modules ou des packages et qui sont disponibles

(seulement) apres avoir ét€¢ importés dans les programmes qui veulent les utiliser.

Il faut bien faire la distinction entre les fonctions et les méthodes :

» une fonction qui n'est pas une méthode est définie en dehors de toute classe et peut &tre appelée ensuite
directement par son nom (a condition qu'il soit connu a 1'endroit de I'appel) ;

» une méthode est une fonction "spéciale" qui est définie a l'intérieur (i.e. dans le corps) d'une classe et
doit étre ensuite appelée (en dehors de cette classe) en faisant préfixer son nom par le séparateur point
précede par :

o le nom d'un objet dont le type est cette classe, pour une méthode dite d'instance ;
o le nom de cette classe ou d'un objet dont le type est cette classe, pour une méthode dite statique ;

o le nom de cette classe ou d'un objet dont le type est cette classe, pour une méthode dite de classe.

CDPetrescu Introduction a la programmation orientée objets 2/8

Chapitre 2

Classes et fonctions - exemples

Exemples de classes prédefinies :
» object - classe racine ancétre de toutes les classes (voir plus loin) ;
» int - classe dont les instances sont des objets qui correspondent & des nombres entiers ;
» float - classe dont les instances sont des objets qui correspondent a des nombres réels ;
» complex - classe dont les instances sont des objets qui correspondent a des nombres complexes ;
» str - classe dont les instances sont des objets qui correspondent a des chaines de caractéres.
Exemples de fonctions prédéfinies :
» type() - appelée avec la référence d'un objet comme argument, cette fonction retourne le type de I'objet
argument ;
» id() - appelée avec la référence d'un objet comme argument, cette fonction retourne un entier représentant
l'identifiant (unique et constant) de I'objet argument ;
» pow() —appelée avec deux argument (numériques), cette fonction retourne la valeur du premier argument
¢levé a la puissance précisée par le deuxieme argument ;
» int() - appelée avec un argument (nombre ou chaine de caractéres), cette fonction (constructeur) crée et

retourne un objet de type int ; appelée sans argument, elle retourne I'objet nombre entier 0 (zéro).

CDPetrescu Introduction a la programmation orientée objets 2/9

Chapitre 2

Héritage
En tant que langage orient¢ objets, Python assure la réutilisation et 1'extension du code déja écrit (et qui
fonctionne correctement) par l'intermédiaire d'un mécanisme fondamental appelé héritage.
De plus, I'héritage simplifie et rend robustes la maintenance et la modification des programmes.

En fait, a la création d'une nouvelle classe appelée classe dérivée, on peut indiquer que le point de départ est

une classe (voire plusieurs classes) déja existante(s) appelée(s) classe(s) de base.

Une classe dérivée est appelée aussi classe fille ou sous-classe, tandis qu'une classe de base est appelée

aussi classe mére ou superclasse.
Si une classe dérive de plusieurs classes de base on parle d'héritage multiple.

Grace a I'héritage, la classe dérivée :
» récupere 1'état et le comportement décrits dans la (ou dans chaque) classe de base par l'intermédiaire de
ses attributs ;
» peut modifier certains attributs hérités ;

» peut ajouter ses propres attributs (données ou méthodes).

CDPetrescu Introduction a la programmation orientée objets 2/10

Chapitre 2

Classe object et type type

L'héritage est relatif dans le sens ou une classe peut étre a la fois classe de base pour une certaine classe et

classe dérivée par rapport a une autre classe.

Une classe qui n'indique pas explicitement sa classe de base hérite d'office (i.e. automatiquement) d'une classe

prédéfinie (ou native) nommeé object et dont la classe de base est elle-méme.

En termes imagés, on peut dire que la classe prédéfinie object est la classe racine ou ancétre de toutes les

classes (soit natives soit definies par le programmeur).

Vu qu'une classe est a la fois un type (pour les objets créés par son instanciation) et un objet, on peut se

demander quel est le type d'un objet classe.

En fait, le type d'une classe est appelé méta-type (ou meéta-classe).

La plupart des classes ont comme type un objet prédéfini nommé type et dont le type est lui-méme.

En termes imag¢s, on peut dire que le type natif type est le méta-type (ou la méta-classe) d'origine ou racine.
D'ailleurs, la classe prédéfinie object a type comme méta-type.

CDPetrescu Introduction a la programmation orientée objets 2/11

Chapitre 2

Entrée standard et sortie standard

Les données recues par un programme depuis "l'extérieur”" sont couramment appelées les entrées ou,

simplement, I'entrée (input en anglais) du programme.

Par exemple, les données d'entrée peuvent étre :
» introduites par l'utilisateur final (end user en anglais) au clavier ;

» lues par le programme a partir d'un fichier ou d'une base de données.

Les résultats calculés et transmis par un programme vers "l'extérieur" sont couramment appelés les sorties,

ou, simplement, la sortie (output en anglais) du programme.

Par exemple, les résultats d'un programme vus comme sorties peuvent étre :
» affichés a 1'écran ;

> écrits dans un fichier ou dans une base de données.

CDPetrescu Introduction a la programmation orientée objets 2/12

Chapitre 2

Entrée standard et sortie standard (suite)

L'entrée standard (standard input en anglais) pour un programme est, par défaut, le clavier qui correspond a

un objet de type file nommé stdin et qui est un attribut du module sys.

La sortie standard (standard output en anglais) pour un programme est, par défaut, I'écran (ou une fenétre
console affichée a 1'écran) qui correspond a un objet de type file nommé stdout et qui est un attribut du

module sys.

Afin de lire et de récupérer les données d'entrée introduites par l'utilisateur au clavier, on peut utiliser la

fonction prédéfinie (built-in) input() sans argument ou avec un argument optionnel.

input ()
input (prompt = '')

CDPetrescu Introduction a la programmation orientée objets 2/13

Chapitre 2

Entrée standard et sortie standard (suite)

Concrétement, la fonction input() :
» ¢&crit dans la sortie standard 1'objet argument (s'il y en a un) qui est normalement un texte (de type str) ;
> lit une ligne de texte a l'entrée standard (sans le(s) caractére(s) de fin de ligne) ;

» retourne la ligne lue comme texte (objet string de type str).

La fonction input() est une fonction dite bloquante dans le sens ou elle arréte I'exécution du programme et

donne la possibilité a 1'utilisateur d'introduire une ligne de texte a l'entrée standard.

En mode interactif, si l'utilisateur introduit une expression (a l'aide du clavier), elle est immeédiatement évaluée

et le résultat apparait dans la fenétre console.

En revanche, en mode script, afin d'afficher des informations dans la sortie standard, le programme utilise
(le plus souvent) la fonction prédéfinie (built-in) print() sans argument ou avec un ou plusieurs arguments
positionnels (précisés par leurs valeurs) et/ou nommés (précisés par des noms €tablis et suivis par des signes

"égal" et des valeurs).

CDPetrescu Introduction a la programmation orientée objets 2/14

Chapitre 2

Entrée standard et sortie standard (suite)

La fonction print() peut étre appelée :
» sans argument => on passe a la ligne suivante ;
» avec un ou plusieurs arguments positionnels (séparés par des virgules) => les objets correspondants
sont (transformeés en string et) affichés (avec, par défaut, une seule espace entre eux) ;

» avec aussi des arguments nommés, notamment :

o sep pour indiquer (sous la forme d'une string) le séparateur entre les objets affichés (et le séparateur
par défaut est I'espace) ;

o end pour préciser (sous la forme d"une string) ce qui se passe a la fin de 1'affichage (car sinon, par

défaut, on passe a la ligne suivante).

Remarque : la transformation d'un objet en string (i.e. en chaine de caracteres) se fait grace aux fonctions

prédéfinies str() ou repr().

CDPetrescu Introduction a la programmation orientée objets 2/15

Chapitre 2

Entrée standard et sortie standard (suite)

Exemple : soient les instructions ci-dessous.

nom = input('Introduisez votre nom : ')

print ('Bonjour', nom, '!")

print ()

print ('Je vous', 'salue', end = ' : ')

print ('chaque fois', 'souvent', 'seulement parfois.', sep = ' ou ')

A 1'exécution, ces instructions affichent :

Introduisez votre nom : Toto

Bonjour Toto !

Je vous salue : chaque fois ou souvent ou seulement parfois.

CDPetrescu Introduction a la programmation orientée objets 2/16

Chapitre 3

Structure du code, instructions, expressions, affectations

P';t[um

CDPetrescu 3/1

Chapitre 3

Exécuter du code Python

Il convient de mentionner que le langage Python est un langage de programmation a la fois interprété et

compilé.

Il y a deux possibilités/méthodes pour traiter du code Python :
» en mode interactif ;

» en mode script.

Le mode interactif :
» est connu aussi comme REPL — read-eval-print loop en anglais ;
» se présente comme un terminal (Ie shell Python) avec un prompteur spécifique (qui peut étre obtenu
avec la commande python qui lance l'interpréteur interactif Python) ;
» chaque entrée de l'utilisateur est lue et évaluée/exécutée (par l'interpréteur Python), et le résultat est
retourné/affiché dans le terminal ;
» le programme est interprété/exécuté de maniére séquentielle, bout aprés bout, durant la session

interactive.

CDPetrescu Structure du code, instructions, expressions, affectations 3/2

Chapitre 3

Exécuter du code Python (suite)

Le mode script :

» un programme Python, appelé couramment script, peut étre encapsulé dans un fichier texte avec
l'extension recommandée (mais pas toujours obligatoire) .py ;

» un tel script peut étre utilisé autant de fois qu'on veut ;

> le script peut étre exécuté a partir d'un terminal avec la commande python suivie par le nom du fichier
correspondant (avec l'extension .py) ;

» plus précisément, dans le cas ci-dessus, le code source est d'abord compilé et transformé en code
intermédiaire (ou bytecode) qui est ensuite exécuté par la machine virtuelle Python PVM (Python
Virtual Machine en anglais) ;

» le script peut étre aussi seulement compilé a partir d'un terminal, grace a la fonction compile() du
module py compile qui, appelée avec un argument de type chaine de caracteres str correspondant au
nom du script, produit un fichier bytecode avec le méme nom que le script mais avec l'extension .pyc
(ou .pyo) ;

» le bytecode obtenu par la compilation d'un script, peut étre exécuté a partir d'un terminal grace a la

commande python suivie par le nom du fichier correspondant (avec l'extension .pyc).

CDPetrescu Structure du code, instructions, expressions, affectations 3/3

Chapitre 3

Structure d'un programme Python

Toutes les opérations mentionnées pour le mode script et effectuées dans un terminal peuvent étre aussi
réalisées a partir d'un environnement de développement intégré (IDE) (qui a ¢té éventuellement utilisé
pour 1'édition du script) par certaines actions au niveau de l'interface graphique de 1'DE ou grace a certaines

combinaisons de touches du clavier.

Un programme Python (ou un code source Python) est formé d'une suite de blocs de code (et peut étre

stocké dans un fichier texte avec une extension dédiée comme .py).

Un bloc de code est une partie d'un programme Python qui est exécutée comme (une seule) unité dans un
contexte (frame en anglais) d'exécution (qui contient des données nécessaires au débogage et qui décide

comment l'exécution du programme continue a la fin de 1'exécution du bloc).

Exemples de blocs de code :
» la définition (le corps) d'une fonction ;
» la définition (le corps) d'une classe ;
» un module ;

» une commande écrite dans l'interpréteur interactif Python.

CDPetrescu Structure du code, instructions, expressions, affectations 3/4

Chapitre 3

Bloc de code

Un bloc de code est identifiable grace a une méme indentation de base (qui est formée, le plus souvent, par

quatre espaces ou par une tabulation).
La premicre ligne d'un programme ne doit pas étre indentée.
Un bloc de code est une succession de lignes logiques (voir plus loin aussi la notion d'instruction simple).

Le caractére # (qui ne fait pas partie d'une constante chaine de caractéres) marque le début d'un

commentaire qui tient jusqu'a la fin de la ligne physique correspondante.

Les commentaires sont ignor¢s par l'interpréteur mais ils sont utiles, par exemple :
» afin de noter une remarque ou une explication destinée a un programmeur (humain) qui lira le code
source ;
» afin de cacher une partie du code vis-a-vis de l'interpréteur durant la conception du programme :
o soit parce qu'il s'agit d'une partie qui fonctionne correctement et il n'y a pas besoin qu'elle soit
analysée (et exeécutée ensuite) ;

o soit parce qu'il s'agit d'une partie qui contient un probléme qui sera résolu plus tard.

CDPetrescu Structure du code, instructions, expressions, affectations 3/5

Chapitre 3

Ligne logique vs ligne physique

L'interpréteur ignore aussi toute ligne vide (blank line en anglais), c'est-a-dire une ligne qui contient
seulement des espaces et des tabulations (ou, plus généralement, des "espaces blancs") ou un éventuel

commentaire.

Souvent, une ligne physique contient une seule ligne logique et la fin de la ligne physique est aussi la fin

de la ligne logique.
Cependant, une ligne logique peut s'é¢taler sur une ou plusieurs lignes physiques.

Deux lignes physiques font partie de la méme ligne logique si la premiere ligne physique ne finit pas par un
commentaire et son dernier caractére est le backslash \ (qui, dans ce contexte, joue le role spécial de

"caractere de continuation").

En outre, une ligne logique continue apres la fin d'une ligne physique si une parentheése (ou un crochet | ou

une accolade { a été ouvert et pas encore fermé.

A son tour, une ligne physique peut contenir une ou plusieurs lignes logiques séparées par des caracteres

points-virgules ;.

CDPetrescu Structure du code, instructions, expressions, affectations 3/6

Ligne logique vs ligne physique (suite)

Chapitre 3

Exemples

x =2 % 3

+ 3 * 4

print (x) #faffiche 6

y = 2 * 3\
+ 3 * 4

print(y) #faffiche 18

a=1; b=2; ¢ =3

print(a, b, <) #faffiche 1 2 3

Mots clés
'False' 'None' "True' 'and' 'as’ 'assert’ 'async'
'await' 'break’ 'class’ 'continue’ 'def’ 'del’ ‘elif’
'else’ 'except’ 'finally' 'for' '"from' 'global’ "if’
'import' 'in' "is' 'lambda’ 'nonlocal’ 'not’ 'or'
'pass'’ 'raise’ 'return’ 'try’ 'while' 'with' 'yield'

CDPetrescu Structure du code, instructions, expressions, affectations 3/7

Chapitre 3

Ligne physique
Chaque ligne physique est composée de suites de caracteres nommeées tokens qui peuvent étre :
» des "mots", a savoir :
o des mots clés (keywords en anglais) réservés par le langage Python (voir le tableau ci-dessus) ;
o des identificateurs choisis par le programmeur (exemples : rayon, une variable, MaClasse, VIP,
nom_utilisateur, faire_ totaux, etc.) ;
o des constantes littérales i.e. des valeurs (des nombres, des chaines de caracteres, des valeurs
logiques, etc.) non modifiables (comme : 10, -45.97 , 2.3e-6 , 'Un message string !', etc.) ;
» des délimiteurs, a savoir :
o des séparateurs (comme : espaces, tabulations, commentaires, etc.) ;
o des délimiteurs de structures (comme : 5 ,(, [, {,} ,1,), etc.);

o des opérateurs (comme : + , % , and , <=, etc.).

Afin de savoir si une chaine de caractéres est un mot clé, on peut utiliser la fonction iskeyword() du module

keyword qui, appelée avec un argument de type str, retourne True si I'argument est un mot clé ou False

dans le cas contraire.

CDPetrescu Structure du code, instructions, expressions, affectations 3/8

Chapitre 3

Identificateurs

Un identificateur (ou identifiant) est un nom symbolique (une suite de caracteres) utilisé(e) pour

référencer (ou pointer) un objet.

Un identificateur ne peut pas €tre un mot clé et ne peut pas contenir d'espaces (ou de tabulations ou de fins

de ligne).

Un identificateur doit commencer par une lettre (majuscule ou minuscule) ou un tiret bas (underscore en
anglais) _ suivi par aucun, un ou plusieurs lettres, tirets bas et chiffres (et ne doit donc contenir aucun

caractere spécial comme : !, @, #, §, %, *, &, *, (,), ~, etc.).

Python est sensible a la casse (case sensitive en anglais) car il fait la distinction entre les majuscules et les

minuscules.

Par convention, on utilise des identificateurs qui commencent :
» par une majuscule pour les (objets) classes et par une minuscule pour les autres objets (par exemple
pour les objets instances, les fonctions, les modules, etc.) ;
» par un ou deux tirets bas et finissent par au plus un tiret bas pour des objets attributs privés (private en

anglais).

CDPetrescu Structure du code, instructions, expressions, affectations 3/9

Chapitre 3

Identificateurs

En outre, il y a aussi des identificateurs qui commencent par deux tirets bas et finissent par deux tirets bas et
ils sont utilis€s pour des objets spéciaux (nommés aussi dunders ou magics en anglais) qui sont

normalement prédéfinis et ont une signification spéciale pour l'interpréteur.

Afin de ne pas employer d'espaces, si un identificateur est formé de plusieurs "mots", on utilise :
» pour les classes, la notation dite camel case selon laquelle chaque "mot" distinct de l'identificateur
commence par une majuscule ;
» pour les autres objets, la notation dite snake case selon laquelle les "mots" distincts de l'identificateur

sont séparés entre eux par des tirets bas.

En outre, les identificateurs des constantes s'écrivent en utilisant comme lettres seulement des majuscules

ainsi que la notation snake case.

Exemples d'identificateurs :
» valides : nb, temp, student3, var 1, mot de passe, Personne, NomClasse, afficher,
calculer moyenne, get val, EPS, MAX VALUE, nom, repondre;

» invalides : 3eme_etudiant, $var, est vrai?, for, aujourd'hui, £are, lambda.

CDPetrescu Structure du code, instructions, expressions, affectations 3/10

Chapitre 3

Variables

Afin de traiter des données, un programme Python a besoin de stocker (au moins provisoirement) des

informations qui peuvent €tre ensuite retrouvees et référencees en vue de leur manipulation.

Pour cela, Python utilise des variables dont les noms (names en anglais) sont des références (ou pointeurs)

vers des objets.

Les noms sont introduits (ou créés ou définis) par des opérations de liaisons de noms (name binding
operations en anglais) comme celles données comme exemples ci-dessous :

» la définition d'une fonction ;

» la définition d'une classe ;

» l'identifiant qui apparait comme la cible d'une affectation (voir plus loin) ;

» l'en-té€te d'une boucle for ;

» une instruction import.

La liaison entre le nom et I'objet référencé peut €tre détruite, par exemple par :
» une nouvelle affectation ;

» une instruction del (qui est un mot clé).

CDPetrescu Structure du code, instructions, expressions, affectations 3/11

Chapitre 3

Variables (suite)

Un objet a une identité unique et constante durant son cycle de vie, exprimée par un nombre entier.

Un appel de la fonction (prédéfinie) native (built-in) id() avec un nom de variable comme argument

retourne l'identité de 1'objet référencé par cette variable.

De plus, une variable n'a pas de type intrinséque et I'appel de la fonction (prédéfinie) native (built-in)

type() avec un nom de variable comme argument retourne le type de 1'objet référencé par cette variable.

La valeur, le type et I'identité associés a un nom de variable peuvent changer (ou varier) durant 1'exécution

d'un programme (d'ou le terme de variable).

A un nom correspond une variable qui peut étre :
» locale a un bloc si le nom est lié¢ dans ce bloc (et s'il n'a pas été déclaré explicitement comme nonlocal
ou global) ;
» globale si le nom est lié au niveau d'un module ;
» libre si elle est utilisée dans un bloc de code sans y étre définie (et la résolution de son nom intervient a

l'exécution et non pas a la compilation).

CDPetrescu Structure du code, instructions, expressions, affectations 3/12

Variables - exemples

x = 2.5

print (x)

print (type (x))
print(id(x))

x = -7.8
print (x)

print (type (x))
print (id(x))

x = '"Hello !
print (x)

print (type (x))
print(id(x))

y = X
print (id(y))

#affectation

#affiche 2.5

#affiche <class 'float'>

taffiche 2252330474064

#réaffectation

#affiche -7.8

#affiche <class 'float'>

faffiche 2252299890832

#réaffectation
#affiche Hello !
#affiche <class 'str'>

faffiche 2252331161520

#affectation
#affiche 2252331161520

CDPetrescu

Structure du code, instructions, expressions, affectations

Chapitre 3

3/13

Chapitre 3

Instructions et expressions
Par la suite, on utilisera plutot le syntagme nom de variable ou, tout simplement, variable (car nom seul a

un sens commun qui peut provoquer des confusions).

Il convient de souligner le fait qu'une variable n'est pas un objet mais la référence (ou un pointeur) vers un

objet et cette distinction est essentielle surtout pour les objets dits mutables (ou muables ou modifiables).

On présente maintenant deux notions qui sont apparentées et qui ne peuvent pas toujours étre distinguées de

maniere absolument précise, a savoir les instructions et les expressions.

Une instruction est une portion de code qui est interprétée/exécutée et produit un effet en réalisant une seule
action ou une seule commande (par exemple initialiser/modifier la valeur d'une variable, appeler une

fonction ou afficher un message a 1'écran).

Une instruction simple correspond a une seule ligne logique de code et elle ne contient aucune autre

1nstruction.

Une instruction qui n'est pas simple est dite structurée (ou composée) et elle regroupe plusieurs

instructions et controle leur exécution.

CDPetrescu Structure du code, instructions, expressions, affectations 3/14

Chapitre 3

Instructions et expressions (suite)

Une instruction structurée peut étre consideree et traitée comme une seule instruction.

D'habitude, une instruction structurée est formée :
» d'un en-téte qui :
o s'etale le plus souvent sur une ligne physique ;
o démarre avec un mot clé ;
o finit par le caractére deux-points ;
» d'un corps sous la forme d'un bloc de code qui :
o peut étre formé d'une ou de plusieurs instructions (simples ou structurées) ;

o est indenté (vers la droite et de méme manicre) par rapport a I'en-téte (indexation significative).
Le but de cette syntaxe et de l'indexation significative est d'assurer une bonne lisibilité du code Python.

Une expression est une portion de code qui peut étre évaluée (par l'interpréteur) afin d'obtenir une valeur

(qui peut étre un objet Python quelconque).

Une expression peut faire intervenir des valeurs littérales, des variables, des opérateurs, des appels de

fonctions, etc. (et elle peut étre combinée horizontalement).

CDPetrescu Structure du code, instructions, expressions, affectations 3/15

Chapitre 3

Instructions et expressions (suite)

Toute expression peut &tre vue comme une instruction (dont l'action est d'évaluer l'expression et de

retourner sa valeur).

Les expressions sont utilisées, le plus souvent, en tant qu'instructions afin de calculer et d'écrire des valeurs

ou d'appeler des fonctions.

En revanche, il y a beaucoup d'instructions qui ne peuvent pas étre utilisées comme expressions.

Exemples

2 + 5

x = print(2 + 5) #faffiche 7

print (x) #affiche None

print (type (x)) #taffiche <class 'NoneType'>

#1'instruction ci-dessous produit une erreur TypeError qui arréte 1l'exécution et
#faffiche le message "unsupported operand type(s) for +: 'NoneType' and 'int'"

y = print(2 + 5) + 10

CDPetrescu Structure du code, instructions, expressions, affectations 3/16

Chapitre 3

Affectations

En Python, il n'y a pas de déclaration de variable.

En revanche, 'affectation (assignment en anglais) est utilisée pour lier (bind en anglais) ou relier (rebind en

anglais) des noms de variables a des valeurs (ou objets).
Apres l'affectation, une variable peut étre utilisée dans des expressions.
Une affectation (simple) ne modifie pas 1'objet li¢ ou relié.

Cependant, s1 a la suite d'une nouvelle affectation un objet n'est plus du tout référencé dans un programme,
il devient candidat au ramasse-miettes (garbage collector en anglais) qui est un programme qui tourne en

background et réalise le nettoyage automatique de la mémoire.

Une affectation peut étre :
» simple si on utilise 1'opérateur binaire d'affectation (simple) = ;
» composée si on utilise un opérateur binaire d'affectation (composée) parmi les opérateurs suivants : +=,

=, *=, /=, //=, Y%=, **= (ou parmi les opérateurs d'affectation composée pour la manipulation des bits).
*= =, =, Yo=, ** p les opérat d'affectat p pour | pulation des bit

CDPetrescu Structure du code, instructions, expressions, affectations 3/17

Chapitre 3

Affectations (suite)

La priorité faible des opérateurs d'affectation assure que des opérations arithmétiques et de comparaison

s'effectuent avant 1'affectation.

La syntaxe de ['affectation simple

nom = expression

ou :
» nom est le nom d'une variable qui représente 1'opérande de gauche ;

» expression est une expression qui peut étre évaluée et qui représente I'opérande de droite.

Le fonctionnement de 1'affectation simple
Grace a l'operateur d'affectation =, la valeur de 1'opérande de droite est d'abord évaluée et ensuite affectée

(assigneée, liée ou reliée) a l'opérande de gauche.

On peut affecter (assigner) une méme valeur a plusieurs noms de variables en écrivant, par exemple :

nom_1=nom_2 =nom_3 = expression

CDPetrescu Structure du code, instructions, expressions, affectations 3/18

Chapitre 3

Affectations (suite)

L'affectation est une instruction car elle produit un effet mais elle n'est pas une expression car elle n'a pas

de valeur (elle ne retourne aucune valeur).

Par conséquent, une affectation ne peut pas €tre utilisée dans une expression.

Par exemple, l'instruction | z = (x = 5) + 3 | produit une erreur SyntaxError et le message "invalid

syntax" est affiché.

Normalement, toute affectation composée peut étre remplacée par une affectation simple équivalente,
comme dans les exemples ci-dessous :

» x += 10 remplacée par x =x + 10 ;

» x -= 10 remplacée par x =x-10;

» x *=10 remplacée par x =x * 10 ;

» x /=10 remplacée parx =x/10;

» x //=10 remplacée parx =x// 10 ;

» X % =10 remplacée parx =x % 10 ;

» x ** =10 remplacée par x =x ** 10.

CDPetrescu Structure du code, instructions, expressions, affectations 3/19

Chapitre 3

Affectations (suite)

Cependant, une affectation composée ne peut que relier une valeur a un nom de variable qui ¢tait déja lié
a une précédente valeur (donc, dans tous les exemples ci-dessus, la variable x doit déja avoir une valeur

associee).

Par exemple, si la variable var est utilisée dans un programme pour la premiere fois dans l'instruction

suivante : | var += 10 alors une erreur NameError se produit et le message "name 'var' is not

defined" est affich¢.

Exemples

x =5, x=x+1

print (x) #affiche 6

y =x =7

print('x =', x, 'et v =", y) faffiche x = 7 et y =7
u, v =3, 5

print('u ="', u, 'et v =', v) #faffiche u = 3 et v = 5

#1'instruction ci-dessous produit une erreur SyntaxError qui arréte 1'exécution
et affiche le message "invalid syntax"
z = (x =5) + 3

CDPetrescu Structure du code, instructions, expressions, affectations 3/20

Chapitre 4

Types natifs simples et opérateurs associés

Pyt[um

CDPetrescu 4/1

Chapitre 4

Types natifs

La notion de type est intimement liée a la fagcon dont I'ordinateur représente, stocke et traite les informations.

Python est un langage de programmation fortement typé dans le sens ou toute information (tout objet) doit

avoir un type bien précis.

De plus, Python est dynamiquement typé dans le sens ou il n'utilise pas de déclarations de type explicites

(et les types sont vérifiés a I'exécution).

Les types de données (prédéfinis) natifs (built-in types en anglais) sont des types connus d'office par
l'interpréteur (car intégres a l'interpréteur), comme les types :

» numériques (ou, simplement, nombres) ;

» séquences ;

» mappings (qui correspondent aux dictionnaires) ;

» classes ;

» instances ;

» exceptions.

CDPetrescu Types natifs simples et opérateurs associés 4/2

Chapitre 4

Constantes natives

En Python, il y a treés peu de constantes natives (built-in constants en anglais).

On donne ci-dessous trois exemples de vraies constantes (immutables) et dont les noms sont des mots clés :
» None dont le type est NoneType ;
» True et False dont le type est le type booléen bool.

La constante None :
» est en fait un singleton (dans le sens ou, dans un programme, il n'y a qu'une seule et unique instance de
la classe NoneType) ;
» est utilisée normalement pour indiquer 1'absence d'une valeur (comme lorsqu'un argument par défaut

n'est pas precise dans 1'appel d'une fonction).

Exemple

print (type (None)) #faffiche <class 'NoneType'>
print (type (True)) #affiche <class 'bool'>
print (type (False)) #affiche <class 'bool'>

var _bool = True

CDPetrescu Types natifs simples et opérateurs associés 4/3

Le type bool est un type prédéfini natif (built-in) simple (qui est en fait un sous-type du type int).

Une variable de type bool correspond finalement a une des deux constantes natives True et False.

Exemple

Type bool

var bool = False
print (type (var bool))
print (var bool)

print (id(var bool))

var bool bis = False
print (id(var bool bis))
print(id(False))
print (id (True))

Var_bool = True

print (id(var bool))

#affiche
#affiche
#affiche

#affiche
#affiche
#affiche

#affiche

<class 'bool'>

False

140713949178224

140713949178224
140713949178224
140713949178192

140713949178192

CDPetrescu

Types natifs simples et opérateurs associés

Chapitre 4

4/4

Opérateurs booléens

Chapitre 4

Des expressions dont les valeurs sont booléennes peuvent étre composées grace a trois opérateurs booléens

(ou logiques) présentés ci-dessous en ordre croissant de leurs priorités et dont les noms sont des mots clés :

» or qui correspond a l'opérateur logique binaire ou ;
» and qui correspond a 'opérateur logique binaire et ;

» not qui correspond a l'opérateur logique unaire de négation.

Les opérateurs binaires or et and travaillent avec court-circuit dans le sens ou le deuxieme opérande est

¢valué seulement si c'est nécessaire pour obtenir la valeur booléenne de la composition, i.e. seulement si :

» la valeur du premier opérande est False pour l'opérateur or ;

» la valeur du premier opérande est True pour l'opérateur and.

Exemples

tl = t2 = True ; fl = f2 = False print(tl or f1) faffiche True
print(tl and t2) #affiche True print(not t1) #affiche False
print(tl and f1) #affiche False print (not f1) #affiche True
print(tl or t2) #affiche True print(not f1 and f2) #affiche False

CDPetrescu Types natifs simples et opérateurs associés

4/5

Chapitre 4

Opérateurs relationnels

En Python, il y a huit opérateurs binaires de comparaison avec la méme priorité (qui est plus élevée que

celles des opérateurs booléens), a savoir :

> < 1.e.
> <= 1.e.
> > 1.e.
> >= 1.e.

== 1.e.
> 1= 1.e.
> is 1.e.
> is not 1.e.

strictement inférieur ;

inférieur ou égal ;

strictement supérieur ;

sup€rieur ou égal ;

égal (a ne pas le confondre avec 'opérateur d'affectation =) ;
non ¢€gal ou différent ;

identité d'objet (et is est un mot cl¢) ;

non (ou contraire de I') identite d'objet.

Les opérateurs is et is not sont appelés aussi des opérateurs d'identité (identity operators en anglais).

Il y a aussi deux opérateurs dits d'appartenance (membership operators en anglais), a savoir in et not in

qui s'utilisent pour les objets de type séquence (et in est un mot cl¢).

L'utilisation de tous ces opérateurs relationnels retourne une valeur booléenne.

CDPetrescu

Types natifs simples et opérateurs associés 4/6

Tester la valeur True pour un objet

Chapitre 4

Il convient de mentionner que tout objet peut étre comparé avec la valeur booléenne True (ou False).

A part les nombres qui correspondent a zéro, les s€quences (et les collections) vides et les constantes natives

False et None qui sont interprétés comme False, les autres objets sont (normalement) considérés comme

True.

Les opérateurs et les fonctions natives qui ont comme résultat une valeur booléenne retournent

(normalement) False ou 0 pour faux et True ou 1 pour vrai.

Exemples

x =1 print (0 and False) #affiche O
print (x == True) #affiche True print (False and 0) #affiche False
Xx =0 print (0 or False) #affiche False
print (x == False) #affiche True print (False or 0) #affiche O

X = 33 print (1l or False) #faffiche 1
print(x == True) #affiche False print (False or 1) #faffiche 1
print (x == False) #affiche False print (1 and True) #affiche True
print (x and True) #faffiche True print (True and 1) #faffiche 1

CDPetrescu

Types natifs simples et opérateurs associés

4/7

Chapitre 4

Les types numériques
Il y a trois types numeériques distincts :
- int pour des nombres entiers ;
- float pour des nombres réels ;

- complex pour des nombres complexes avec une partie réelle et une partie imaginaire de type float (et

la racine carrée de -1 est noté j ou J).

Les nombres (considérés par défaut en base 10) peuvent étre :
- préciseés par des constantes numeriques ;

- obtenus suite aux calculs faisant intervenir des opérateurs et des fonctions.

Exemples de constantes numériques (en base 10) :
- entieres: 79 , +574 , -397 , 10 000 ;
- réelles en notation décimale (et le point décimal est indispensable) : 28.5, 3.14 15, +0.75, -79.0 ,
79. , .23 ,-.68;
- réelles en notation scientifique (la mantisse est un nombre décimal ou entier, avec ou sans signe, et

'exposant est un nombre entier, avec ou sans signe) : -5.26e6 , -5.26E6 , -5.26E+6 , 77.21E-5 , 72e45.

CDPetrescu Types natifs simples et opérateurs associés 4/8

Chapitre 4

Les types numériques (suite)

Les nombres entiers de type int n'ont pas de limitation (autre que la limitation de mémoire de la machine)

pour la précision de leur représentation.

Les nombres réels de type float sont représentés selon la norme IEEE-754 en double précision et certains
calculs avec ces nombres ne sont pas rigoureusement exacts, comme dans les exemples ci-dessous (mais ces

erreurs dites d'arrondi sont tout a fait négligeables dans la plupart des calculs d'ingénieur).

print(l1.1 + 2.2) #affiche 3.3000000000000003
print(0.1 + 0.1 + 0.1 - 0.3) faffiche 5.551115123125783e-17

Afin d'améliorer la précision de tels calculs, Python a prévu, par exemple, le module standard decimal, pour

les nombres réels avec parties décimales, et le module standard fractions, pour les nombres rationnels.

En outre, il y a de nombreuses bibliotheques (libraries en anglais) Python dédi¢es aux calculs

mathématiques, numériques, scientifiques, techniques et d'ingénieur comme NumPy ou SciPy.

CDPetrescu Types natifs simples et opérateurs associés 4/9

Chapitre 4

Les types numériques (suite)

Les constructeurs int(), float() et complex() (qui sont aussi des fonctions natives ou built-in) peuvent étre

utilisés afin de créer des nombres ayant un type numerique spécifique.

Chaque tel constructeur peut étre appelé :
» sans argument, cas ou il crée un objet qui correspond au nombre (entier, réel ou complexe) zéro ;
» avec un seul argument :
o soit d'un type numérique et qui représente un nombre a convertir en un nouveau nombre ;

o soit de type str et qui représente une chaine de caracteres a convertir en nombre.

Cependant, ces dernieres conversions ne sont pas toujours possibles (et, dans de tels cas, une
erreur/exception est produite et, si elle n'est pas traitée, le programme s'arréte et un message d'erreur

appropri¢ est affiché).

Le constructeur float() accepte aussi comme argument de type str valide la chaine de caracteres 'nan' (qui
n'est pas sensible a la casse) pour des indéterminations (et I'abréviation provient de Not a Number en anglais)
et une des chaines de caractéres 'inf' et 'infinity' (qui ne sont pas sensibles a la casse), précédée

¢ventuellement par le signe '+' ou '-', pour plus infini et moins infini.

CDPetrescu Types natifs simples et opérateurs associés 4/10

Chapitre 4

Les types numériques (suite)

Le constructeur complex() peut étre appelé aussi avec deux arguments numériques de type int ou float qui
deviennent la partie réelle et, respectivement, la partie imaginaire du nouveau nombre complexe cré€ pour

I'occasion.

Pour un objet (nombre complexe) de type complex, on peut utiliser :
» l'attribut d'instance nommé real afin d'obtenir sa partie réelle ;
» l'attribut d'instance nommé imag afin d'obtenir sa partie imaginaire ;

» la méthode d'instance nommée conjugate() afin de calculer son conjugué.

Python prévoit aussi le module standard emath qui fournit des fonctions mathématiques qui travaillent avec

des nombres complexes.

Python dispose de fonctions natives (built-in) pour convertir des nombres entiers €crits en base décimale 10
(qui est la base par défaut) en nombres écrits en base binaire 2 ou base octale 8 ou base hexadécimale 16, a

savoir les fonctions : bin(), oct() et hex().

CDPetrescu Types natifs simples et opérateurs associés 4/11

Les types numériques — exemples

Chapitre 4

print (int()) #faffiche O w2 = float('-inf")
print(int (3)) #affiche 3 print (w2) #affiche -inf
print(int ('10")) #affiche 10 print (5/w2) #affiche -0.0
print (int(5.2)) #affiche 5 print (5 + w2) #faffiche -inf
print (int (5.9)) #affiche 5 print (-1 * w2) #affiche inf
print (int (-5.2)) #affiche -5
print (int (-5.9)) #affiche -5 print (complex (2.1, 3.8)) #affiche
#(2.1+3.87)
print(float(7.8)) taffiche 7.8 |print(complex(5.5)) #faffiche (5.5+07)
print(float (10)) #affiche 10.0
print(float('-3.2")) taffiche -3.2 |z = complex('3.2+57")
print(float(' -3.2 ")) #affiche -3.2 |print(z) #taffiche (3.2+57)
print(z.real) #affiche 3.2
u = float('NaN") print(z.imag) #affiche 5.0
print (u) #affiche nan print(z.conjugate()) #faffiche (3.2-573)
print (type (u)) #affiche
#<class 'float'> print (bin (20)) #affiche 0b10100
print (oct (20)) #affiche 0024
print (hex (20)) #affiche 0x14
CDPetrescu Types natifs simples et opérateurs associés 4/12

Chapitre 4

Opérateurs pour les types numériques

On considere deux variables x et y dont les types sont int ou float, et on présente ci-dessous des opérateurs

(dits arithmétiques) disponibles pour ces types d'opérandes :

> Xty donne la somme de x ety ;

> X-y donne la différence de x ety ;

> X *y donne le produitde x et y ;

> x/y donne la division ("exacte") ou le quotient ("exact") de x ety ;
> x/ly donne la division entiere ou le quotient entier de x ety ;

>»xX %Yy x modulo y (donne le reste de la division entiere de x pary) ;
> -X donne le négatif (ou l'opposé) de x ;

> +x laisse x inchangg ;

> X ¥*y donne x a la puissance y.

A part la division enticre et le modulo, les autres opérations mentionnées ci-dessus sont valables aussi pour

des opérandes de type complex.

CDPetrescu Types natifs simples et opérateurs associés 4/13

Chapitre 4

Opérateurs pour les types numériques (suites)

Si une expression arithmétique est mixte, par exemple les deux opérandes d'un méme opérateur binaire
n'ont pas le méme type, Python fait implicitement une conversion d'ajustement de type dite non

dégradante (i.e. qui garde l'intégralité des données), selon la hiérarchie suivante :

int = float > complex

Il convient de souligner que 1'évaluation d'une expression arithmétique se fait en tenant compte de la
priorité (precedence en anglais) et de l'associativité (associativity en anglais) des opérateurs ainsi que de la

présence éventuelle des parentheses.
En outre, i1l y a aussi des fonctions natives (built-in) disponibles comme :

» abs(x) qui retourne la valeur absolue de x ;

» pow(X, y) qui retourne x a la puissance y.

CDPetrescu Types natifs simples et opérateurs associés 4/14

Opérateurs pour les types numériques — exemples

print (11 / 4)
print (11 // 4)
print (11 % 4)
print (9 % 2.5)
print (-9 % 2.5)
print (-9 % -2.5)
print (9 % -2.5)
X = 2

print (type (x))
y = 3.8

print (type(y))
somme = X + vy

print (type (somme))

print (somme)

z = complex (2.1,

print(type(z))
print(z)

w = somme + Z

print (type (w))
print (w)

print (pow (3, 4))
print(abs(-7.8))

-5.8)

#affiche
#affiche
#affiche
#affiche
#affiche
#affiche

#affiche -

#affiche

#affiche

#affiche
#affiche

#affiche
#affiche

#affiche
#affiche

#affiche
#affiche

.75

R NN

|
'_\
(@)

<class
<class

<class
5.8

<class
(2.1-5

<class
(7.9-5

81
7.8

"int'>
'float'>

'float'>

'complex'>
-87)

'complex'>
-87)

CDPetrescu

Types natifs simples et opérateurs associés

Chapitre 4

4/15

Chapitre 4

CDPetrescu Types natifs simples et opérateurs associés 4/16

Chapitre 5

Structures de controle de flux

Pyt[um

CDPetrescu 5/1

Chapitre 5

Instructions de controle de flux

Les instructions de controle de flux permettent l'interruption du déroulement séquentiel d'un programme,
afin d'effectuer :
» des choix, grace aux instructions structurées de sélection qui utilisent les mots clés if et,
¢ventuellement, else et elif ;
» des boucles (répétitions), grace aux instructions structurées de répétition qui utilisent les mots clés

while et for.

De plus, le langage Python dispose d'instructions de branchement inconditionnel qui utilisent les mots
clés break et continue et qui peuvent modifier le déroulement "normal" d'une boucle, ainsi que I'instruction

qui correspond au mot clé pass.

Par la suite, le terme d'instruction sera utilis€ dans un sens large pour désigner n'importe quelle instruction
Python :

» instruction simple ;

» instruction structurée ;

> bloc d'instructions.

CDPetrescu Structures de controle de flux 5/2

Syntaxe générale (trois cas possibles)

Structure de sélection

if condition_booleenne:
bloc _if

if condition_booleenne:
bloc _if

elif condition_booleenne 1:

if condition_booleenne:
bloc _if
else:

bloc_else

bloc_elif 1

elif condition_booleenne n:
bloc_elif n
else:

bloc_else

Chapitre 5

ou : entre le mot clé¢ if ou elif et le séparateur : se trouve une expression booléenne quelconque (d'habitude,

une condition booléenne a vérifier) ;

un bloc qui vient apreés un séparateur : peut étre soit une instruction simple ou structurée, soit un groupe

d'ins

tructions ;

les trois points ... indiquent que le nombre de blocs elif peut étre quelconque.

CDPetrescu

Structures de controle de flux

5/3

Chapitre 5

Structure de sélection (suite)

Il convient de remarquer que :
> les parties if, else et elif sont des en-tétes et finissent par le caractére deux points : ;
» les blocs qui viennent ensuite sont indentés par rapport aux en-tétes ;
» chaque condition booléenne mentionnée ci-dessus peut €tre une expression composée formée de
diverses expressions booléennes plus simples faisant intervenir, par exemple, des opérateurs de

comparaison et reliées avec des opérateurs logiques (and, or ou not).

Fonctionnement
» si la condition _booleenne vaut True, le bloc if est exécuté, les éventuelles parties elif et else qui
viennent ensuite sont ignorées (et le programme continue avec l'instruction qui se trouve apres elles) ;
» sila condition_booleenne vaut False et :
o si les parties else et elif sont absentes, le bloc if est ignoré¢ (et le programme continue avec
l'instruction qui suit immédiatement le bloc if) ;
o si seule la partie else est présente et suit immédiatement le bloc if, le bloc_else est exécute (et le

programme continue ensuite avec l'instruction qui vient immédiatement apres le bloc else).

CDPetrescu Structures de controle de flux 5/4

Chapitre 5

Structure de sélection (suite)

De plus, si la condition booleenne de la partie if vaut False et une ou plusieurs parties elif viennent apres le

bloc _if, la premiere partie elif se comporte comme la partie if et ainsi de suite.

En outre, un choix if ... else qui fait intervenir des expressions peut €tre écrit en tant qu'expression

conditionnelle comme dans I'exemple ci-dessous ou on calcule la valeur absolue d'un nombre réel.

if nb <= 0:

abs nb = -nb Le code de gauche est €quivalent

. abs nb = -nb if nb <= 0 else nb
else: au code de droite. —

abs_nb = nb

Exemple de code
A la page suivante, on présente le contenu d'une cellule Jupyter Notebook qui, a I'exécution, demande a

l'utilisateur son Indice de Masse Corporelle (IMC) et lui donne un conseil en fonction de la valeur IMC.

Il convient de remarquer l'utilisation de la fonction native float() afin de transformer en nombre réel la

réponse de l'utilisateur (qui est retournée par la fonction input() en tant que chaine de caracteres de type str).

CDPetrescu Structures de controle de flux 5/5

Chapitre 5

Structure de sélection - exemple

imc = float(input('Bonjour ! Votre IMC, s.v.p. : "))
if imc < 18.5:

print('Vous devez manger plus !")
elif imc > 25:

print('Vous devez bouger plus !"')

else:
print("C'est bien ! Continuez comme ca !'")
print('Au revoir ")

On donne ci-dessous trois exemples d'affichages en fonction de la réponse de 1'utilisateur :

Bonjour ! Votre IMC, s.v.p. : 17
Vous devez manger plus !
Au revoir !

Bonjour ! Votre IMC, s.v.p. : 23
C'est bien ! Continuez comme ca !
Au revoir !

Votre IMC, s.v.p. : 28
Vous devez bouger plus !
Au revoir !

CDPetrescu Structures de controle de flux 5/6

Chapitre 5

Structure de répétition (conditionnelle) while

La boucle while permet d'exécuter un bloc de code tant qu'une expression booléenne est ¢valuée a True (et

cette condition est donc la condition de continuation de la boucle).

Syntaxe

while condition_de_ continuation:

while condition_de continuation: bloc while

bloc_while else:

bloc_else

ou la condition de continuation est une expression booléenne qui est évaluée successivement.

Il convient de mentionner que si la premiere évaluation de la condition_de continuation donne False, alors
le bloc_while (qui représente le "tour de boucle") n'est jamais exécute et :
> si la partie (ou la clause) else est absente, le programme continue avec la premicére instruction qui vient
apres le bloc_while ;
> si la clause else est présente, le bloc_else est exécuté et le programme continue ensuite avec la premiére

instruction qui vient apres ce bloc.

CDPetrescu Structures de controle de flux 5/7

Chapitre 5

Structure de répétition (conditionnelle) while (suite)

Fonctionnement général
Si la valeur de la condition de continuation est :
» True, alors :
o le bloc while est d'abord exécuté ;
o si aucune instruction break n'a €té rencontrée et exeécutée (voir plus loin), la boucle continue
ensuite avec une nouvelle évaluation de la condition de continuation et ainsi de suite ;
» False, alors :
o s'il n'y a pas de clause else, on passe a la suite du programme (qui vient apres le bloc_while) ;
o s'ill y a une clause else, on exécute d'abord le bloc bloc else et on passe ensuite a la suite du

programme (qui vient apres le bloc_else).

Donc, la clause else ajoute le bloc supplémentaire bloc else qui est exécuté seulement si la boucle a éte

quittée a la suite de 1'évaluation de la condition de continuation qui correspondait a False.

Par conséquent, le bloc else n'est pas exécute si la boucle while est quittée prématurément a la suite d'une

instruction break (voir plus loin).

CDPetrescu Structures de controle de flux 5/8

Chapitre 5

Structure de répétition (conditionnelle) while (suite)

La boucle while peut étre utilisée avec trois instructions supplémentaires : break, continue et pass.

L'instruction break peut €tre utilisée dans le corps d'une boucle while (le plus souvent dans le cadre d'un

choix if) afin de quitter prématurément la boucle (et ceci sans I'exécution d'une éventuelle clause else).

L'instruction continue peut étre utilisée dans le corps d'une boucle while (le plus souvent dans le cadre d'un
choix if) afin d'arréter le tour de boucle courant et revenir directement a 1'évaluation de la

condition de continuation de I'en-téte de la boucle.

L'instruction pass ne correspond a aucune opération car il n'y a rien qui se passe quand cette instruction est

exécutée.

En fait, pass est un substitut (ou remplagant ou placeholder en anglais) qui est utilis€é quand la syntaxe

demande une instruction mais aucun code n'est en réalité nécessaire.

CDPetrescu Structures de controle de flux 5/9

Chapitre 5

Structure de répétition (conditionnelle) while — exemple
Rappel : la suite de Fibonacci est une suite récurrente définie ainsi : fo = 0, f1 = 1 et fap=fn-2 + fn-1 pour n>1.

Le code ci-dessous, calcule (de manicre itérative) les termes de la suite de Fibonacci qui sont plus petits

qu'une valeur donnée (dans cet exemple 20) et les affiche en ordre croissant :

f 0=0 f 1=1 f 2=1 f 3=2 f 4=3 f 5=5 f 6=8 f 7=13

Le compteur n n'est pas essentiel pour la solution mais il permet d'afficher les indices des termes de la suite.

lim = 20
old = 0
new = 1
n =20
while old < lim:
print('t ', n, '=', old, sep='"', end=' ")
n += 1
temp = new
new = old + new
old = temp

CDPetrescu Structures de controle de flux 5/10

Chapitre 5

La classe range

La classe (ou le type) range :

» correspond a une séquence (immutable ou non modifiable) de nombres ;

> est utilisée souvent afin de préciser combien de fois une boucle for doit étre exécutée (voir plus loin).

Un objet range est une instance de la classe range qui a deux constructeurs :

range(stop)

range(start, stop [, step])

ou :

» les arguments sont des nombres entiers ;

» l'argument stop indique la fin de la séquence (et sa valeur n'est pas incluse dans la séquence) ;

» l'argument start indique le début de la séquence (et sa valeur est incluse dans la séquence) ;

> si l'argument start est omis, sa valeur par défaut est 0 ;

» les crochets indiquent une partie facultative ;

» l'argument step indique le pas de la séquence et, s'il est omis, sa valeur par défaut est 1 ;

> si les valeurs des arguments rendent la séquence impossible, alors 1'objet créé est une séquence vide.

CDPetrescu

Structures de controle de flux 5/11

Chapitre 5

La classe range (suite)

Remarques :

» les arguments du constructeur (y compris l'argument step) peuvent avoir des valeurs positives,
négatives ou nulles ;

» les valeurs négatives des indices sont considérées comme de l'indexation a partir de la fin de la
séquence ;

» un objet de type range correspond a une suite arithmétique de nombres entiers ;

» un objet de type range peut étre une séquence vide (c'est-a-dire sans aucun ¢lément) ;

» afin d'obtenir un objet de type list (qui est affiché comme une suite d'éléments entourée par des
crochets) a partir d'un objet de type range, on passe ce dernier objet comme argument au constructeur
de la classe list ;

> les objets de type range occupent moins de mémoire que des objets similaires de type list ou tuple ;

> les objets de type range supportent la plupart des opérations spécifiques aux séquences (a part la

concaténation et la répétition).

CDPetrescu Structures de controle de flux 5/12

La classe range — exemples

print (type (range)) #faffiche <class 'type'>
print (range (5)) #faffiche range (0, 5)
print(list (range(5))) #faffiche [0, 1, 2, 3, 4]
print(list (range(2,5))) #faffiche [2, 3, 4]
print(list (range(l, 10, 2))) #affiche [1, 3, 5, 7, 9]

print(list (range(2, -10, =3))) #affiche [2, -1, -4, -7]

print(list (range(0))) #affiche []
print(list (range(10,5))) #affiche []
print(list (range(0,5,-1))) #faffiche []

#1'instruction structurée ci-dessous affiche
#1=0, 1=1, 1 =2, 1 =3, 1 =14
for i in range(5):

if 1 < 4:

print('i =', i, end=" , ")
else:

print('i ="', 1)

print('Fin !") #affiche Fin !

CDPetrescu Structures de controle de flux

Chapitre 5

5/13

Chapitre 5

Structure de répétition (inconditionnelle) for

Normalement, la boucle for est utilisée pour :
» parcourir, ¢lément par élément, une collection d'objets qui correspond :
o soit a un objet container d'un type natif (built-in) adéquat (par exemple une liste de type list ou
une chaine de caracteres de type str) ;
o soit, de maniere plus générale, a un objet dit itérable ;
» exécuter un bloc d'instructions (le "tour de boucle") un certain nombre de fois, cas ou un objet de type

range est souvent utilisé.

Syntaxe
for element in collection:
for element in collection: bloc_for
bloc_for else:
bloc_else

CDPetrescu Structures de controle de flux 5/14

Chapitre 5

Structure de répétition (inconditionnelle) for (suite)
ou :
» collection est un objet container ou itérable ;
» element est une variable qui, a tour de réle, correspond a chaque ¢élément de la collection ;
» in est un mot clé qui fait partie (en tant qu'opérateur d'appartenance) de la syntaxe de l'en-téte de la

boucle for.

Fonctionnement

> si le bloc_for ne contient pas d'instruction break, il est exécuté autant de fois que le nombre d'éléments
de I'objet container (ou it€rable) collection ;

» a chaque exécution d'un tour de boucle, la variable element correspond a I'élément courant de I'objet
collection ;

» s'il n'y a pas de clause else aprées le bloc for, aprés le dernier tour de boucle, 1'exécution du programme
continue avec l'instruction qui vient juste apres le bloc for ;

» si une clause else suit le bloc for et si la boucle n'a pas été quittée a la suite d'une instruction break
(voir plus loin), le bloc_else est exécuté apres le dernier tour de boucle et I'exécution du programme

continue ensuite avec l'instruction qui vient apres le bloc_else.

CDPetrescu Structures de controle de flux 5/15

Chapitre 5

Structure de répétition (inconditionnelle) for (suite)

Comme la boucle while, la boucle for peut étre utilisée avec les trois instructions supplémentaires break,

continue et pass et elles ont les mémes effets que pour la boucle while.

En particulier, le bloc else n'est pas exécuté si la boucle for est quittée prématurément a la suite d'une

instruction break.

Remarques finales :

» grace aux instructions structurées présentées dans ce chapitre, on peut controler le flux a I'exécution en
fonction des informations obtenues au Runtime ;

» dans certains cas, on a besoin de créer une boucle infinie (qui sera éventuellement arrétée avec une
instruction break et) qui peut étre une boucle while avec une condition de continuation toujours
True, comme dans I'en-téte while 1: ;

» afin d'éviter certains effets de bord quand on parcourt une collection avec une boucle for, on
recommande soit de ne pas changer la collection durant un tel parcours soit d'itérer sur une copie ad

hoc de la collection.

CDPetrescu Structures de controle de flux 5/16

Chapitre 5

Structure de répétition (inconditionnelle) for - exemple

Le code ci-dessous calcule de manicre itérative la somme des nombres naturels strictement plus petits qu'une

valeur (enticre et strictement positive) n donnée a I'exécution par 1'utilisateur final.

Rappel : la somme mentionnée peut tre calculée aussi directement avec la formule n*(n-1)/2.

n = int(input ('Bonjour ! Une valeur entiere et strictement positive, s.v.p. : "))
somme = 0
for i in range(l, n):
somme += 1
print (somme)
#Vérification

print(n*(n-1)//2)

A T'exécution, ce code affiche (par exemple) :

Bonjour ! Une valeur entiere et strictement positive, s.v.p. : 11
55
55

CDPetrescu Structures de controle de flux 5/17

Chapitre 5

CDPetrescu Structures de controle de flux 5/18

Chapitre 6

Fonctions

?17tfum

CDPetrescu 6/1

Chapitre 6

Fonctions

Dans ce chapitre, on introduit les mots clés : def, return, global et nonlocal.

Une fonction permet de regrouper du code (des instructions) afin de I'exécuter (les exécuter) ultérieurement

et, le plus souvent, plusieurs fois.

En plus, grace aux fonctions on peut :
» améliorer la compréhension et la lisibilité du code ;

» simplifier le développement et la maintenance du code.

Il y a des fonctions :

> prédéfinies natives - utilisables directement et partout grace a leur nom ;

» prédéfinies dans des modules standards appartenant a la bibliothéque (/ibrary) standard Python -
utilisables grace a leur nom, mais apreés avoir ét¢ importées ou grace a leur nom qualifi¢ (qualified
name en anglais), i.e. le nom de la fonction précédé¢ par le nom du module ou la fonction a été définie ;

» définies dans des modules faisant partie de bibliothéques tierces qui doivent étre d'abord installées ;

» définies par le programmeur dans un programme (ou, plus généralement, dans un module écrit par le

programmeur).

CDPetrescu Fonctions 6/2

Chapitre 6

Callable

Une fonction est un objet de type function, donc un objet appelable ("callable" en anglais) sur lequel on

peut faire un appel.

On peut vérifier si un objet est callable grace a la fonction prédéfinie native callable() qui, appelée avec (la

référence d') un objet comme argument, retourne :
» True si I'objet argument est callable (mais ceci ne garantit pas que cet objet peut étre appelé) ;

» False autrement (et ceci garantit que 1'objet ne peut pas étre appelé).

#1'instruction ci-dessous affiche #1'instruction ci-dessous affiche
#<class 'builtin function or method'> #<class 'module'>

print (type (pow)) print (type (math))

print(callable (pow)) #affiche True |print(callable(math)) #affiche False
print(callable (None)) #affiche False |#l1l'instruction ci-dessous affiche

3 14 #<class 'builtin function or method'>
x = 3.

rint(type(math.sqrt))
print(callable(x)) #affiche False P

print(callable(math.sqgrt)) #affiche True

import math

CDPetrescu Fonctions 6/3

Chapitre 6

Définition d'une fonction

Il faut distinguer :
» la définition de la fonction ;

> l'appel de la fonction.
Comme les fonctions mathématiques, une fonction Python peut avoir des paramétres.

Par la suite, on utilise les termes suivants :
» paramétres formels (ou paramétres muets ou, simplement, paramétres) dans le cas de la définition
d'une fonction ;
» arguments effectifs (ou parameétres effectifs ou, simplement, arguments) dans le cas de I'appel d'une

fonction.

La définition d'une fonction est une instruction exécutable qui :
» est exécutée (seulement et chaque fois) quand la fonction est appelée ;
» lie le nom de la fonction (dans l'espace de nom courant) a I'objet fonction qui encapsule le code

exécutable de la fonction.

CDPetrescu Fonctions 6/4

Chapitre 6

Définition d'une fonction (suite)

La définition d'une fonction est une instruction structurée formée :
» de l'en-téte de la fonction qui :
o correspond a une premicre ligne logique ;
o peut s'étaler sur une ou plusieurs lignes physiques ;
o precise la signature de la fonction ;
» du corps de la fonction qui :
o est indenté (vers la droite) par rapport a I'en-téte ;

o contient le code a exécuter lors de 1'appel de la fonction.

Syntaxe

def nom_fonction(liste_parametres):

corps_fonction

CDPetrescu Fonctions 6/5

Chapitre 6

En-téte et corps d'une fonction

L'en-téte d'une fonction contient dans I'ordre :
» le mot clef def suivi par le nom de la fonction qui doit étre un identificateur valide qui commence
(normalement) par une minuscule ;
» une paire de parenthéses rondes (celle de gauche ouvrante et celle de droite fermante) qui :

o sont obligatoires a la fois dans la définition et dans l'appel de la fonction (y compris pour les

fonctions qui n'ont aucun parametre) ;
o encadrent la liste des paramétres formels séparés par des virgules (et cette liste peut étre
¢ventuellement vide ou contenir un seul parametre) ;

> le séparateur deux points : qui marque la fin de l'en-téte.

Le corps de la fonction :
» représente un bloc d'instructions qui est indenté (vers la droite) par rapport a l'en-téte ;
» ne peut pas étre absent ; si une fonction ne fait (encore) rien, on réduit (d'habitude) son corps a
I'instruction pass ;
» peut commencer par une documentation (Docstring) qui est facultative mais fortement conseillée ;
» peut contenir aucune, une ou plusieurs instructions return ;

» est exécuté a chaque appel de la fonction.

CDPetrescu Fonctions 6/6

Chapitre 6

Docstring

Le corps d'une fonction peut commencer avec un commentaire special qui :

» est nommé Docstring (ou chaine de documentation) ;
» est délimité avec des triples quottes au début (a gauche) et a la fin (a droite) ;
» peut s'étaler sur plusieurs lignes physiques ;
» décrit (d'habitude) le but et explique le travail de la fonction grace a :
o unreésume ;
o une description étendue ;
o une liste de paramétres formels avec leur types et leur roles ;
o une précision concernant 1'éventuel résultat retourné avec son type et sa signification ;
» peut étre consulté en dehors de la fonction grace a l'attribut d'instance magique (ou dunder) doc

(précede par le nom de la fonction et 'opérateur .).

On donne a la page suivante un exemple d'une fonction donc le corps commence par un commentaire

Docstring.

CDPetrescu Fonctions 6/7

Chapitre 6

Docstring — exemple

def sommer (x, vy):
A l'exécution, le bloc de code de gauche affiche :
10.0
Résumé : Une fonction qui ..
Description étendue : La somme ..
Parametres
x (float) : le premier terme ..
y (float) : le second terme ..
Retourne
return x + vy float : la somme des deux parametres
print (sommer (3.5, 6.5))
print(sommer. doc)
CDPetrescu Fonctions 6/8

Chapitre 6

Définition d'une fonction - Parameétres formels

Un paramétre formel peut Etre :
» obligatoire (mandatory en anglais), cas ou :
o dans l'en-téte de la fonction :
= ce parametre est preécis€ seulement par son nom (sans qu'une valeur lui soit associée) ;
= il se trouve en début de la liste des parametres (avant les parametres optionnels) ;
o a l'appel de la fonction, il doit étre précisé par l'intermédiaire d'un argument effectif
correspondant ;
» optionnel (optional en anglais) ou par défaut (default en anglais), cas ou :
o dans l'en-téte de la fonction, ce paramétre vient aprés les paramétres obligatoires ;

o 1l est précisé par son nom et par sa valeur par défaut sous la forme :

nom_parametre = valeur par defaut

o a l'appel de la fonction, il peut étre omis (et 'argument effectif correspondant aura alors sa

valeur_par_défaut).

CDPetrescu Fonctions 6/9

Chapitre 6

Appel d'une fonction — Arguments effectifs

L'appel d'une fonction (ou, plus généralement, d'un objet callable) a comme but d'exécuter le corps de la
fonction et cet appel :
» est formé du nom de la fonction suivi par une paire de parenthéses (celle de gauche ouvrante et celle
de droite fermante) qui entourent la liste des arguments effectifs (qui peut étre éventuellement vide) ;
» réalise d'abord les liaisons de noms entre les arguments effectifs et les paramétres formels ;
» exécute ensuite le corps de la fonction ;
» retourne finalement une valeur (éventucllement la constante native None), sauf si une exception est

lancée (sans étre traitée localement) durant I'exécution de la fonction.

Dans l'appel d'une fonction :
» on doit fournir un argument effectif pour chaque paramétre formel obligatoire ;
» on peut fournir un argument effectif pour un parametre formel optionnel mais, si la valeur par

deéfaut convient, I'argument effectif peut étre omis et la valeur par défaut sera utilisée a sa place.

CDPetrescu Fonctions 6/10

Chapitre 6

Arguments effectifs (suite)

Un argument effectif de I'appel d'une fonction peut étre :
» positionnel (positional argument en anglais) s'il est précisé sous la forme d'une expression dont la
valeur sera liée au parametre formel correspondant grace a sa position dans la liste des parametres ;

» nommé ou par mot clé (keyword argument en anglais) s'il est de la forme :

nom_argument = valeur effective

et la valeur de valeur effective sera liée au parametre formel correspondant grice a son
nom_argument ; ainsi, l'utilisateur de la fonction n'est pas obligé de se rappeler I'ordre des parametres

de l'en-téte de la fonction.

En outre, dans I'appel d'une fonction :
» les arguments nommés doivent suivre les arguments positionnels (et ils sont eux-mémes convertis en
arguments positionnels) ;
» si un argument nommé ne correspond a aucun parametre formel, une erreur de type TypeError est

lancée.

CDPetrescu Fonctions 6/11

Chapitre 6

Nombre variable d'arguments
En outre, une fonction peut étre appelée avec un nombre variable d'arguments effectifs.

Dans ce cas, dans la signature de la fonction, la liste de paramétres formels finit (normalement) :
» soit par un dernier paramétre dont le nom commence par * (par exemple *args) et qui permet l'appel
de la fonction avec un nombre quelconque d'arguments positionnels supplémentaires ;
» soit par un dernier paramétre dont le nom commence par **, par exemple **kwargs, et qui permet
'appel de la fonction avec un nombre quelconque d'arguments nommés supplémentaires ;
» soit par un avant-dernier paramétre dont le nom commence par * suivi par un dernier parametre dont

le nom commence par ** (donc une combinaison des deux possibilités précédentes).

Ainsi, dans I'appel d'une fonction, si le nombre d'arguments effectifs (positionnels et/ou nommés) est plus
grand que le nombre de paramétres formels, alors :
» si un parametre formel utilise la syntaxe *args, on lui fait correspondre un tuple (accessible dans le
corps de la fonction par args et) contenant les arguments positionnels en plus ;
» si un paramétre formel utilise la syntaxe **kwargs, on lui fait correspondre un dictionnaire
(accessible dans le corps de la fonction par kwargs et) contenant les arguments nommés en plus ;

» sinon, une exception de type TypeError est lancée.

CDPetrescu Fonctions 6/12

Chapitre 6

Fonctions - exemples

def soustraire(xl, x2):

return x1 - x2
print (type (soustraire)) #affiche <class 'function'>
print (soustraire (5, 3)) #affiche 2
print(soustraire(xl = 11, x2 = 7)) #affiche 4

print(soustraire(x2 = 33, x1 = 22)) #affiche -11
print (soustraire (100, x2 = 40)) #faffiche 60

#ci-dessous SyntaxError : "positional argument follows keyword argument"
#soustraire(xl = 100, 40)

#ci-dessous TypeError : "soustraire() got an unexpected keyword argument 'x3'"
#soustraire(xl = 10, x3 = 5)

#ci-dessous TypeError : "soustraire() takes 2 positional arguments but 3 were
given"
#soustraire(l, 2, 3)

#ci-dessous SyntaxError : "non-default argument follows default argument"
def sommer (x1=0, x2):

pass

CDPetrescu Fonctions 6/13

Chapitre 6

Fonctions — exemples (suite)

def sommer (x1, x2=1):

return x1 + x2

print (sommer (7)) #affiche 8

print (sommer (7, 10)) +#affiche 17

def sommer (x1, x2, *args):
somme = x1 + x2
for x in args:
somme += X

return somme

print (sommer (1, 2)) #faffiche 3
print(sommer (1, 2, 3, 4, 5)) +#affiche 15

#ci-dessous TypeError : "sommer () missing 1 required positional argument: 'x2'"
#sommer (1)

#ci-dessous SyntaxError : "positional argument follows keyword argument"
#sommer (x1=1, x2=2, 3)

CDPetrescu Fonctions 6/14

Chapitre 6

Fonctions - exemples (suite)

def sommer(x1, x2, **kwargs):
somme = x1 + x2
for (key, val) in kwargs.items() :
somme += val

return somme

print (sommer (1,2)) #faffiche 3

print (sommer (1, 2, y=11, z=12)) #faffiche 26

print (sommer (x1=1, x2=2, y=11)) #affcihe 14

#ci-dessous TypeError : "sommer () takes 2 positional arguments but 3 were given"

#sommer (1, 2, 3)

f#ci-dessous SyntaxError : "invalid syntax"
def sommer (x1, x2, **kwargs, *args):

pass

CDPetrescu Fonctions 6/15

Chapitre 6

Fonctions — exemples (suite)

def sommer (x1, x2, *args, **kwargs):
somme = x1 + x2
for x in args:
somme += X
for (key, val) in kwargs.items() :
somme += val

return somme
print (sommer (1, 2))
print (sommer (1, 2, 3))
print (sommer (1, 2, 3,

y=4, z=5))

#ci-dessous erreur SyntaxError et message

#tsommer (1, 2, y=4, z=5, 3)

#ci-dessous erreur SyntaxError et message

#sommer (x1=1, x2=2, 3, y=4)

#affiche 3
#affiche 6

#affiche 15

"positional argument follows keyword argument"

"positional argument follows keyword argument”

CDPetrescu

Fonctions 6/16

Chapitre 6

Parameétres formels optionnels et objets mutables

De plus, dans 1'appel d'une fonction :
» les valeurs par défaut des paramétres formels optionnels sont évaluées :
o de gauche a droite ;
o une seule fois ;

o quand la définition de la fonction est rencontrée ;

et ces valeurs précalculées sont ensuite utilisées a chaque appel ;
> si la valeur par défaut d'un paramétre formel optionnel est (la référencée d') un objet mutable (par
exemple une liste ou un dictionnaire), celui-ci sera partagé par tous les appels qui ne précisent pas de

valeur explicite pour l'argument effectif correspondant.
Par conséquent, si on veut éviter que les appels successifs d'une fonction partagent un méme objet mutable

(qui correspond a la valeur par défaut d'un de ses parametres formels optionnels), on procede d'habitude

comme dans le deuxiéme exemple ci-dessous.

CDPetrescu Fonctions 6/17

Parametres formels optionnels et objets mutables - exemples

Chapitre 6

lis = [0]

def ajouter(el, 1i = 1lis):
1i.append(el)

return 11

lis = [-1]
print(ajouter (1))
print(ajouter(2))
print(ajouter (777, [111]))
print(ajouter(3))

#fon ajoute 1'élément el a la liste 1i

#affiche [0, 1]
#affiche [0, 1, 2]
#affiche [111, 777]
#affiche [0, 1, 2, 3]

def ajouter(el, 1i = None):
if 1i == None:
1i = []
1i.append(el)

return 11

#fon ajoute 1'élément el a la liste 11

print (ajouter (1)) #affiche [1]

print (ajouter (2)) #affiche [2]

print(ajouter (777, [1111)) #faffiche [111, 777]

print (ajouter(3)) #faffiche [3]

CDPetrescu Fonctions 6/18

Chapitre 6

Mot clé return

A la suite de son appel et grace au mot clé return, une fonction peut retourner (a 1'appelant de la fonction)

un ou plusieurs résultats (séparés par des virgules).

Plus précisément, quand la fonction retourne plusieurs résultats, elle retourne en fait un résultat de type

tuple.

De plus, vu que le résultat retourné par une fonction peut étre I'adresse d'un objet de n'importe quel type
(valide), si l'objet retourné est d'un type container, la fonction peut retourner ainsi plusieurs valeurs

regroupées dans le container respectif.

Il convient de preciser que si I'exécution d'une fonction arrive a une instruction return, alors le corps de la
fonction est quitté apres I'exécution de cette instruction et le programme revient a 1'endroit ou la fonction a
¢té appelée par son appelant (par exemple, une fonction appelante) et I'appel de la fonction est remplacé par

la valeur retournée.

CDPetrescu Fonctions 6/19

Chapitre 6

Mot clé return (suite)

Plus précisément, si le corps d'une fonction :
» ne contient aucune instruction return, alors quand la fonction est appelée :
o elle est exécutée intégralement ;
o la valeur None est retournée (a I'appelant de la fonction) ;

» contient une ou plusieurs instructions return (assez souvent intégrées dans des structures de choix
et/ou de répétition), alors quand I'exécution de la fonction arrive a une telle instruction et le mot cl¢
return :

o n'est suivi d'aucune expression :

=]a fonction est quittée (immeédiatement) ;

= Ja valeur None est retournée (a l'appelant de la fonction) ;
o est suivi d'une expression :

= la fonction est quittée (immediatement) ;

=]a valeur de cette expression est retournée (a l'appelant de la fonction).

CDPetrescu Fonctions 6/20

Mot clé return

- exemples

Chapitre 6

def saluer(s):

print('Le debut de la fonction !")

print(s)
print('La fin de la fonction !")
print(saluer ('Bonjour "))

Le code de gauche affiche :

Le début de la fonction !
Bonjour !

La fin de la fonction !
None

def saluer(s, n):
print('Le debut de la fonction !'")
if n <=0 or n > 3:
print(s)
return
for i in range(l, n+l):
print(s)
print('La "fin" de la fonction !")

print(saluer('Hello ", 10))

print(saluer('salut ', 2))

Le code de gauche affiche :

Le début de la fonction !
Hello !

None

Le début de la fonction !
Salut !

Salut !

La "fin" de la fonction !
None

CDPetrescu Fonctions

6/21

Mot clé return — exemples (suite)

Chapitre 6

def get max(x, y):

print('Avant return !')
return x if x > y else y
print ('Apres return !'") #jamais exécutée

maxim = get max(-3,3)

print (maxim)

Le code de gauche affiche :

Avant return !
3

def comparer(x, y):

if x > y:
s = 'Premier plus grand !'
return s, 1

if x < y: #pas besoin de "elif"
s = 'Second plus grand !'

return s, -1
#pas besoin de "else"
s = '"Egalité !!
return s, 0O
message, valeur = comparer (-3, -=2)
print (message)

print(valeur)

Le code de gauche affiche :

Second plus grand !
-1

CDPetrescu Fonctions

6/22

Chapitre 6

Fonctions imbriquées et fonctions d'ordre supérieur

En Python, une fonction est un objet et elle peut donc étre :
> affectée (assignée) a une variable (ce qui revient a créer un alias pour cette fonction) ;
> utilisée comme paramétre/argument d'une (autre) fonction ;

» retournée comme résultat par une (autre) fonction.

Une fonction imbriquée ou locale (nested en anglais) est une fonction qui est définie (a I'aide d'une

instruction structurée def) a l'intérieur (i.e. dans le corps) d'une autre fonction dite fonction englobante.

Une fonction d'ordre supérieur est une fonction dont au moins un parametre ou le résultat retourné est

une fonction.

En outre, une fonction imbriguée peut étre employée dans le corps de sa fonction englobante :
» par un appel direct ;
» comme argument dans l'appel d'une autre fonction ;
» comme valeur retournée par la fonction englobante (qui est, dans ce cas, une fonction d'ordre

supérieur).

CDPetrescu Fonctions 6/23

Fonctions imbriquées et fonctions d'ordre supérieur - exemples

Chapitre 6

def reculer(n):
if n>0:
return n-1
return O

rec = reculer

print (type (rec)) #affiche <class 'function'>
print(id(reculer)==id(rec)) #affiche True

print(rec(11)) #affiche 10

del reculer

print (rec(-10)) #affiche O

#reculer (1) #NameError : "name 'reculer'

is not defined"

def calculer moyenne(notel, note2Z, poidsl, poids2):
def verifier(pl, p2):
if pl>0 and p2>0 and pl+p2==1:
return True
return False

if (verifier (poidsl, poids2)):
return notel*poidsl + noteZ2*poids?

return notel*0.5 4+ note2*0.5

print (calculer moyenne(5, 6, .25, 0.75)) #affiche 5.75

CDPetrescu Fonctions

6/24

Chapitre 6

Fonctions imbriquées et fonctions d'ordre supérieur — exemples (suite)

def verifier(pl, p2):
if pl>0 and p2>0 and pl+p2l==1:
return True
return False

def calculer moyenne(notel, note2, poidsl, poids2, tester):
if (tester (poidsl, poids2)):
return notel*poidsl + note2*poids?2
return notel*0.5 + note2*0.5

print (calculer moyenne(5, 6, 0.25, 0.75, verifier)) #affiche 5.75

def ajouter(x):
y = 10
def sommer (z):
return x + y + =z
return sommer

additionner = ajouter(3)
print (additionner (5)) #faffiche 18
additionner = ajouter(7)
print (additionner (5)) #affiche 22

CDPetrescu Fonctions 6/25

Chapitre 6

Fonctions récursives

Une fonction récursive est une fonction dont le corps contient :
» soit (au moins) une instruction qui fait appel a la fonction-méme (pour la récursivité directe) ;
» soit (au moins) une instruction qui appelle une autre fonction qui appelle, a son tour, la fonction-

méme (pour la récursivité indirecte).

Il faut toujours prévoir une condition d'arrét ou de fin (termination condition en anglais) - appelée aussi

cas de base (base case en anglais) - qui evite les appels récursifs infinis.

Le plus souvent, la condition d'arrét correspond a un cas dit cas de base (base case en anglais) pour lequel

le probléme peut étre résolu sans avoir besoin d'une autre récursion.

Souvent, l'approche récursive est utilisée quand on peut ramener la résolution d'un probleme au calcul des

solutions d'instances plus petites de ce méme probleme.

Cependant, si un méme probléme peut €tre résolu de maniere récursive et itérative, souvent, la solution

récursive non optimisée demande plus de temps de calcul et/ou de mémoire que la solution itérative.

CDPetrescu Fonctions 6/26

Chapitre 6

Fonctions récursives — factorielle

Rappel : La factorielle d'un entier positif n est donnée par : n! = n*(n-1)! pour n>1 (et 1!=1) et 0! = 1.

def factorielle rec(n): #thttp://www.pythontutor.com/visualize.html
if n ==
return 1
return n*factorielle rec(n-1)

print(factorielle rec(4)) #affiche 24
def factorielle iter(n): #thttp://www.pythontutor.com/visualize.html
fact = 1

for i in range(2, n+l):
fact *= 1
return fact

print (factorielle iter(4)) #affiche 24

def factorielle rec plus(n):
print('n =', n, end = "' ")
if n ==
return 1
return n*factorielle rec plus(n-1)

print (factorielle rec plus(4)) #faffiche : n =4 n=3n=2n=1n= 0 24

CDPetrescu Fonctions 6/27

Chapitre 6

Fonctions récursives — suite de Fibonacci

Rappel : la suite de Fibonacci est une suite récurrente définie ainsi : fo = 0, f1 =1 et fn=fn-2 + fn-1 pour n>1.

#Suite de Fibonacci récursive
def fibo rec(n): fthttp://www.pythontutor.com/visualize.html
if n ==
return 0
if n ==
return 1
return fibo rec(n-2) + fibo rec(n-1)

print (fibo rec(30)) #affiche 832040

#Suite de Fibonacci itérative
def fibo iter(n): thttp://www.pythontutor.com/visualize.html
old, new = 0, 1
if n ==
return 0
for i in range(n-1):
temp = new
new = old + new
old = temp
return new

print (fibo iter(30)) #affiche 832040

CDPetrescu Fonctions 6/28

Chapitre 6

Espaces de noms et portées

Un espace de noms (namespace en anglais), appelé aussi contexte, est un mapping (une correspondance)

entres des noms et des objets qui assure que les noms soient uniques afin d'éviter toute ambiguité.

En outre, deux espaces de noms différents peuvent utiliser un méme nom sans générer des conflits de noms

car chaque nom est associ¢ a son espace de noms.

Par exemple, beaucoup de systémes d'exploitation utilisent les dossiers (directories en anglais) comme des
espaces de noms et, par conséquent :

» un dossier ne peut pas contenir deux fichiers (ou sous-dossiers) de méme nom ;

» deux fichiers (ou sous-dossiers) peuvent avoir le méme nom s'ils se trouvent dans des dossiers

différents.

En Python, les espaces de noms sont implémentés a l'aide des dictionnaires mais cet aspect technique peut

rester transparent pour le programmeur.

CDPetrescu Fonctions 6/29

Chapitre 6

Espaces de noms et portées (suite)

On peut distinguer plusieurs espaces de noms, comme :

» espace de noms natif (built-in) qui contient les noms des fonctions ct des exceptions natives ;
o 1l est créé au début du travail de l'interpréteur et il existe tout au long de ce travail ;

» espace de noms global qui concerne un module ;
o il est cré¢ au moment ou le module est lu et il existe jusqu'a la fin de l'interprétation/exécution du

module ;

» espace de noms local a une fonction (ou, plus généralement, a un bloc de code) ;

o il est créé quand la fonction est appelée et il est détruit a la fin de 1'exécution de la fonction (y

compris quand la fin est due a une exception lancée et pas traitée localement).

La portée (scope en anglais) d'un identifiant (ou d'un nom) est la partie d'un programme ou le nom est lié,

1.e. ou 1l peut €tre utilis€ sans ambiguité.

En fait, la portée d'un identifiant est I'espace de noms de cet identifiant.

CDPetrescu Fonctions 6/30

Chapitre 6

Espaces de noms et portées (suite)

Les portées (comme les espaces de noms) peuvent étre imbriquées et, par exemple : la portée locale d'une
fonction définie a l'intérieur d'une autre fonction est incluse dans la portée locale de la fonction englobante

qui est incluse dans la portée globale du module qui est incluse dans la portée native de l'interpréteur.

L'espace de nom global associ¢ a un module contient les variables dites globales qui sont des attributs de

'objet module.

L'espace de nom local associé a une fonction contient :
» les noms de ses éventuels parametres formels (précisés dans I'en-téte de la fonction) ;
» les noms des variables dites locales a cette fonction, a savoir les noms qui sont liés (par des
affectations ou par d'autres instructions qui créent des liaisons de noms) dans le corps de la fonction, a

I'exception des variables déclarées explicitement avec le mot clé global ou nonlocal.

Une variable locale a une fonction n'est plus accessible (n'existe plus) en dehors de la fonction (i.e. quand

l'exécution de la fonction a la suite de son appel a pris fin).

CDPetrescu Fonctions 6/31

Chapitre 6

Mot clé global — fonction définie dans un module

Dans le corps d'une fonction définie dans un module, une variable locale masque par défaut une variable

globale de méme nom.

En outre, par défaut, dans une fonction qui n'a pas de variable locale de méme nom, une variable globale :

» peut étre utilisée "en lecture”, i.e. on peut utiliser sa valeur (ou l'objet li¢ au nom de la variable
globale) ;

» ne peut pas €étre utilisée "en écriture"”, i.e. on ne peut pas changer sa valeur car la tentative de relier le

nom de la variable globale a un autre objet conduit a la création d'une variable locale de méme nom.

Afin de changer ce comportement par défaut, il suffit de déclarer la variable globale concernée avec le

mot clé global dans la fonction, comme dans les exemples ci-dessous.

Plus précisément, cette fois, la fonction peut changer la valeur de la variable globale déclarée global mais
ne peut plus avoir une variable locale de méme nom (autrement dit, une méme variable ne peut pas étre a la

fois locale et globale).

En outre, un paramétre (formel) d'une fonction ne peut pas étre déclaré global dans le corps de la fonction.

CDPetrescu Fonctions 6/32

Chapitre 6

Mot clé nonlocal — fonction imbriquée

Pour une fonction imbriquée définie a l'intérieur d'une fonction englobante :
- les considérations faites au paragraphe précédent concernant les variables globales restent valables ;
- de plus, une variable locale a la fonction imbriquée masque par défaut aussi une variable locale de

méme nom de la fonction englobante.
Afin de changer ce comportement (supplémentaire) par défaut, il suffit de déclarer la variable locale de la
fonction englobante concernée avec le mot clé nonlocal dans la fonction imbriquée, comme dans les

exemples ci-dessous.

Plus précisément, cette fois, la fonction imbriquée peut changer la valeur de la variable locale a la

fonction englobante déclarée nonlocal mais ne peut plus avoir une variable locale de méme nom.

Un paramétre (formel) d'une fonction ne peut pas étre déclaré nonlocal dans le corps de la fonction.

CDPetrescu Fonctions 6/33

Fonction définie dans un module — exemple 1

Chapitre 6

def sommer () :
print('Fonction : nbl =', nbl, 'et nb2 ="', nb2)
nb3 = 7
return nbl + nb2 + nb3

nbl, nb2 = 3, 5

print('Module, avant 1\'appel : nbl =', nbl, 'et nb2 =', nb2)
print (sommer ())

print('Module, apres 1\'appel : nbl =', nbl, 'et nb2 =', nb2)
#ci-dessous NameError et message : "name 'nb3' is not defined"

#print (nb3)

Le code ci-dessus affiche :

Module, avant l'appel : nbl = 3 et nb2 =5
Fonction : nbl = 3 et nb2 =5

15

Module, apres l'appel : nbl

3 et nb2 =5

CDPetrescu Fonctions

6/34

Chapitre 6

Fonction définie dans un module — exemple 2

def sommer () :

#ci-dessous UnboundLocalError : "local variable 'nbl' referenced before assignment"
#print (nbl)

nbl, nb2, nb3 = 33, 55, 77

print('Fonction : nbl =', nbl, 'et nb2 =', nb2)

return nbl + nb2 + nb3

nbl, nb2 = 3, 5

print('Module, avant 1\'appel : nbl =', nbl, 'et nb2 =', nb2)
print (sommer ())

print ('Module, apres 1\'appel : nbl ="', nbl, 'et nb2 ="', nb2)
#ci-dessous NameError et message : "name 'nb3' is not defined"

#print (nb3)

Le code ci-dessus affiche :

Module, avant l'appel : nbl = 3 et nb2 = 5
Fonction : nbl = 33 et nb2 = 55

165

Module, apres l'appel : nbl = 3 et nb2 = 5

CDPetrescu Fonctions 6/35

Fonction définie dans un module — exemple 3

Chapitre 6

def sommer () :
global nbl, nb2
nbl, nb2, nb3 = 33, 55, 77
print('Fonction : nbl =', nbl, 'et nb2 =', nb2)
return nbl + nb2 + nb3

nbl, nb2 = 3, 5

print ('Module, avant 1\'appel : nbl ="', nbl, 'et nb2 ="', nb2)
print (sommer ())

print ('Module, apres 1\'appel : nbl ="', nbl, 'et nb2 ="', nb2)
#fci-dessous NameError et message : "name 'nb3' is not defined"
#print (nb3)

Le code ci-dessus affiche :

Module, avant l'appel : nbl = 3 et nb2 = 5
Fonction : nbl = 33 et nb2 = 55

165

Module, apres l'appel : nbl = 33 et nb2 = 55

CDPetrescu Fonctions

6/36

Chapitre 6

Fonction imbriquée — exemple 1

def sommer () :
nbl, nb2 = 33, 55
print('Fonction englobante avant 1\'appel : nbl =', nbl, 'et nb2 =', nb2)

def soustraire():
print('Fonction imbrigquée : nbl ="', nbl, 'et nb2 ="', nb2)
return nb2 - nbl

print (soustraire())
print('Fonction englobante apres 1\'appel : nbl =', nbl, 'et nb2 =', nb2)
return nbl + nb2

nbl, nb2 = 3, 5
print('Module, avant 1\'appel : nbl =', nbl, 'et nb2 =', nb2)
print (sommer ())
print('Module, apres 1\'appel : nbl =', nbl, 'et nb2 =', nb2)

Le code ci-dessus affiche :

Module, avant l'appel : nbl = 3 et nb2 =5

Fonction englobante avant 1'appel : nbl = 33 et nb2 = 55
Fonction imbriquée : nbl = 33 et nb2 = 55

22

Fonction englobante apres l'appel : nbl = 33 et nb2 = 55
88

Module, apres l'appel : nbl = 3 et nb2 = 5

CDPetrescu Fonctions 6/37

Fonction imbriquée — exemple 2

Chapitre 6

def sommer () :
nbl, nb2 = 33, 55
print ('Fonction englobante avant 1\'appel : nbl =', nbl, 'et nb2 =', nb2)

def soustraire():
nbl, nb2 = 13, 15
print('Fonction imbriquée : nbl ="', nbl, 'et nb2 ="', nb2)
return nb2 - nbl

print (soustraire())
print('Fonction englobante apres 1\'appel : nbl =', nbl, 'et nb2 =', nb2)
return nbl + nb2

nbl, nb2 = 3, 5
print('Module, avant 1\'appel : nbl =', nbl, 'et nb2 =', nb2)
print (sommer ())
print ('Module, apres 1\'appel : nbl ="', nbl, 'et nb2 ="', nb2)

Le code ci-dessus affiche :
Module, avant l'appel : nbl = 3 et nb2 =5

Fonction englobante avant 1'appel : nbl = 33 et nb2 = 55
Fonction imbriquée : nbl = 13 et nb2 = 15

2

Fonction englobante apreés l'appel : nbl = 33 et nb2 = 55
88

Module, apres l'appel : nbl = 3 et nb2 = 5

CDPetrescu Fonctions

6/38

Fonction imbriquée — exemple 3

Chapitre 6

def sommer () :
nbl, nb2 = 33, 55
print('Fonction englobante avant 1\'appel : nbl =', nbl, 'et nb2 =', nb2)

def soustraire():
nonlocal nbl, nb2
nbl, nb2 = 13, 15
print('Fonction imbriquée : nbl ="', nbl, 'et nb2 ="', nb2)
return nb2 - nbl

print (soustraire())
print('Fonction englobante apres 1\'appel : nbl =', nbl, 'et nb2 =', nb2)
return nbl + nb2

nbl, nb2 = 3, 5
print('Module, avant 1\'appel : nbl =', nbl, 'et nb2 =', nb2)
print (sommer ())
print('Module, apres 1\'appel : nbl =', nbl, 'et nb2 =', nb2)

Le code ci-dessus affiche :

Module, avant l'appel : nbl = 3 et nb2 =5

Fonction englobante avant 1'appel : nbl = 33 et nb2 = 55
Fonction imbriquée : nbl = 13 et nb2 = 15

2

Fonction englobante apres l'appel : nbl = 13 et nb2 = 15
28

Module, aprées l'appel : nbl = 3 et nb2 = 5

CDPetrescu Fonctions

6/39

Fonction imbriquée — exemple 4

Chapitre 6

def sommer () :
nbl, nb2 = 33, 55
print('Fonction englobante avant 1\'appel : nbl =', nbl, 'et nb2 =', nb2)

def soustraire():
global nbl, nb2
nbl, nb2 = 13, 15
print('Fonction imbriquée : nbl ="', nbl, 'et nb2 ="', nb2)
return nb2 - nbl

print (soustraire())
print('Fonction englobante apres 1\'appel : nbl =', nbl, 'et nb2 =', nb2)
return nbl + nb2

nbl, nb2 = 3, 5
print('Module, avant 1\'appel : nbl =', nbl, 'et nb2 =', nb2)
print (sommer ())
print('Module, apres 1\'appel : nbl =', nbl, 'et nb2 =', nb2)

Le code ci-dessus affiche :

Module, avant l'appel : nbl = 3 et nb2 =5

Fonction englobante avant 1'appel : nbl = 33 et nb2 = 55
Fonction imbriquée : nbl = 13 et nb2 = 15

2

Fonction englobante apres l'appel : nbl = 33 et nb2 = 55
88

Module, aprées l'appel : nbl = 13 et nb2 = 15

CDPetrescu Fonctions

6/40

Fonction imbriquée — exemple 5

Chapitre 6

def sommer () :
global nbl, nb2
nbl, nb2 = 33, 55

print('Fonction englobante avant 1\'appel

def soustraire():
global nbl, nb2
nbl, nb2 = 13, 15

print('Fonction imbriquée

return nb2 - nbl

print(soustraire())

nbl ="',

print('Fonction englobante apres 1\'appel

return nbl + nb?2

nbl, nb2 = 3, 5
print('Module, avant 1\'appel
print (sommer ())
print('Module, aprés 1\'appel

nbl ="',

nbl ="',

nbl,

nbl

'et nb?2

nbl

nbl, 'et nb2

nbl, 'et nb2

'et nb?2

'et nb?2

Le code ci-dessus affiche :

Module, avant l'appel : nbl = 3 et nb2

Fonction englobante avant 1'appel

Fonction imbriquée : nbl = 13 et nb2

2
Fonction englobante apres 1'appel
28

nbl

nbl

Module, apres l'appel : nbl = 13 et nb2

15

33 et nb?2

13 et nb2

15

55

15

CDPetrescu

Fonctions

6/41

Fonction imbriquée — exemple 6

Chapitre 6

def sommer () :
global nbl, nb2
nbl, nb2 = 33, 55
print('Fonction englobante avant 1\'appel : nbl =', nbl, 'et nb2 =', nb2)

def soustraire():
nbl, nb2 = 13, 15
print('Fonction imbriquée : nbl ="', nbl, 'et nb2 ="', nb2)
return nb2 - nbl

print (soustraire())
print('Fonction englobante apres 1\'appel : nbl =', nbl, 'et nb2 =', nb2)
return nbl + nb2

nbl, nb2 = 3, 5
print('Module, avant 1\'appel : nbl =', nbl, 'et nb2 =', nb2)
print (sommer ())
print('Module, apres 1\'appel : nbl =', nbl, 'et nb2 =', nb2)

Le code ci-dessus affiche :
Module, avant l'appel : nbl = 3 et nb2 =5

Fonction englobante avant 1'appel : nbl = 33 et nb2 = 55
Fonction imbriquée : nbl = 13 et nb2 = 15

2

Fonction englobante apreés l'appel : nbl = 33 et nb2 = 55
88

55

Module, apres l'appel : nbl = 33 et nb2

CDPetrescu Fonctions

6/42

Chapitre 7

Types natifs containers — Premiére partie

Pyt[um

CDPetrescu 7/1

Chapitre 7

Considérations générales

Il y a plusieurs types (prédéfinis) natifs (built-in) intégrés a l'interpréteur Python (donc connus d'office par

l'interpréteur) parmi lesquels nous avons déja étudié les types natifs (simples) numériques.

On présente par la suite des types natifs containers qui permettent de regrouper et de traiter/manipuler

plusieurs objets a la fois (et ces types sont largement utilisés dans la plupart des programmes Python).

En termes imagés, un objet container (ou, simplement, un container) peut étre vu comme une sorte de boite
(ou sac/enveloppe/coque) qui contient (ou encapsule/regroupe/met ensemble) d'autres objets nommés

couramment éléments (items en anglais).

Il y a des fonctions, des méthodes et des techniques qui permettent :

» d'obtenir des informations concernant les éléments d'un objet container ;

» de manipuler individuellement ou par tranche les éléments d'un objet container ;

» d'agir sur 1'objet container globalement.

CDPetrescu Types natifs containers — Premiére partie 7/2

Chapitre 7

Considérations générales (suite)

En général :
» quand un objet est instancié (créé), on lui assigne une identité unique pour toute sa durée de vie ;
> le type d'un objet (instance) est déterminé dynamiquement au Runtime et il ne peut plus changer par
la suite ;
» cependant, aprés sa création, I'état (ou le contenu) d'un objet (décrit par ses attributs données) :
o peut changer et I'objet est dit alors mutable/muable ;

o ne peut plus changer et I'objet est dit alors immutable/immuable.

Normalement, un objet immutable :
» est plus facile d'accés ;
» "son changement" revient en fait a la création d'un nouvel objet qui est une "copie modifiée" de 1'objet

immutable.

Il y a deux aspects essentiels a prendre en compte quand on travaille avec des objets de type container :
» le fait que 1'objet container est mutable (i.e. modifiable) ou immutable (i.e. non modifiable) ;
» le fait que les éléments du container sont ordonnés ou pas (ce qui est essentiel pour l'identification de

ces ¢léments).

CDPetrescu Types natifs containers — Premiére partie 7/3

Chapitre 7

Considérations générales (suite)

De plus, les éléments mémes d'un container peuvent étre des objets mutables ou immutables.

Par conséquent, par exemple :
» on ne peut pas ajouter ou supprimer un élément d'un container immutable ;

» on peut changer I'état d'un élément mutable d'un container immutable.

On utilise par la suite le terme itérable (iterable en anglais) pour un objet (container) sur lequel on peut

itérer, 1.€. un objet qui peut étre parcouru (ou traversé) (par exemple avec une boucle for).

Plus précisément, quand on passe un objet itérable comme (premier) argument a la fonction native iter(),
on obtient en retour un objet (container) dit itérateur (iferator en anglais) qui dispose d'une méthode next()
qui :

» soit retourne 1'élément suivant de l'itérateur tant qu'un tel ¢lément existe ;

» soit lance une exception de type Stoplteration s'il n'y a plus d'élément a retourner.

Comme tout objet, un objet container peut étre affecté (assigné¢) a une variable dont le nom permet de

référencer cet objet de maniere globale.

CDPetrescu Types natifs containers — Premiére partie 7/4

Chapitre 7

Type natifs containers

Les principaux type natifs containers sont :

A. les types séquentiels (ou, simplement, séquences), a savoir les types :

Al list (séquences mutables et ordonnées) ;

A2 tuple (séquences immutables et ordonnées) ;

A3 range (sequences immutables et ordonnées) ;

A4 str (s€quences immutables et ordonnées) ;

AS autres séquences pour les données binaires (comme bytes, bytearray et memoryview) ;

B. les types sets, a savoir les types :

B1 set (containers mutables avec des ¢léments uniques, non ordonnés et immutables) ;
B2 frozenset (containers immutables avec des ¢léments uniques, non ordonnés et
immutables) ;

C. les types mapping, a savoir le (seul) type :
C1 dict (objets mutables nommé dictionnaires — dictionaries en anglais - avec des éléments

non ordonnés sous forme de paires clé-valeur (key-value en anglais).

Les séquences acceptent les doublons (i.e. peuvent avoir deux ou plusieurs éléments avec la méme valeur).

CDPetrescu Types natifs containers — Premiére partie 7/5

Chapitre 7

A. Types séquentiels

Les séquences sont des collections ordonnées d'¢léments qui sont numérotés implicitement avec des indices

entiers a partir de zéro.

Il y a des opérations communes :
» pour tous les types séquentiels ;
» pour les types séquentiels mutables ;

et elles seront présentées s€parément pour le cas concret des séquences de type list.

Il convient de mentionner que les séquences immutables supportent aussi une opération dite de hachage
(grace a la fonction hash() qui, appelée pour une séquence mutable, provoque une erreur de type
TypeError).
Plus précisément :

» l'appel de la fonction hash() avec un objet argument immutable retourne une valeur entiere dite valeur

de hachage (hash value en anglais) pour cet objet ;
> la valeur de hachage est utilisée pour comparer rapidement les objets immutables ;
» deux valeurs numériques égales (comme 1 et 1.0) ont la méme valeur de hachage (méme si leurs

types sont différents).

CDPetrescu Types natifs containers — Premiére partie 7/6

Chapitre 7

Al Type (classe) list

Un objet de type list (ou, simplement, une liste) est une séquence mutable utilisée pour représenter une

collection ordonnée (et, le plus souvent, homogéne) d'¢léments (pas forcément uniques).

Une liste peut Etre :
» homogéne si ses éléments sont (plus ou moins) similaires (par polymorphisme) comme type ;

> hétérogene si ses ¢léments sont de types quelconques.

Par exemple, une liste peut €tre utilisée comme :

» un tableau (array en anglais) de taille variable (et éventuellement hétérogéne) afin de grouper et de

gérer des objets similaires (ou pas) ;
» une pile (stack en anglais) qui est une structure de données de type LIFO (Last In, First Out) ;
» une queue ou une file (queue en anglais) qui est une structure de données de type FIFO (First In, First

Out).

En outre, les listes peuvent étre imbriquées (i.e. certains éléments d'une liste dite englobante peuvent étre

eux-mémes des listes dites imbriquées ou sous-listes).

CDPetrescu Types natifs containers — Premiére partie 7/7

Chapitre 7

A1l Création d'un objet de type list

Un objet de type list peut étre créé en utilisant :
» une paire de crochets (ouvrant — fermant) :
o vide (afin de créer une liste vide - empty list en anglais) ;
o qui entourent un seul ¢lément (suivi ou non par une virgule) ;
o qui entourent une suite d'¢léments séparés par des virgules ;
> le constructeur de la classe list :
o sans argument (afin de créer une liste vide) ;
o avec un argument itérable (par exemple une séquence quelconque, voire une liste) ;
» une liste en compréhension (/ist comprehension en anglais) qui sera présentée plus tard ;
» des fonctions (comme sorted()) et des méthodes (comme copy()) qui retournent comme résultats des

listes.

Dans I'objet list créé, on garde :
» l'ordre des ¢léments indiqués entre les crochets ;

» l'ordre prévu dans l'argument itérable du constructeur.

CDPetrescu Types natifs containers — Premiére partie 7/8

A1l Création d'un objet de type list - exemples

Chapitre 7

lis = []
print(type(lis))
print(len(lis))
print(lis)

print ([10,])
print([10])
print([10, 11, 12])
print(list())

#ci-dessous => TypeError:
#print (1ist (10))

#ci-dessous => TypeError:
4print (list (10, 11, 12))

print(list ([20, 21, 221))

lis bis = list(lis)
print(lis bis)

print (id(lis) == id(lis bis))

print(sorted([32, 30, 311))

#affiche <class 'list'>
#faffiche O
#faffiche []

#affiche [10]
#affiche

#taffiche [10, 11, 12]
taffiche []

'int' object is not i1terable

list expected at most 1 arguments,

#taffiche [20, 21, 22]

#faffiche []
#affiche False

taffiche [30, 31, 32]

got 3

CDPetrescu

Types natifs containers — Premiére partie

7/9

Chapitre 7

A1l Opérations communes aux séquences — cas du type list

No | Opérateur / Fonction / Méthode | Résultat retourné
1 | lis]i] I'¢lément d'indice 1 de lis

2 | lis[izj] la tranche dei a j de lis

3 | lis[izj:K] la tranche de i a j avec le pas k de lis

4 |lis + seq la liste obtenue par la concaténation des listes lis et seq

5 |lis*n ou n*lis la liste obtenue par la concaténation de lis avec elle-méme n fois
6 |xinlis True si un ¢lément de lis est égal a x ou False autrement
7 | xnotin lis False si un ¢lément de lis est €¢gal a x ou True autrement
8 | lis.index(x) I'indice de la premicre occurrence de x dans lis

9 |lis.count(x) le nombre total d'occurrences de x dans lis

10 | len(lis) la longueur (la taille ou le nombre d'¢léments) de lis

11 | min(lis) le plus petit ¢lément de lis

12 | max(lis) le plus grand ¢lément de lis

CDPetrescu Types natifs containers — Premiére partie 7/10

Chapitre 7

A1l Opérations communes aux séquences — cas du type list (suite)

Dans le tableau précédent, on a présenté les opérateurs, les fonctions et les méthodes communs aux

séquences ainsi que les résultats obtenus a la suite de leur utilisation pour le cas des listes.

On a employ¢ les notations suivantes :
> lis et seq sont des listes (ou, plus généralement, des séquences de méme type) ;
» x est un objet quelconque (qui respecte les éventuelles restrictions imposées par lis) ;
> 1, j et k sont des indices entiers ;

» n est un nombre entier.
On donne par la suite des précisions concernant certaines lignes du tableau précédent.

La ligne 1 => lis|i] :
» correspond a l'indexation simple ;
» permet d'identifier (et d'accéder a) un élément d'une liste grace a son indice i placé entre des crochets
qui suivent l'identificateur de la liste ;
» si l'indice i est négatif, I'indexation se fait a partir de la fin de la liste ;

» si l'indice i est trop grand ou trop négatif, une erreur IndexError se produit.

CDPetrescu Types natifs containers — Premiére partie 7/11

Chapitre 7

A1l Opérations communes aux séquences — cas du type list (suite)

Les lignes 2 et 3 => lis[i:j]| et lis[i:j:K] :
» correspondent a l'indexation étendue ;
» permettent d'identifier une tranche (s/ice en anglais) d'une liste en précisant un objet de type slice

entre les crochets qui suivent l'identificateur de la liste.
Un objet slice peut intervenir comme I'ensemble des indices de I'argument du constructeur de la classe range
(qui a été déja présentée).

Dans le contexte d'une liste (ou, plus généralement, d'une séquence), un objet slice :
» provient d'un certain découpage de la liste, opération appelée aussi slicing (terme repris tel quel de
l'anglais) ;

» peut correspondre a une liste vide ou avec un ou plusieurs ¢léments de la liste découpée.

Syntaxe pour découper une liste

lis[start : stop : step|

CDPetrescu Types natifs containers — Premiére partie 7/12

Chapitre 7

A1l Opérations communes aux séquences — cas du type list (suite)
ou :

> lis est la liste a découper ;

» start précise l'indice du début du découpage (et sa valeur est prise en compte dans la tranche) ; si
start est omis, sa valeur par défaut est 0 ;

» stop précise l'indice de la fin du découpage (et sa valeur n'est pas prise en compte dans la tranche) ; si
stop est omis, sa valeur par défaut est le nombre d'éléments de la liste ;

» step est le pas du découpage et, s'il est omis, sa valeur par défaut est 1 ;

» si les nombres entiers start, stop et step (qui peuvent étre positifs, nuls ou négatifs — et dans ce dernier
cas l'indexation est considérée a partir de la fin) rendent le découpage impossible, alors la tranche
obtenue est une liste vide ;

» au moins le premier séparateur deux-points : doit apparaitre entre les crochets.

La ligne 4 => lis + seq :
» correspond a la concaténation de deux listes qui restent inchangées ;

> le résultat obtenu est une nouvelle liste.

CDPetrescu Types natifs containers — Premiére partie 7/13

Chapitre 7

A1l Opérations communes aux séquences — cas du type list (suite)
Laligne5=>1lis*n ou n *lis:
» correspond a la multiplication d'une liste (qui reste inchangée) par un nombre entier n ;
» le résultat obtenu est une nouvelle liste obtenue par la concaténation de lis avec elle-méme n fois ;
» si le nombre entier n est négatif ou 0, la nouvelle liste est vide ;

» si le nombre n est réel (de type float), une erreur TypeError se produit.

La ligne 8 => lis.index(x) :
> si x n'est pas ¢lément de lis, une erreur ValueError se produit ;
» la méthode index() peut étre appelée aussi avec deux ou trois arguments cas ou le deuxiéme argument

est un indice a partir duquel la recherche doit commencer (y compris lui-méme) et le troisiéme

argument est un indice avant lequel la recherche doit finir (sans lui-méme).

La ligne 10 => len(s) :
» permet de connaitre la longueur (ou la taille ou le nombre d'éléments) d'une liste ;
» si la liste est vide, sa longueur est zéro ;

» la fonction native len() peut étre utilisée aussi pour les types set, frozenset et dict.

CDPetrescu Types natifs containers — Premiére partie 7/14

Al Opérations communes aux séquences — cas du type list - exemples

Chapitre 7

lis = [10, 11, 12,
print(lis[2])

13, 14,

#ci-dessous => IndexError:

#print (1is[10])

15]

#faffiche 12

list index out of range

print(lis[-5]) #faffiche 11

print(lis[-len(lis)]) #affiche 10

print(lis[1 : 4]) #faffiche [11, 12, 13]

print(lis[1l : 10 2]1) #faffiche [11, 13, 15]

print(lis[-2 : -6 -21) #faffiche [14, 12]

print(lis[1l : 5 -21) #affiche []

lisl = [10, 11]

lis2 = [20, 21]

1lis3 = 1lisl + 1lis2

lis4 = 1isl * 3

1lis5 = 1lisl * (-2)

print(lisl, 1lis2, 1is3) #affiche [10, 11] [20, 21] [10, 11, 20, 21]
print(lis4) #affiche , 11, 10, 11, 10, 11]

print (1is)) #affiche

CDPetrescu Types natifs containers — Premiére partie 7/15

Chapitre 7

Al Opérations communes aux séquences — cas du type list - exemples

lisl = [10, 11]

#fci-dessous => TypeError: can't multiply sequence by non-int of type 'float'

#lisl * 1.5

print (10 in 1isl) #affiche
print (15 not in 1lisl) #affiche
lis = [10, -3, 10, 22, 15, 10]

print(lis.index(10)) #affiche

#ci-dessous => ValueError: 33 is not in list
#lis.index (33)

print(lis.index (10, 1)) #affiche
print(lis.index (10, 3, 11)) #affiche
#ci-dessous => ValueError: 10 is not in list
#lis.index (10, 3, 5)

print(lis.count (10)) #affiche
print(len(lis)) #affiche
print (min(lis)) #affiche
print (max (lis)) #affiche

True

True

CDPetrescu Types natifs containers — Premicre partie

7/16

Chapitre 7

Al Opérations communes aux séquences mutables — cas du type list

No | Opérateur / Mot clé / Méthode Effet / Résultat retourné
1 |lis[i]=x x remplace I'élément d'indice i de lis
2 |lis[izj] =it le contenu de it remplace la tranche de i a j de lis
3 | lis[izj:Kk] =it le contenu de it remplace la tranche de i a j avec le pas k de lis
4 | lis.append(x) ajoute x a la fin de lis
5 | lis.insert(i, x) insere x a la position d'indice i dans lis — comme lis[i:i] = [X]
6 |lis.extend(it) ou lis +=it ¢tend lis avec le contenu de it
7 |lis *=n met a jour lis avec son ancien contenu répéteé n fois
8 | del lis[i:j:K] supprime la tranche de i a j avec le pas k de lis
9 |lis.pop(i) retourne et supprime I'élément d'indice i de lis
10 | lis.remove(x) supprime le premier ¢lément de lis qui est égal a x
11 | lis.clear() supprime tous les ¢léments de lis - comme del lis|:]
12 | lis.copy() retourne une copie superficielle de lis — comme lis|:|
13 | lis.reverse() inverse l'ordre des éléments de lis sur place

CDPetrescu Types natifs containers — Premiére partie 717

Chapitre 7

Al Opérations communes aux séquences mutables — cas du type list (suite)

Dans le tableau précédent, on a présenté les opérateurs et les fonctions communs aux séquences mutables

ainsi que les effets/résultats obtenus a la suite de leur utilisation pour le cas des listes.

Les notations mentionnées plus tot restent presque les mémes mais lis peut €tre une liste (comme

auparavant) ou, plus généralement, une séquence qui est, cette fois, mutable.
De plus, it est un objet itérable.

A part les méthodes pop() et copy(), les autres méthodes du tableau précédent modifient 1'objet list

appelant et retournent None.
On donne par la suite des précisions concernant certaines lignes du tableau précédent.

Les lignes 1,2 et 3 =>lis[i] =x et lis[i:j] =it et lis[i:j:k] =it :
» permettent de modifier un élément ou une tranche (s/ice) d'une liste ;

» afin de remplacer une tranche avec un pas k différent de 1, le contenu de l'itérateur it doit avoir le

méme nombre d'éléments que la tranche remplacée (car, sinon, une erreur ValueError se produit).

CDPetrescu Types natifs containers — Premiére partie 7/18

Chapitre 7

Al Opérations communes aux séquences mutables — cas du type list (suite)

Les lignes 4 et 6 => lis.append(x) vs lis.extend(it) :
» l'argument x peut étre un objet quelconque, en particulier une liste qui sera ajoutée comme un seul
¢lément a la fin de la liste lis ;
» l'argument it :
o doit étre un objet itérable, en particulier une liste, dont les ¢éléments seront ajoutés

individuellement a la fin de la liste lis ;

o ne peut pas €tre un objet non itérable (comme un nombre entier ou réel) car, dans un tel cas, une

erreur TypeError se produit.

La ligne 5 => lis.insert(i, x) :
» l'objet x est inséré dans la liste lis a la position d'indice i ;
» l'ancien élément d'indice i ainsi que tous les ¢léments suivants sont déplacés d'une position vers la

droite (leurs indices sont incrémentés d'une unit¢).

CDPetrescu Types natifs containers — Premiére partie 7/19

Chapitre 7

Al Opérations communes aux séquences mutables — cas du type list (suite)

La ligne 9 => lis.pop(i) :
» retourne 1'élément d'indice i qui est ensuite supprimé dans la liste lis (et les éléments situés a droite sont
déplaces d'une position vers la gauche et leurs indices sont diminués d'une unite) ;
» la méthode peut étre appelée aussi sans argument lis.pop() et, dans ce cas qui est équivalent a 1'appel

lis.pop(-1), le dernier ¢lément de lis est retourné et ensuite supprimée de la liste.

En outre, la classe list fournit la méthode sort() qui trie I'objet list appelant sur place (in place en anglais) en

utilisant I'opérateur de comparaison <.

Il convient de souligner que :
» la méthode sort() change 1'ordre des éléments de la liste appelante sur place, sans créer une nouvelle
liste ;
» en revanche, afin de laisser la liste a trier inchangée et de créer une nouvelle liste triée, il faut appeler

la fonction native sorted() avec la liste a trier comme argument.

CDPetrescu Types natifs containers — Premiére partie 7/20

Chapitre 7

Al Opérations communes aux séquences mutables — cas du type list - exemples

lis = [10, 11, 12, 13, 14, 15]

1is[2] = 22
print(lis) #affiche [10, 11, 22, 13, 14, 15]

lis[1:3] = [31, 32]

print(lis) #affiche [10, 31, 32, 13, 14, 15]
1is[1:5:2] = [41, 43] #faffiche [10, 41, 32, 43, 14, 15]
print(lis)

lis[:2] = [50, 51, 53, 54]

print(lis) taffiche [50, 51, 53, 54, 32, 43, 14, 15]

lis[::3] = [60, 63, 66]
print(lis) #affiche [60, 51, 53, 63, 32, 43, 66, 15]

lis[:] = [70, 71, 72, 73, 74, 75]
print(lis) #affiche [70, 71, 72, 73, 74, 75]

lis.insert (3, 83)
print (lis) #affiche [70, 71, 72, 83, 73, 74, 75]

lis.insert (-2, 94)
print(lis) #affiche [70, 71, 72, 83, 73, 94, 74, 75]

CDPetrescu Types natifs containers — Premiére partie 7/21

Chapitre 7

Al Opérations communes aux séquences mutables — cas du type list - exemples

lisl = [10, 11, 12]
1is2 = [20, 21]

lisl.append(23)
print(lisl) #faffiche [10, 11, 12, 23]

#ci-dessous => TypeError: 'int' object is not iterable
#lisl.extend (44)

lisl.append(lis?)

print(lisl) #affiche [10, 11, 12, 23, [20, 2171]
lisl.extend(1lis?2)

print(lisl) #affiche [10, 11, 12, 23, [20, 21], 20, 21]

lisl += 1lis?2

print(lisl) #affiche [10, 11, 12, 23, [20, 21], 20, 21, 20, 21]
print(lis2) #affiche [20, 21]

lis2 *= 2

print(lis2) #affiche [20, 21, 20, 21]

del 1isl[2:7:2]
print(lisl) #affiche [10, 11, 23, 20, 20, 21]

lis.clear()
print(lis) #faffiche []

CDPetrescu Types natifs containers — Premiére partie 7/22

Chapitre 7

Al Opérations communes aux séquences mutables — cas du type list - exemples

lis = [10, 11, 12, 13, 14, 15]

print(lis.pop()) #faffiche 15

print(lis) #faffiche [10, 11, 12, 13, 14]
print(lis.pop(2)) #faffiche 12

print(lis) #faffiche [10, 11, 13, 14]
print(lis.pop(-2)) #affiche 13

print(lis) #affiche [10, 11, 14]

#fci-dessous => IndexError: pop index out of range

#lis.pop(10)

lis =[10, 11, 10, 12, 10, 13, 14]

print(lis.remove (10)) #affiche None

print(lis) #faffiche [11, 10, 12, 10, 13, 14]
lis bis = lis.copy()

print(lis) #faffiche [11, 10, 12, 10, 13, 14]
print (lis bis) #affiche [11, 10, 12, 10, 13, 14]
print(lis == lis bis) #affiche True

print (id(lis) == id(lis bis)) #affiche False
print(lis.reverse()) #affiche None

print(lis) #affiche [14, 13, 10, 12, 10, 11]
CDPetrescu Types natifs containers — Premiére partie 7/23

Chapitre 7

A1l Liste de listes — copie superficielle vs copie profonde
Etant donné que les €léments d'une liste peuvent €tre des objets quelconques, ils peuvent étre eux-mémes des
listes et, dans ce cas particulier, on parle des listes imbriquées (nested lists en anglais) :
» l'objet container global est la liste englobante ;

» ses ¢éléments sont des listes imbriquées ou des sous-listes.

En particulier, une liste de listes avec un seul niveau d'imbrication peut €tre utilis€ée en tant que tableau

bidimensionnel régulier (comme une matrice) ou pas.

Une nouvelle liste est une copie superficielle (siallow copy en anglais) d'une liste d'origine si :
» les deux listes ont des 1dentités différentes ;

> les €léments correspondants de chaque liste ont les méme identités et, donc, les mémes valeurs.

Par conséquent, pour une liste copie superficielle et la liste d'origine
» si tous les ¢léments sont des objets immutables, un changement de la valeur d'un élément par une des
listes n'a pas d'effet sur l'autre liste ;
» en revanche, si un ¢élément est mutable (par exemple une sous-liste), un changement du contenu (i.e.

de 1'état) de cet ¢lément (de la sous-liste) par une des listes est répercuté aussi sur l'autre liste.

CDPetrescu Types natifs containers — Premiére partie 7/24

Chapitre 7

Al Liste de listes — copie superficielle vs copie profonde (suite)

Une nouvelle liste est une copie profonde (deep copy en anglais) d'une liste d'origine si :
» les deux listes ont des 1dentités différentes ;
> les éléments immutables correspondants des chaque liste ont les méme identités et, donc, les mémes
valeurs ;
» les ¢léments mutables correspondants ont des identités différentes mais les mémes contenus (i.c.

¢tats) et ceci de manicre récursive.

Par conséquent, pour une liste copie profonde et la liste d'origine, un changement du contenu d'un ¢lément

(mutable) par une des listes n'a pas d'effet sur 'autre liste.

La méthode copy() de la classe list retourne une liste copie superficielle de la liste appelante.

La fonction deepcopy() du module standard copy retourne une liste copie profonde de la liste argument.

CDPetrescu Types natifs containers — Premiére partie 7/25

Al Liste de listes — copie superficielle vs copie profonde - exemples

Chapitre 7

lis =[10, [11, 12]]
lis superf = lis.copy()

print (id(lis) == id(lis superf))

print (id(1lis[0]) == id(lis superf[0]))
print (1lis[0] == lis superf[0])

print (id(lis[1]) == id(lis superf[1]))
print(lis[1] == lis superf[1l])

1is[0] = 20

print (lis superf)

1is[1]1[0] = 31

print (lis superf)

from copy import deepcopy

lis =[10, [11, 12]]

lis prof = deepcopy(lis)

print (id(lis) == id(lis prof))

print (id(1lis[0]) == id(lis prof[0]))
print (1lis[0] == lis prof[0])

print (id(lis[1]) == id(lis prof[1l]))
print(lis[1] == lis prof[l])

1is[0] = 20

print (lis prof)

1is[1]1[0] = 31

print (lis prof)

#affiche

#affiche
#affiche
#affiche
#affiche

#affiche

#affiche

#affiche

#affiche
#affiche
#affiche
#affiche

#affiche

#affiche

False

True
True
True
True

CDPetrescu Types natifs containers — Premiere partie

7/26

Chapitre 7

Al Liste de listes comme tableau bidimensionnel régulier— exemples

matrice = [[11, 12, 131, [21, 22, 231, [31, 31, 3311

print (type (matrice)) #affiche <class 'list'>

print(matrice) #affiche [[11, 12, 131, [21, 22, 23], [31, 31, 3311
print (len(matrice)) #affiche 3

print (type (matrice[0])) #affiche <class 'list'>

print (matrice[0]) #faffiche [11, 12, 13]

print (len(matrice[0])) #faffiche 3

print (type (matrice[1][2])) #affiche <class 'int'>

print (matrice[1][2]) #affiche 23

#ci-dessous => TypeError: object of type 'int' has no len()
fprint(len(matrice[1]1[2]))

matrice[2] = 99

print (matrice) #affiche [[11, 12, 13], [21, 22, 231, 99]
matrice[0][1] = 42

print (matrice) #affiche [[11, 42, 13], [21, 22, 231, 99]
lis = matrice[0]

print(lis) #affiche [11, 42, 13]

lis[2] = 53
print (matrice) #affiche [[11, 42, 53], [21, 22, 23], 99]

CDPetrescu Types natifs containers — Premiére partie 7/27

Chapitre 7

Al Liste en compréhension

Un objet de type list est un container mutable qui peut étre parcouru (ou traversé) a l'aide d'une boucle for
qui permet de visiter chaque élément de la liste afin de :

» connaitre (lire) sa valeur ;

» modifier (écrire) sa valeur (si I'élément est mutable) ;

» le remplacer par un autre objet.

Etant donn¢ qu'assez souvent le parcours d'une liste a comme but la création d'une nouvelle liste, Python
met a la disposition des programmeurs une facon ¢légante (et vraiment pythonique) pour réaliser une telle

operation.

Il s'agit d'une approche dite liste en compréhension (/ist comprehension en anglais) qui correspond assez
bien 4 une notation ensembliste du genre B = {f(x) | x € A} ou A est un ensemble donné et f(x) une

fonction choisie convenablement.

Les listes en compréhension remplacent d'une certaine fagon l'utilisation des fonctions lambda ainsi que

des fonctions map(), filter() et reduce() (que nous n'étudions pas).

CDPetrescu Types natifs containers — Premiére partie 7/28

Chapitre 7

Al Liste en compréhension (suite)

Syntaxe d'une liste en compréhension

[new_item for item in container suite clauses]

\

ou :
» new_item est une expression quelconque (qui peut utiliser ou pas la valeur de la variable item) ;
» item est un nom (identificateur valide choisi librement) d'une variable qui, a tour de role, correspond a
chaque ¢élément du container ;
» container est un objet container ou, plus généralement, itérable ;

» suite clauses est une suite d'aucune, une ou plusieurs clauses for ou if (voir les exemples suivants).
Il convient de mentionner que la variable item est une variable locale a la liste en compréhension.

En outre, d'une maniere similaire, on peut créer aussi des sets en compréhension ou des dictionnaires en
compréhension en utilisant des accolades a la place des crochets (et aussi des générateurs en

compreéhension en utilisant des parentheéses a la place des crochets).

CDPetrescu Types natifs containers — Premiére partie 7/29

Chapitre 7

A1l Liste en compréhension - exemples

lis = [10, 13, =24, 11, 34, 0, 55]
lis fois dix = [nb*10 for nb in 1lis]

print(lis fois dix) #affiche [100, 130, -240, 110, 340, 0, 550]

#ci-dessous => NameError: name 'nb' is not defined
#print (nb)

lis paire = [nb for nb in lis if nb%2==0]
print (lis paire) #affiche [10, -24, 34, 0]

1l temp = [10.5, -3, 5, =-7.5, 0, -15.3]
1 temp neg = [temp for temp in 1 temp if temp < 0]
print (1l temp neg) #affiche [-3, -7.5, -15.3]

1 celsius = [20, 19.3, 24.25]
1 kelvin = [temp + 273.15 for temp in 1 celsius]

print (1 kelvin) #affiche [293.15, 292.45, 297.4]

couleurs = ['rouge', 'noire']

objets = ['voiture', 'encre', 'chaussure']

objets en couleurs = [ob] + ' ' + coul for obj in objets for coul in couleurs]
#ci-dessous => affiche : ['voiture rouge', 'voiture noire', 'encre rouge',

#'encre noire', 'chaussure rouge', 'chaussure noire']
print (objets en couleurs)

CDPetrescu Types natifs containers — Premiére partie 7/30

Chapitre 7

A2 Type (classe) tuple

Un objet de type tuple (ou, simplement, un tuple) est une séquence immutable utilisée pour représenter

une collection ordonnée (et, le plus souvent, hétérogeéne) d'¢léments.

Un objet de type tuple peut étre créé (normalement) en utilisant :
» une paire de parenthéses (ouvrante — fermante) :
o vide (afin de créer un tuple vide - empty tuple en anglais) ;

o qui entourent un seul ¢lément suivi par une virgule ;

o qui entourent une suite d'¢léments s€parés par des virgules ;
> le constructeur de la classe tuple :
o sans argument (afin de créer un tuple vide) ;
o avec un argument itérable (par exemple une séquence quelconque, voire une liste ou un tuple) ;

» des fonctions et des méthodes qui retournent comme résultats des tuples.

Dans l'objet tuple crée€, on garde :
» l'ordre des ¢léments indiqués entre les parenthéses ;

» l'ordre prévu dans I'argument itérable du constructeur.

CDPetrescu Types natifs containers — Premiére partie 7/31

Chapitre 7

A2 Type (classe) tuple (suite)
Il convient de mentionner que, dans le premier cas de création d'un objet tuple indiqué ci-dessus :
» la présence de la virgule ou, respectivement, des virgules est obligatoire ;
» l'utilisation des parenthéses est facultative grace a un mécanisme nommé emballage (packing/boxing
en anglais) sauf pour :
o le cas du tuple vide ;
o les cas ou les parenthéses ¢vitent une ambiguité syntaxique (comme dans 1'appel d'une fonction

qui a comme argument effectif un tuple - voir les exemples ci-dessous).

En particulier, 'emballage permet a une fonction de retourner plusieurs valeurs (séparées par des virgules) a

la fois.

Il y a un mécanisme complémentaire au packing nomm¢ déballage (unpacking/unboxing en anglais) qui
agit dans l'autre sens et permet d'affecter un tuple a plusieurs variables séparées par des virgules (a condition

de prévoir autant de variables que d'éléments dans le tuple).

En particulier, les mécanismes packing/unpacking permettent de récupérer les valeurs retournées par une

certaine fonction a l'aide d'une seule affectation.

CDPetrescu Types natifs containers — Premiére partie 7/32

Chapitre 7

A2 Type (classe) tuple (suite)
En outre, dans le déballage d'un tuple, a gauche de I'affectation, on peut nommer :
» chaque variable qui ne nous intéresse pas par un tiret bas (underscore) ;

» un groupe (une liste) de variables par un identificateur précédé par le caractére *.

Les opérations communes aux séquences sont (bien siir) valables pour les objets de type tuple (dont la

numérotation des ¢léments commence a zéro et I'acces aux €léments se fait en utilisant les crochets).

Il faut garder a l'esprit le fait que les objets de type tuple sont immutables et donc on ne peut pas, par

exemple, ajouter/supprimer/changer 1'ordre ou les identités des €léments dans un tel container.

Toute tentative de modifier 1'identit¢ d'un élément d'un tuple (par une affectation, par exemple) produit une

erreur TypeError.

Par conséquent, pour "modifier" un tuple il faut créer un nouveau tuple a partir du tuple a modifier et en

tenant compte de la modification voulue.

En revanche, si un élément d'un tuple est un objet mutable (par exemple une liste), on peut modifier le

contenu (i.e. I'état) de cet objet car son identité ne change pas.

CDPetrescu Types natifs containers — Premiére partie 7/33

A2 Type (classe) tuple - exemples

Chapitre 7

tup = ()

print (type (tup))
print(len (tup))
print (tup)

tup = (10)

print (type (tup))
print (tup)

tup = (10,)

print (type (tup))
print (tup)

print (10, 11, 12)
print ((10, 11, 12))

tup = 10, 11, 12

print (type (tup))
print (tup)

print (tuple())

#ci-dessous => TypeError:

#tuple (10)

#affiche
#affiche
#affiche

#affiche
#affiche

#affiche
#affiche

#affiche
#affiche

#affiche
#affiche

#affiche

'int' object

<class 'tuple'>
0
()

<class 'int'>
10

<class 'tuple'>
(10,)

10 11 12
(10, 11, 12)

<class 'tuple'>
(10, 11, 12)

()

is not iterable

CDPetrescu

Types natifs containers — Premiére partie

7/34

Chapitre 7

A2 Type (classe) tuple - exemples

#ci-dessous => TypeError: tuple expected at most 1 arguments, got 3
#tuple (10, 11, 12)

tup = tuple((10, 11, 12))
print (tup) #affiche (10, 11, 12)

tup bis = tup
print (id(tup) == id(tup bis)) # affiche True

tup ter = tuple(tup)
print(id(tup) == id(tup_ter)) #affiche True

a, b, ¢ = tup

print('a =', a, 'b =', b, 'c ="', ¢c) #affiche a = 10 b = 11 ¢c = 12

X, X, X = tup

print (x) #faffiche 12

id avant = id(tup)

tup += (13, 14, 15)

id apres = 1id(tup)

print (tup) #affiche (10, 11, 12, 13, 14, 15)
print (id avant == id apres) #affiche False

Ay 1 *b, ¢ = tup

print('a =', a, 'b =', b, 'c¢c =', c) #affiche a = 10 b = [13, 14] c = 15

CDPetrescu Types natifs containers — Premiére partie 7/35

A2 Type (classe) tuple — exemples

Chapitre 7

tup = (10, [21, 22, 231,
#ci-dessous => ValueError:
#a, b = tup

#ci-dessous => TypeError:
#ftupl[2] = 22

print (tup)

print(len (tup))
print(tup[l])
print (tup[1][2])
id 1 = id(tupl[l1])
tupl[l] .extend([24, 251])
print (tup)
print(tup[l])

print(len (tup))

print (id(tupl[1]) id 1)

12)

too many values to unpack

'tuple'

(expected 2)

object does not support item assignment

#faffiche (10, [21, 22, 23], 12)
#taffiche 3

#taffiche [21, 22, 23]

taffiche 23

#affiche (10, [21, 22, 23, 24, 257,
#faffiche [21, 22, 23, 24, 25]
#taffiche 3

taffiche True

12)

CDPetrescu

Types natifs containers — Premiére partie

7/36

A3 Type (classe) range

Chapitre 7

Un objet de type range est une séquence immutable et ordonnée de nombres entiers utilisée le plus

souvent dans l'en-té€te d'une boucle for afin de préciser le nombre de tours de boucle a effectuer.

Le type range a ¢été d¢ja présente dans le cadre de 1'étude des boucles.

Les opérations communes aux séquences sont valables pour les objets de type range (a part la

concaténation et la répétition — voir les exemples ci-dessous).

ranl = range (10, 20, 2)
print(ranl)
print(list (ranl))

print(ranl[3])
print(ranl.index(16))

ran2 = range (20, 30, 3)

#range (10, 20, 2)
#affiche [10, 12, 14, 16, 18]

#affiche 16

#affiche 3

#ci-dessous => TypeError: unsupported operand type(s) for +: 'range' and 'range'

#fran = ranl + ran2

#ci-dessous => TypeError: unsupported operand type(s) for *: 'range' and 'int'

fran = ranl * 3

CDPetrescu Types natifs containers — Premiére partie 7/37

Chapitre 7

CDPetrescu Types natifs containers — Premiére partie 7/38

Chapitre 8

Types natifs containers — Deuxieme partie

Pyt[um

CDPetrescu 8/1

Chapitre 8

B. Types sets

Les types sets correspondent a des collections non ordonnées d'objets (d'éléments) :
> uniques (donc distincts) ;

» immutables (donc hachables).

Etant donné que les ¢léments des containers sets ne sont pas ordonnés :
» l'indexation (indexing),

» le découpage (slicing) et

» d'autres opérations spécifiques aux séquences

ne sont pas valables pour les sets.

En revanche, un container set (qui correspond en fait a la notion mathématique d'ensemble) peut étre

parcouru avec une boucle standard : for el in container.

Python prévoit deux types natifs pour les sets :
B1 la classe set (containers mutables avec des ¢léments uniques, non ordonnés et immutables) ;

B2 la classe frozenset (containers immutables avec des ¢léments uniques, non ordonnés et

immutables).

CDPetrescu Types natifs containers — Deuxi¢éme partie 8/2

Chapitre 8

B1 Type (classe) set

Un objet de type set (ou, simplement, un set) est une collection mutable et non ordonnée d'objets uniques

et immutables.

Etant donné qu'elle est mutable, la collection correspondant & un objet de type set peut changer de contenu

(grace a des méthodes comme add() ou remove()).

Par conséquent, un objet mutable de type set ne peut pas étre haché et, donc, ne peut pas étre élément d'un

autre set (ou clé d'un dictionnaire).

Un objet de type set peut €tre crée en utilisant :
» une paire d'accolades (ouvrante — fermante) :
o qui ne peut pas étre vide (car de cette facon on crée un dictionnaire vide) ;
o qui entourent un seul ¢lément ou une suite d'éléments séparés par des virgules ;
> le constructeur de la classe set :
o sans argument (afin de créer un set vide — empty set en anglais) ;
o avec un seul élément itérable (par exemple une liste ou un set) dont les éléments sont

immutables (donc hachables).

CDPetrescu Types natifs containers — Deuxi¢éme partie 8/3

Chapitre 8

B1-2 Types (classes) set (suite) et frozenset

En outre, un objet de type set peut étre créé aussi en utilisant :
» un set en compréhension ;

» des fonctions et des méthodes qui retournent comme résultats des sets.

Un objet de type frozenset (ou, simplement, un frozenset) est une collection immutable (dont le contenu ne

peut plus étre modifi¢ apres sa création) et non ordonnée d'objets uniques et immutables.

Par conséquent, un frozenset peut étre hache et peut étre ¢lément d'un set ou d'un frozenset (ou clé d'un

dictionnaire).

Un objet de type frozenset :
» ne peut pas étre créé en utilisant une paire d'accolades (qui sont réservées aux objets de type set et aux
dictionnaires) ;
» peut €tre créé en utilisant :
o le constructeur de la classe frozenset qui fonctionne comme le constructeur de la classe set ;

o des fonctions et des méthodes qui retournent comme résultats des frozensets.

CDPetrescu Types natifs containers — Deuxi¢éme partie 8/4

B1-2 Création des objets de types set et frozenset — exemples

Chapitre 8

ref = {}

print (type (ref)) #affiche
ens = {1}

print (type (ens)) #affiche
print(len (ens)) #affiche
print (ens) #affiche
ens = {1, 3, 2}

print (type (ens)) #affiche
print(len (ens)) #affiche
print (ens) #affiche
#ci-dessous => TypeError: unhashable type: 'set'

#ens ko = {1, {2, 3}}

ens = set()
print (type (ens))
print(len (ens))
print (ens)

<class 'dict'>

<class 'set'>
1

{1}

<class 'set'>
3
{1, 2, 3}

#affiche <class 'set'>
#affiche O
#taffiche set ()

#ci-dessous => TypeError: set expected at most 1 argument, got 3

#ens ko = set('un', 'trois', 'deux')

CDPetrescu

Types natifs containers — Deuxi¢éme partie

8/5

Chapitre 8

B1-2 Création des objets de types set et frozenset — exemples (suite)

ens = set(['un', 'trois', 'deux', 'trois'])

print (type (ens))
print(len (ens))

print (ens)

ens = {el for el in {1,2,3,4} if el%2==0}
print (type(ens))

print(ens)

ens = {i for i in range(5) if i%2'=0}
print (type (ens))

print (ens)

fens = frozenset ((1l, 'deux',6 3))
print(type (fens))
print (fens)

#affiche
#affiche
#affiche

#affiche
#affiche

#affiche
#affiche

#affiche
#affiche

<class 'set'>

3

{'un', 'deux', 'trois'}
<class 'set'>

{2, 4}

<class 'set'>

{1, 3}

<class 'frozenset'>

frozenset ({1, 3, 'deux'})

CDPetrescu Types natifs containers — Deuxi¢éme partie

8/6

Chapitre 8

B Opérations avec des sets (objets de type set ou frozenset)

No | Opérateur / Fonction / Méthode | Résultat retourné
1 |len(se) le nombre d'¢éléments (la cardinalité) de se
2 |elin se True si el appartient au se ou False autrement
3 |elnotin se False si et appartient a se ou True autrement
4 |s_this.isdisjoint(s_that) True sis_this et s_that sont disjoints ou False autrement
5 | s_this.issubset(s_that) True sis_this est un sous-ensemble de s_that ou False autrement
6 |s_this <=s_ that comme ci-dessus
True sis_this est un sous-ensemble strict de s_that ou
7 |s_this <s_that
False autrement
8 | s_this.issuperset(s_that) True si s_that est un sous-ensemble de s_this ou False autrement
9 |s_this>=s that comme ci-dessus
True sis_that est un sous-ensemble strict de s_this ou
10 |s_this > s that
False autrement
CDPetrescu Types natifs containers — Deuxi¢éme partie 8/7

Chapitre 8

B Opérations avec des sets (objets de type set ou frozenset) (suite)

No | Opérateur / Fonction / Méthode Résultat retourné
11 |s_this.union(*s_that) un nouveau set qui est la réunion du s_this et des sets *s_that
12 |s this|s that 1]... comme ci-dessus
un nouveau set qui est l'intersection du s this et des sets
13 |s_this.intersection(*s_that)
*s_that
14 |s this & s that 1 & ... comme ci-dessus
un nouveau set qui est la différence entre s_this et les sets
15 |s_this.difference(*s_that)
*s_that
16 |s this-s that 1-... comme ci-dessus
un nouveau set avec des éléments du s_this ou du s_that mais
17 |s_this.symmetric_difference(s_that)
pas des deux
18 |s_this s that comme ci-dessus
19 |s_this.copy() une copie superficielle du s_this
CDPetrescu Types natifs containers — Deuxi¢éme partie 8/8

Chapitre 8

B Opérations avec des sets (objets de type set ou frozenset) (suite)

Dans le tableau précédent (qui s'étale sur deux pages), on a présenté des opérateurs, des fonctions et des

méthodes qui permettent de manipuler des sets (i.e. des objets de type set ou frozenset).

On a utilis¢ les notations suivantes :
» se pour un objet set ;
» s_this pour un objet de type set qui est I'objet appelant d'une méthode ;
» s_that pour un objet de type set qui est un objet argument d'une méthode ;

» *s_that pour un nombre variable d'objets de type set qui sont des objets arguments d'une méthode.
On donne par la suite des précisions concernant certaines lignes du tableau précédent.
Il convient de mentionner qu'aucune des méthodes présentes dans ce tableau ne retourne None.

La ligne 4 => s_this.isdisjoint(s_that) :
> les ensembles s_this et s_that sont disjoints :

o s'ils n'ont pas d'élément en commun ;

o si et seulement si leur intersection est 1'ensemble vide.

CDPetrescu Types natifs containers — Deuxi¢éme partie 8/9

Chapitre 8

B Opérations avec des sets (objets de type set ou frozenset) (suite)

La ligne 5 et 6 => s_this.issubset(s_that) et, respectivement, s _this <=s_that :

» en fait, on teste si chaque ¢lément de I'ensemble s_this appartient a 'ensemble s_that.

La ligne 7=>s_this <s_that:

» en fait, on teste si s_this <=s_that et s_this !=s_that.

La ligne 11 et 12 => s_this.union(*s_that) et, respectivement, s_this | s that 1| ...:
» les éléments de l'ensemble retourné sont les éléments de I'ensemble s_this ou des autres ensembles

*s_that.

La ligne 13 et 14 => s _this.intersection(*s_that) et, respectivement, s_this & s that 1 & ... :
» les ¢éléments de l'ensemble retourné sont les éléments communs de l'ensemble s this et des autres

ensembles *s_that.

La ligne 15 et 16 => s_this.difference(*s_that) et, respectivement, s _this -s that 1-...:
» les ¢éléments de 1'ensemble retourné sont les éléments de I'ensemble s_this et qui ne sont pas dans les

autres ensembles *s_that.

CDPetrescu Types natifs containers — Deuxi¢éme partie 8/10

Chapitre 8

B Opérations avec des sets (objets de type set ou frozenset) (suite)

La ligne 17 => s_this.symmetric_difference(s_that) :
> les ¢éléments de l'ensemble retourné sont les ¢léments de l'ensemble s_this ou de I'ensemble s_that

mais pas des deux a la fois.

Deux containers de type set ou frozenset peuvent étre comparés avec l'opérateur == qui retourne True si et

seulement si chaque ¢lément de chaque container appartient aussi a l'autre container (i.e. chaque opérande est

un sous-ensemble de I'autre opérande).

La comparaison d'un objet set avec un objet frozenset est basée seulement sur leurs éléments.

Le type de l'objet retourné par des opérations binaires qui mélangent des objets set avec des objets

frozenset est le méme que le type du premier opérande.

La relation d'ordre entre les sets n'est que partielle (par exemple, pour deux sets sel et se2 non vides et

disjoints les trois opérations suivantes retournent False : sel < se2, sel == se2 et sel > se2).

CDPetrescu Types natifs containers — Deuxi¢éme partie 8/11

Chapitre 8

B Opérations avec des sets (objets de type set ou frozenset) — exemples

ensl = {1, 2, 3, 4, 5}
print(len(ensl)) #afiche 5

#les 2 lignes ci-dessous => TypeError: 'set' object is not subscriptable
#print(ens1[0])
#print(ensl[1:5:2])

print (3 in ensl) #affiche True
print (3 not in ensl) #affiche False

ensl = {1, 2, 3, 4, 5}
ens2 = {-1, 0, =2}

ens3 = {2, 4}

ensd = {-1, 0, 2, 4, 5}

print(ensl.isdisjoint (ens2)) #affiche True
print(ensl.issubset (ens3)) #affiche False
print (ens3 <= ensl) #affiche True
print(ens3 < ensl) #affiche True
print(ensl.issuperset (ens3)) #affiche True
print(ens3 > ensl) #affiche False

CDPetrescu Types natifs containers — Deuxi¢éme partie 8/12

Chapitre 8

B Opérations avec des sets (objets de type set ou frozenset) — exemples (suite)

print ({1,3}.union({0,-1}, {1,7})) #affiche
print({1,5,7,3} & {-2,5,3} & {1,3,7,5}) #affiche
print({1,2,3,4,5} - {0,2} - {1,4}) taffiche
print({1,2,3}.symmetric difference({-1,1,2})) #affiche
print({1,2,3}*{-1,1,2}) #affiche
ensl = {1,2,3}

ens?2 = ensl

print(ensl == ens?2) #affiche
print (id(ensl) == id(ens2)) #affiche
ens3 = ensl.copy()

print(ensl == ens3) #affiche
print (id(ensl) == id(ens3)) #affiche

{OI 7’ _1}

{3, 5}
{3, 5}
{3, -1}

{3/ _1}

True

True

True

False

CDPetrescu Types natifs containers — Deuxi¢éme partie

8/13

Chapitre 8

B Opérations avec des objets mutables de type set

No | Opérateur / Fonction / Méthode

Effet / Résultat retourné

1 |s_this.update(*s_that)

met a jour s_this comme la réunion du s_this et des

sets *s_that

2 |s this|=s that 1]...

comme ci-dessus

3 | s_this.intersection _update(*s_that)

met a jour s_this comme l'intersection du s_this et des

sets *s_that

4 |s _this &=s that 1 & ...

comme ci-dessus

5 |s_this.difference update(*s_that)

met a jour s_this comme la différence entre s_this et

les sets *s_that

6 |s this-=s that 1]...

comme ci-dessus

7 | s_this.symmetric_difference update(s_that)

met a jour s_this en ne gardant que des éléments du

s_this ou du s_that mais pas des deux

8 |s_this *=s that

comme ci-dessus

CDPetrescu Types natifs containers — Deuxi¢éme partie 8/14

Chapitre 8

B Opérations avec des objets mutables de type set (suite)

No | Opérateur / Fonction / Méthode | Effet / Résultat retourné
9 |s_this.add(el) ajoute l'¢lément el au set s_this
retire 1'élément el du set s_this s'il est dans s_this ou
10 | s_this.remove(el) . .
lance une exception KeyError si el n'est pas dans s_this
retire I'élément el du set s_this s'il est dans s_this ou
11 |s_this.discard(el) .
reste sans effet si el n'est pas dans s_this
retire et retourne un ¢lément arbitraire du set s_this ou
12 |'s_this.pop() . ' '
lance une exception KeyError si s_this est vide
13 |s_this.clear() supprime tous les éléments du set s_this

Dans le tableau ci-dessus (qui s'étale sur deux pages), on a présenté des opérateurs et des méthodes qui

permettent de manipuler des objets mutables de type set (et qui ne concernent donc pas les frozensets).

Les notations utilisées plus tot restent les mémes et, de plus, el est un ¢lément qui est ajouté au ou retiré¢ du

set appelant les méthodes respectives add() ou remove() et discard().

CDPetrescu

Types natifs containers — Deuxi¢éme partie 8/15

Chapitre 8

B Opérations avec des objets mutables de type set (suite)

A part la méthode pop(), toutes les autres méthodes retournent None (si leur exécution ne lance pas

d'exception).

Les méthodes aux lignes 1, 3, 5 et 7 peuvent avoir comme arguments des objets set ou des itérables (a

conditions que leurs ¢léments soient immutables).

ens = {1,4,3,2,1}

print (ens) #affiche {1, 2, 3, 4}
print(ens.update({11,1,3})) #affiche None

print (ens) #affiche {1, 2, 3, 4, 11}

ens |= set([11,1,3,-15,23,-15])

print (ens) #affiche {1, 2, 3, 4, 11, -15, 23}

ens &= {3,1,4} & {0,1,3,-15,0}

print (ens) #affiche {1, 3}
ens |= {-1,10} | {10,-4}
print (ens) #affiche {1, 3, 10, -4, -1}

CDPetrescu Types natifs containers — Deuxi¢éme partie 8/16

B Opérations avec des objets mutables de type set — exemples

Chapitre 8

ens = {1, 3, 10, -4, -1}

ens -= {-1,0,1} | {-5,-4,-3}
print (ens) #affiche {3, 10}

ens = {0, 10, 20}
print (ens) #affiche {0, 3, 20}

#ci-dessous => TypeError: unhashable type: 'list'
#ens.update ([0, [2, 311)

ens.update(list([3,6,6,9]1))
print (ens) #affiche {0, 3, 6, 9, 20}

ens = {1,2,3,4}

#ci-dessous => TypeError: set.add() takes exactly one argument (2 given)
#ens.add (0, 10)

#ci-dessous => TypeError: unhashable type: 'list'
#ens.add([0,10])

print(ens.add('cing')) #affiche None

print (ens) #affiche {1, 2, 3, 4, 'cing'}

CDPetrescu Types natifs containers — Deuxi¢éme partie

8/17

B Opérations avec des objets mutables de type set — exemples (suite)

Chapitre 8

ens = {1, 2, 3, 4, 'cing'}

print (ens.remove (1)) #affiche None
print (ens) #affiche {2, 3, 4,

#ci-dessous => KeyError: {2, 3}
#ens.remove ({2,3})

print(ens.discard({2,3})) #affiche None
print (ens) #affiche {2, 3, 4,

#ci-dessous => KeyError: 5
#ens.remove (5)

print (ens.discard(5)) #affiche None
print (ens) #affiche {2, 3, 4,

ens.discard('cing')

print (ens) #affiche {2, 3, 4}
print (ens.pop()) #faffiche 2

print (ens) #faffiche {3, 4}
print(ens.clear()) #affiche None
print (ens) #affiche set ()

'cing'}

'cing'}

'cing'}

CDPetrescu Types natifs containers — Deuxi¢éme partie

8/18

Chapitre 8

C. Type mapping — C1 Type (classe) dict

Un objet de type mapping est un objet mutable qui mappe, i.c. met en correspondance, des clés (keys en

anglais) et des valeurs (values en anglais).
La classe dict est 1a seule classe qui implémente le type mapping.

Un objet de type dict est un objet mutable dont les éléments sont des paires (des couples) clés-valeurs et

ces ¢léments ne sont pas ordonnés.

Les clés d'un dictionnaire doivent €tre des objets immutables (donc hachables) et ces clés doivent étre

uniques.

Par conséquent, par exemple, la clé d'un dictionnaire :
» ne peut pas étre une liste ou un dictionnaire ou un set ;

» peut €tre un nombre (normalement un int), une string, un tuple ou un frozenset.

Les valeurs d'un dictionnaire peuvent étre des objets quelconques et ces valeurs ne doivent pas étre

uniques (donc les doublons sont admis).

CDPetrescu Types natifs containers — Deuxi¢éme partie 8/19

Chapitre 8

C1 Création d'un objet de type dict

Un objet de type dict peut étre créé en utilisant :

» une paire d'accolades (ouvrante — fermante) :

o vide (afin de créer un dictionnaire vide — empty dictionary en anglais) ;

©)

qui entourent un seul ¢lément de la forme key : value (ou le séparateur deux-points : fait partie de

la syntaxe) ou une suite de tels ¢léments séparés par des virgules ;

> le constructeur de la classe dict :

©)

©)

CDPetrescu

sans argument (pour créer un dictionnaire vide) ;
avec un nombre variable d'arguments (optionnels) nommés de la forme key = value ;
avec comme (premier) seul argument (optionnel) positionnel :

= 501t un dictionnaire ;

= soit un itérable d'objets itérables avec exactement deux ¢léments — par exemple une liste de

couples de la forme (key, value) ; si une clé apparait plusieurs fois, la derniere valeur
associée a cette clé sera retenue par le nouveau dictionnaire créé ;
avec un premier argument positionnel (un dictionnaire ou un itérable comme ci-dessus) et des

arguments nommés supplémentaires de la forme key = value ; si une clé apparait dans le

premier argument et aussi comme argument nomme, la valeur de I'argument nommé sera retenue.

Types natifs containers — Deuxi¢éme partie 8/20

Chapitre 8

C1 Création d'un objet de type dict (suite)
En outre, un objet de type dict peut €tre aussi créé en utilisant :
» la méthode de classe fromkeys(keys, value) de la classe dict qui crée un nouveau dictionnaire dont :
o les clés sont précisées par le premier argument keys qui doit €tre un itérable ;
o la valeur commune a toutes les clés est :
= soit la valeur explicite correspondant au deuxieéme argument (optionnel) value ;
= soit None si le deuxiéme argument est absent ;

» un dictionnaire en compréhension ;

» des fonctions et des méthodes qui retournent comme résultats des dictionnaires.

Il convient de mentionner que :
> les éléments d'un dictionnaire ne sont pas ordonnés dans le sens qu'ils ne sont pas accessibles en
fonction de leur position (mais en fonction de leur clé) ;
» cependant, a partir de la version 3.7, I'ordre d'insertion des éléments est garanti et préservé par la suite ;
» cet ordre n'est pas modifié si la valeur associée a une clé est mise a jour ;

» en outre, a partir de la version 3.8, les dictionnaires sont réversibles.

Dans d'autres langages les dictionnaires sont appelés aussi tableaux associatifs ou tables de hachage.

CDPetrescu Types natifs containers — Deuxi¢éme partie 8/21

Chapitre 8

C1 Création d'un objet de type dict — exemples

dic = {}

print (type (dic)) #faffiche <class 'dict'>

print(len(dic)) #affiche O

print (dic) #faffiche {}

dic = {1:'un', 2:'deux', 3:'un'}

print (type (dic)) #affiche <class 'dict'>

print(len(dic)) #affiche 3

print(dic) #affiche {1: 'un', 2: 'deux', 3: 'un'}
#ci-dessous => SyntaxError: expression cannot contain assignment, perhaps you meant "=="?

#dic ko = dict(l='un', 2='deux', 3="'un')

#ci-dessous => SyntaxError: keyword argument repeated: un

#dic ko = dict(un=1, deux=2, un=3)

#ci-dessous => NameError: name 'zero' 1s not defined

#dic ko = dict(zero, un=1l, deux=2, trois=3)

CDPetrescu Types natifs containers — Deuxi¢éme partie 8/22

Chapitre 8

C1 Création d'un objet de type dict — exemples (suite)

dic = dict(un=1l, deux=2)

print(dic) #affiche {'un': 1, 'deux': 2}

dic = dict([(1,'un"), (2,'deux'), (1,'trois')])

print(dic) #affiche {1: 'trois', 2: 'deux'}

#ci-dessous => NameError: name 'un' i1is not defined

#dic ko = dict([(un,1l), (deux,2)], deux=-2)

dic = dict([('un',1l), ('deux',2)], deux=-2)
print(dic) #affiche {'un': 1, 'deux': -2}

dic = dict.fromkeys([1,2,3], 0)
print(dic) #affiche {1: 0, 2: 0, 3: 0}

dic = dict.fromkeys([1,2], [11,12])
print(dic) #affiche {1: [11, 121, 2: [11, 121}

CDPetrescu Types natifs containers — Deuxi¢éme partie 8/23

Chapitre 8

C1 Opérations avec des dictionnaires

No | Opérateur /Fonction/Méthode

Effet / Résultat retourné

len(dic)

le nombre d'éléments de dic

2 | dic|key]

I'élément de dic ayant la cl¢ key si cette cl¢ est dans dic ou

lance une exception KeyError si key n'est pas dans dic

3 | dic[key] = val

affecte val a la cl¢ key

4 | del dic[key]

supprime 1'élément dic[key]| de dic ou

lance une exception KeyError si key n'est pas dans dic

key in dic

True si dic a la clé key ou False autrement

key not in dic

False si dic a la cl¢ key ou True autrement

7 | dic.get(key)

la valeur associée a key si la clé key est dans dic ou

None si key n'est pas dans dic

8 | dic.pop(key)

supprime key et retourne la valeur associée si key est dans dic ou

lance une exception KeyError si key n'est pas dans dic

9 | dic.popitem()

supprime et retourne une paire (clé, valeur) de dic ou

lance une exception KeyError si dic est vide

CDPetrescu

Types natifs containers — Deuxi¢éme partie 8/24

Chapitre 8

C1 Opérations avec des dictionnaires (suite)

No | Opérateur/Fonction/Méthode | Effet/Résultat retourné

10 | dic.items() nouvelle vue des éléments (clés-valeurs) de dic

11 | dic.keys() nouvelle vue des clés de dic

12 | list(dic) une liste avec toutes les clés de dic

13 |iter(dic) un itérateur pour parcourir les clés de dict

14 | reversed(dic) un itérateur inversé pour parcourir les clés de dic (a partir de 3.8)

15 | dic.values() nouvelle vue des valeurs de dic

16 |dic.clear() supprime tous les ¢léments du dic

17 | dic.copy() une copie superficielle du dic

18 | dic.setdefault(key, val) retourne la valeur associée a key si key est dans dict ou, autrement,
insere la paire (key, val) dans dic et retourne val

19 | dicl.update(dic2) met a jour dicl avec les paires (clés, valeurs) de dic2 en récrivant
(overwriting en anglais) les éventuelles clés existantes dans dicl

CDPetrescu Types natifs containers — Deuxiéme partie 8/25

Chapitre 8

C1 Opérations avec des dictionnaires (suite)

No | Opérateur/Fonction/Méthode | Effet/Résultat retourné
20 | dicl | dic2 un nouveau dictionnaire obtenu en fusionnant dicl et dic2
21 | dicl |= dic2 met a jour dicl avec les clés et les valeurs de dic2

Dans le tableau précédent (qui s'étale

sur plusieurs pages), on a présenté des opérateurs, des fonctions et

des méthodes qui permettent de manipuler des dictionnaires.

On a utilisé les notations suivantes :

» dic, dicl et dic2 sont des objets de type dict ;

» key est une clé d'un dictionnaire ;

» val est une valeur (associée ou affectée a une clé) d'un dictionnaire.

On donne par la suite des précisions concernant certaines lignes du tableau précédent.

Il convient de mentionner que les méthodes clear() et update() de la classe dict retournent None.

La ligne 3 => dic|key| = val :

> si la clé key n'est pas dans dic, la paire key-val est ajoutée au dic.

CDPetrescu

Types natifs containers — Deuxi¢éme partie 8/26

Chapitre 8

C1 Opérations avec des dictionnaires (suite)

La ligne 7 => dic.get(key) :
» la méthode peut étre appelée aussi avec un deuxiéme argument dic.get(key, val) qui précise une valeur

val qui est retournée si la clé key n'est pas dans dic.

La ligne 8 => dic.pop(key) :
» la méthode peut étre appelée aussi avec un deuxiéme argument dic.pop(key, val) qui précise une

valeur val qui est retournée si la cl¢ key n'est pas dans dic (et il n'y a plus d'erreur lancée).

La ligne 9 => dic.popitem() :
> les paires (clé, valeur) sont retournées en ordre LIFO (Last In, First Out) qui est garanti (& partir de la

version 3.7).

Les lignes 10, 11 et 15 => dic.items(), dic.keys() et dic.values() :

» ces méthodes retournent de nouvelles vues dynamiques (qui sont des objets qui changent quand le

dictionnaire change et qui peuvent éEtre itérés afin de parcourir) des éléments, des clés et,

respectivement, des valeurs du dictionnaire appelant.

CDPetrescu Types natifs containers — Deuxi¢éme partie 8/27

Chapitre 8

C1 Opérations avec des dictionnaires (suite)

La ligne 18 => dic.setdefault(key, val) :
- la méthode setdefault() peut étre appel€e aussi avec comme seul argument key et, dans ce cas, si dic

n'a pas la cl¢ key, un nouvel élément (key, None) est ajouté a dic et la constante None est retournée.

La ligne 20 => dicl | dic2 :
» dans le nouveau dictionnaire obtenu grace a cet opérateur (ajouté dans la version 3.9), la valeur

retenue pour une clé partagée par dicl et dic2 est celle de dic2.

La ligne 21 => dicl |= dic2 :
» dans dicl modifié grace a cet opérateur (ajouté dans la version 3.9), la valeur retenue pour une clé
partagee par dicl et dic2 est celle de dic2 ;

» dic2 peut étre un dictionnaire ou un itérable de paires clés-valeurs.

Deux dictionnaires peuvent étre compares avec l'opérateur == qui retourne True si et seulement si les deux

operandes ont les mémes paires (clés, valeurs) indépendamment de 1'ordre.

En revanche, pour les dictionnaires, les opérateurs <, <=, > et >= lancent une exception TypeError.

CDPetrescu Types natifs containers — Deuxi¢éme partie 8/28

C1 Opérations avec des dictionnaires — exemples

Chapitre 8

dic = {'un':1, 'deux':2, 'un':3}

print(dic) #affiche {'un': 3, 'deux': 2}

#ci-dessous => KeyError: 2

#tprint (dic[2])

print(dic['deux']) #affiche 2

dic['deux'] = '"two'

print(dic) #faffiche {'un': 3, 'deux': 'two'}
dic['trois'] = 3

print(dic) #affiche {'un': 3, 'deux': 'two', 'trois': 3}
del dic['deux']

print(dic) #affiche {'un': 3, 'trois': 3}

#ci-dessous => KeyError: 3

#del dic[3]

print('trois' in dic) #affiche True

print (3 not in dic) #affiche True

print(dic.get('trois')) #affiche 3

print(dic.get (3)) #affiche None

CDPetrescu Types natifs containers — Deuxiéme partie 8/29

C1 Opérations avec des dictionnaires — exemples (suite)

Chapitre 8

dic = {'red':'rouge', 'green':'vert', 'blue':
print(dic.pop('green')) #affiche
print(dic) #affiche
#ci-dessous => KeyError: 'yellow'
fdic.pop('yellow")

print (dic.popitem()) #affiche
print(dic.clear()) #affiche
print(dic) #affiche
#fci-dessous => KeyError: 'popitem() :
fdic.popitem()

dic = {'red':'rouge', 'green':'vert'}
#ci-dessous => affiche dict items ([('red',
print(dic.items())

print(list(dic.items())) #affiche
print(list(dic.keys())) #affiche
print(list(dic)) #affiche
print(list (iter(dic))) #affiche
print(list (reversed(dic))) #affiche
print(list(dic.values())) #affiche

'bleu'}

vert
{'"red':

('"blue',

None

{}

'rouge',

'bleu')

dictionary is empty'

'rouge'), ('green',
[('red', 'rouge'),
['red', 'green']
['red', 'green']
['red', 'green']
[green', 'red']
['rouge', 'vert']

'blue': 'bleu'}
'vert')])
('green', 'vert')]

CDPetrescu

Types natifs containers — Deuxi¢éme partie

8/30

C1 Opérations avec des dictionnaires — exemples (suite)

Chapitre 8

dic = {'red':'rouge', 'green':'vert'}

dic bis = dic.copy()

print (dic bis == dic) #affiche True
print (id(dic bis) == id(dic)) #affiche False
print(dic.clear()) #affiche None
print(list(dic.values())) #affiche []
dic = {'red':'rouge', 'green':'vert'}

print(dic.setdefault('green', 'grun')) #affiche vert

print(dic) faffiche {'red': 'rouge', 'green': 'vert'}
print(dic.setdefault('blue’', 'bleu')) #affiche bleu

print(dic) #faffiche {'red': 'rouge', 'green': 'vert', 'blue': 'bleu'}
del dic['red']

print(dic.setdefault('black')) #affiche None

print(dic) #faffiche {'green': 'vert', 'blue': 'bleu', 'black': None}
CDPetrescu Types natifs containers — Deuxi¢éme partie 8/31

Chapitre 8

C1 Opérations avec des dictionnaires — exemples (suite)

dicl = {'red':'rouge', 'green':'vert'}

dic2 = {'green':'grin', 'blue':'blau'}

print(dicl.update(dic?2)) #affiche None

print (dicl) #faffiche {'red': 'rouge', 'green': 'grin'

dicl = {'red':'rouge', 'green':'vert'}

dic3 = dicl | dic2

print (dic3) #faffiche {'red': 'rouge', 'green': 'grin'
print (dicl) #faffiche {'red':'rouge', 'green':'vert'}
dicl |= dic2

print (dicl) #faffiche {'red': 'rouge', 'green': 'grin'

dicl = {1:'un', 2:'deux'}
dic2 = {3:'trois'}

#ci-dessous => TypeError: '<' not supported between instances of
#print (dicl < dic2)

, 'blue': 'blau'}
, 'blue': 'blau'}
, 'blue': 'blau'}

'dict' and 'dict'

CDPetrescu Types natifs containers — Deuxi¢éme partie

8/32

Chapitre 9

Types natifs containers — Troisiéme partie

Pyt[um

CDPetrescu 9/1

Chapitre 9

A4 Type (classe) str
Le type str est un des types natifs séquentiels.

Un objet de type str (ou, simplement, une string) est :
» une séquence immutable de caractéres (donc une chaine de caractéres qui ne peut plus étre modifiée
apres sa création) ;

» une instance de la classe (prédéfinie) native str.

Il convient de préciser que Python ne prévoit pas de type dédi¢/spécial pour des caractéres individuels/isolés

(mais seulement pour les strings, y compris la chaine vide et les chaines avec un seul caractere).

Cependant, selon le standard informatique (ou la norme) appelé(e) Unicode, a chaque caractére est associé :

» soit un code Unicode simple qui est un entier compris entre 0 et 65535 (codage UTF-16 normalement,

stockage sur 2 octets correspondant au Basic Multilingual Plan) pour les premiers caractéres de la
norme ;

» soit un point de code (codage UTF-32 normalement, stockage sur 4 octets et utilisation des plans

supplémentaires) pour les caracteres suivants (dits aussi supplémentaires) de la norme.

CDPetrescu Strings 9/2

Chapitre 9

A4 Création d'un objet de type str

Un objet de type str peut €tre cré€ en utilisant :
» une paire de simples quottes ou de doubles quottes ou de triples quottes :
o vide (afin de créer une string vide — empty string en anglais) ;
o qui entourent un seul caractére ou une chaine de caracteéres ;
> le constructeur de la classe str :
o sans argument (afin de créer une string vide) ;
o avec comme seul argument un objet quelconque (qui est converti en string et) qui peut €tre, en
particulier, une chaine de caractéres ;
o avec deux ou trois arguments pour le cas ou, normalement, le type du premier argument est le
type séquentiel bytes , bytearray ou similaire ;

» des fonctions et des méthodes qui retournent comme résultats des strings.

L'appel (de la fonction native ou) du constructeur str(obj) avec comme seul argument I'objet obj retourne
la valeur string obtenue :
» soit par l'appel de la méthode magique (dunder) obj. str (), si une telle méthode existe dans la
classe de I'objet obj ;

» soit par l'appel de la fonction native repr(obj), autrement.

CDPetrescu Strings 9/3

Chapitre 9

A4 Création d'un objet de type str (suite)
Plus précisément :
» une classe peut prévoir des méthodes magiques str_ () ou/et repr () afin de proposer une/des
version(s) ad hoc pour représenter une instance de cette classe comme string (affichable) ;
» la fonction native repr(obj) retourne :
o soit la valeur obtenue par I'appel de la méthode magique obj. repr (), si une telle méthode
existe dans la classe de I'objet obj ;
o soit une string contenant une représentation affichable de l'objet obj (qui dépend de son type),

autrement.

Si la fonction native ord() est appelée avec un argument string contenant un seul caractere, alors elle

retourne le code Unicode de ce caracteére ; appelée autrement, elle lance une exception TypeError.

Si la fonction native chr() est appelée avec un argument int qui est un code Unicode, alors elle retourne une

string qui représente le caractere correspondant a ce code Unicode ; appelée autrement, elle lance une

exception de type ValueError (si le seul argument est un entier dont la valeur est inappropri¢e) ou

TypeError (dans les autres cas).

CDPetrescu Strings 9/4

Chapitre 9

A4 Création d'un objet de type str (suite)

Parmi les caractéres qui apparaissent dans une string littérale qui est délimitée par des simples ou doubles
ou triples quottes :

» les quottes qui ne sont pas les délimiteurs de la string peuvent apparaitre et sont affichées telles
quelles ;

» les quottes qui délimitent la string peuvent apparaitre et seront affichées telles quelles si on les
déspécialise en les faisant précéder par le caractere antislash \ ;

» certains caracteres dits de contréle forment des séquences d'échappement qui ne sont pas affichées
telles quelles car elles ont des significations spéciales pour la mise en forme (le formatage) de la chaine
de caracteres, comme \n qui précise un saut de ligne ou \t qui précise une tabulation ;

» le caractére antislash doit étre doublé (déspécialisé par lui-méme) \\ afin de I'afficher comme un seul
caractere antislash \ ;

» certains caractéres (parmi les premiers 65536 et, en particulier, ceux qui ne se retrouvent pas sur les

touches du clavier) peuvent étre précisés par leur code Unicode (exprimé avec quatre chiffres

hexadécimaux et) précéd¢é par les caractéres \u, par exemple "u0030' pour le chiffre '0' de code

Unicode décimal 48, "\u0041' pour la lettre majuscule 'A' de code Unicode décimal 65 ou "\u0061'

pour la lettre minuscule 'a' de code Unicode décimal 97.

CDPetrescu Strings 9/5

Chapitre 9

A4 Création d'un objet de type str (suite)

Il convient de préciser qu'une string définie avec les triples quottes :

» peut s'étaler sur plusieurs lignes physiques et contient toutes les "espaces blanches" (whitespaces en

anglais) qui apparaissent entre les quottes, y compris les tabulations et les sauts de ligne ;

» peut étre utilisée comme un commentaire sur plusieurs lignes physiques ;

» peut étre placée au début du corps d'une fonction cas ou cette string est un Docstring, i.c. une chaine
de documentation (qui peut é&tre consulté(e) grace a l'attribut magique (dunder) doc

précede/préfixé par/avec le nom de la fonction suivi par le s€éparateur point .).

A son tour, une string littérale délimitée par de simples ou doubles quottes peut Etre écrite sur plusieurs

lignes physiques :

» si chaque ligne (sauf la derniére) finit par le caractére antislash \ (qui joue le role de caractére de

continuation et qui n'est pas inclus dans la string littérale) ;

» les sauts de ligne évoqués ci-dessus ne sont pas inclus dans la string littérale.

Deux strings littérales qui font partie d'une méme expression et qui sont séparées par une ou plusieurs

espaces (ou tabulations) sont simplement concaténées (ou juxtaposées).

CDPetrescu Strings 9/6

Chapitre 9

A4 Création d'un objet de type str (suite)

Une string brute (raw string en anglais), appelée aussi r-string :
- est une string littérale délimitée par des quottes précedees par la lettre r (ou R) ;
- la signification spéciale des séquences d'échappement qui apparaissent entre les quottes est ignorée et

elles sont affichées telles quelles.

Une string formatée (formatted string en anglais), appelée aussi f-string :
» est une string littérale délimitée par des quottes précédées par la lettre f (ou F) ;

» sa valeur n'est pas constante et elle est évaluée a 1'exécution (au Runtime) ;

» prend en compte les significations spéciales des séquences d'échappement ;

» ne peut pas contenir de commentaire ;

> les éventuelles expressions entre des accolades { } correspondent a des champs de remplacement
(replacement fields en anglais) et elles sont évaluées comme du code Python et insérées ensuite dans la
string finale (ce qui évite de concaténer des strings en convertissant les valeurs non-string) ;

» pour faire afficher une accolade dans la string finale, il faut la doubler et 1'écrire {{ ou }} ;

» afin d'afficher dans la string finale a la fois le texte entre les accolades et sa valeur, on peut ajouter un
signe = apres l'expression respective ;

» un champ de remplacement peut contenir aussi un spécificateur de format (format specifier en

anglais) ainsi que des champs de remplacement imbriqués.

CDPetrescu Strings 9/7

Chapitre 9

A4 Création d'un objet de type str — exemples

s = 'Bonjour "tout" le monde !'

print (type(s)) #affiche <class 'str'>

print(s) #faffiche Bonjour "tout" le monde !
s = "Bonjour 'tout' le monde !"

print (type(s)) #affiche <class 'str'>

print(s) #faffiche Bonjour 'tout' le monde !

#fci-dessous => SyntaxError: invalid syntax
#s = 'Bonjour 'tout' le monde !’

#les deux instructions ci-dessous => SyntaxError: EOL while scanning string literal
#s = 'Bonjour
#tout le monde !'

sl = 'Bonjour\
tout le monde !'
print(sl) #faffiche Bonjourtout le monde !
s2 = """Bonjour
tout le monde !"""
print (type(s2)) #affiche <class 'str'>
print(s2) #affiche Bonjour

tout le monde !
print ('Bonjour\ntout le\tmonde !') #affiche Bonjour

tout le monde !
print (r'Bonjour\ntout le\tmonde !') #affiche Bonjour\ntout le\tmonde !

CDPetrescu Strings 9/8

Chapitre 9

A4 Création d'un objet de type str — exemples (suite)

s = str()

print (type(s)) #affiche <class 'str'>
print(len(s)) #affiche O

s = str('Bonjour !")

print (type(s)) #affiche <class 'str'>
print(s) #affiche Bonjour !
print(type(str(55))) #affiche <class 'str'>

from datetime import date
aoujourd hui = date.today()

print (type (aoujourd hui)) #affiche <class 'datetime.date'>
print (aoujourd hui) #fpar exemple, affiche 2022-10-26
print(str (aoujourd hui)) #par exemple, affiche 2022-10-26

print(aoujourd hui. str ()) fpar exemple, affiche 2022-10-26

print (repr (aoujourd hui)) #fpar exemple, affiche datetime.date (2022, 10, 26)
print (aoujourd hui. repr ()) #par exemple, affiche datetime.date (2022, 10, 26)

X, ¥y, z=5, ['a","b'], {1:11}

#Les deux instructions non commentées ci-dessous affichent

#Le premier résultat 5, le second y=['a', 'b'] et le dernier {1: 11} !
print (f'Le premier résultat {x}, le second {y=} \

et le dernier {z} !'")
s = "Moi, ' 'Pierre le Grand'
print(s) #affiche Moi,Pierre le Grand

CDPetrescu Strings 9/9

Chapitre 9

A4 Opérations avec des strings

Une string peut étre vue comme un container (une séquence) immutable dont les ¢léments ordonnés sont

des caracteéres (qui, isolés, sont en fait des strings de longueur 1).

Donc, toutes les opérations communes qui ont €té présentées pour les séquences immutables (ainsi que les
remarques associ¢es) sont valables aussi pour les objets string (voir le tableau suivant qui reprend le

tableau de la page 10 du Chapitre 7).

Par la suite, on utilise les notations suivantes :

> s, sl et s2 sont des strings ;
» sub est (normalement) une (sub)string (ou une sous-chaine de caractéres) par rapport a la string s ;
> 1, j et k sont des indices entiers ;

> n est un nombre entier.

Les comparaisons des :

» caractéres individuels se font selon leurs codes Unicode (qui respectent 1'ordre alphabétique usuel) ;

» strings se font caractére par caractére, de gauche vers la droite et en fonction des codes Unicode des

caracteres.

CDPetrescu Strings 9/10

Chapitre 9

A4 Opérations avec des strings (suite)

No | Opérateur / Fonction / Méthode | Résultat retourné
1 | s]i] le caracteére d'indice 1 de s

2 | slizj] la tranche (la substring) deiajdes

3 | slizj:K] la tranche dei a javec lepas kdes

4 |sl+s2 la string obtenue par la concaténation des strings s1 et s2

5 |s*nm ou n*s la string obtenue par la concaténation de s avec elle-méme n fois
6 |subins True si une substring de s est ¢gale a sub ou False autrement

7 |sub notin s False si une substring de s est égale a sub ou True autrement

8 | s.index(sub) le premier indice de la premiere occurrence de sub dans s

9 |s.count(sub) le nombre total d'occurrences de sub dans s

10 | len(s) la longueur (la taille ou le nombre de caractéres) de s

11 | min(s) le plus petit ¢lément (caractere) de s

12 | max(s) le plus grand ¢lément (caractere) de s

CDPetrescu Strings 9/11

Chapitre 9

A4 Opérations avec des strings (suite)
>
la méthode s.index(sub, start, end) :

o soit retourne le premier indice (le plus a gauche) de la premiére occurrence de sub dans la string

appelante (éventuellement dans la tranche range(start, end) de la string appelante si start et/ou
end sont présents dans 1'appel), si au moins une telle occurrence existe ;
o soit lance une exception ValueError, s'il n'y a aucune telle occurrence ;
»la méthode s.count(sub, start, end) retourne le nombre d'occurrences de la string argument sub qui ne
se chevauchent pas :
o soit dans toute la string appelante, si sub est le seul argument de I'appel ;
o soit dans la tranche range(start, end) de la string appelante, si start et/ou end sont présents dans
'appel ;
» la méthode s.len() retourne le nombre de caractéres dans la string appelante tout en tenant compte
qu'une séquence d'échappement peut étre considérée souvent comme un seul caracteére ;

» un caractére lettre (minuscule ou majuscule ou_capitalisée) doit étre compris dans un sens large (i.e.

comme cased character en anglais).

CDPetrescu Strings 9/12

Chapitre 9

A4 Opérations avec des strings (suite)
Il convient de mentionner que pour :
- l'indexage (indexing) : si la valeur entieére de I'indice est trop petite, i.e. <-len(s), ou trop grande, i.e.
>len(s)-1, une exception IndexError est lancée et un message "string index out of range" est affiché ;
- le découpage (slicing) : si le valeur de début est trop petite et/ou celle de fin trop grande, il n'y a pas

d'exception/erreur et le découpage commence au début et/ou finit a la fin de la string.

En outre :

- 1l existe aussi le module standard string qui fournit (surtout) des constantes supplémentaires et des

possibilités de formatage personnalisé des strings ;

- les strings littérales peuvent étre aussi formatées grace a la fonction native format() ou a la méthode

format() de la classe str (en utilisant soit des champs de remplacement placés entre des accolades soit

l'opérateur de formatage %).

Apres quelques exemples d'opérations avec des strings, on présente de maniere succincte une (petite) partie

des méthodes disponibles dans la classe str et qui facilitent le travail avec des objets chaines de caracteéres.

Les parametres facultatifs dans les en-tétes de ces méthodes sont notés en italique (et gras).

CDPetrescu Strings 9/13

Chapitre 9

A4 Opérations avec des strings — exemples

s ='012345678956789"
print(s[3])
print(s[-3])
print(s[-15])

#affiche
#affiche
#affiche

3
-
0

#ci-dessous => IndexError: string index out of range

#print (s[20])

print(s[-20:3])
print(s[3:20:3])

print('567'" in s)
print(s.index('567"))

#ci-dessous => TypeError: count ()
#print (s.count())

print(s.count ('567"))
print(len(s))

s = '"Tu es\t mon meill\reur ami.'
print(s)
print(len(s))

print (min('Pierre le Grand'))

print (max ('Mon ami Pierrot'))

#affiche
#affiche

#affiche

#affiche

#affiche

#affiche

#affiche
#affiche

#affiche

#affiche

012
3697

True

5

takes at least 1 argument (0 given)

2
15

eur ami.on meill
25

G

t

CDPetrescu

Strings

9/14

Chapitre 9

A4 Méthodes d'instance de la classe str

» s.upper()
retourne une copie de la string appelante dans laquelle toutes les lettres sont converties en majuscules.
» s.lower()
retourne une copie de la string appelante dans laquelle toutes les lettres sont converties en minuscules.
> s.capitalize()
retourne une copie de la string appelante dans laquelle le premier caractére est capitalisé et les autres lettres
sont converties en minuscules.
» s.split(sep=None, maxsplit=-1)
retourne une liste de (sub)strings obtenues en découpant la string appelante selon :
o les espaces blanches (comme les espaces, les tabulations ou les sauts de lignes), s'il n'y a pas
d'argument sep ou s'il a la valeur None (et ces espaces ne font pas partie des (sub)strings) ;
o l'argument sep de type string, s'il est présent dans l'appel (et le séparateur ne fait pas partie des
(sub)strings).
En plus, les découpages commencent a gauche et s'arrétent apres :
o tous les découpages possibles, si I'argument maxsplit est absent ou négatif ;
o au maximum maxsplit découpages (ce qui donne au maximum (maxsplit+1) éléments) si

I'argument maxsplit est présent dans I'appel (et il est non négatif).

CDPetrescu Strings 9/15

Chapitre 9

A4 Méthodes d'instance de la classe str (suite)

» s.rsplit(sep=None, maxsplit=-1)
travaille comme la méthode split(), mais le découpage commence a droite.
» s.splitlines(keepends)
retourne une liste avec les lignes contenues dans la string appelante et découpées en fonctions des limites de

lignes comme \n pour le saut de ligne (/ine feed en anglais) ou \r pour le retour de chariot (carriage return en

anglais) et :

o sans les limites de lignes, si I'appel est fait sans argument ;

o avec les limites de lignes, si 'appel est fait avec True comme valeur de I'argument keepends.

> s.join(iterable)
travaille de maniere opposée par rapport a la méthode split() et :
o soit retourne une nouvelle string obtenue en concaténant les strings de l'argument iterable
séparées par la string appelante ;

o soit lance une exception TypeError, s'il y a au moins une valeur non string dans l'argument

iterable.

CDPetrescu Strings 9/16

Chapitre 9

A4 Méthodes d'instance de la classe str (suite)
» s.find(sub, start, end)
recherche dans toute la string appelante (ou seulement dans la tranche range(start, end), si start et/ou end
sont présents dans l'appel) la premiere occurrence (a partir de gauche) de I'argument sub et retourne :
o soit la valeur du premier index (le plus a gauche) de cette occurrence, si au moins une telle
occurrence existe ;
o soit -1, si sub n'a pas été trouvee.
» s.rfind(sub, start, end)
travaille comme la méthode find() sauf que la recherche se fait de droite vers la gauche.
» s.rindex(sub)
travaille comme la méthode index() sauf que la recherche se fait de droite vers la gauche.
» s.replace(old, new, count)

retourne une copie de la string appelante dans laquelle toutes les occurrences de la string premier argument

old sont remplacées par la string deuxiéme argument new.

En plus, si le troisieme argument count est présent dans I'appel, seulement les count premieres occurrences

sont remplacées.

CDPetrescu Strings 9/17

Chapitre 9

A4 Méthodes d'instance de la classe str (suite)
» s.strip(chars)
retourne une copie de la string appelante dans laquelle on supprime :
o toutes les éventuelles espaces blanches situées au début ou a la fin de la string appelante (mais
pas a l'intérieur), si l'appel se fait sans argument ;
o toute combinaison de caracteéres apparaissant dans la string argument chars et qui est située au
début ou a la fin de la string appelante, si l'appel se fait avec un argument.
> s.strip()
travaille comme la méthode strip() sauf que seulement les caractéres du début sont supprimeés.
» s.rstrip()
travaille comme la méthode strip() sauf que seulement les caracteres de la fin sont supprimés.
> s.startswith(prefix, start, end)

retourne :

o True si la string appelante commence avec prefix (qui peut étre aussi un tuple de préfixes) ou si
la tranche range(start, end) de la string appelante commence ainsi ;

o False autrement.

CDPetrescu Strings 9/18

Chapitre 9

A4 Méthodes d'instance de la classe str (suite)

» s.endswith(suffix, start, end)
retourne :

o True si la string appelante finit par suffix (qui peut étre aussi un tuple de suffixes) ou si la

tranche range(start, end) de la string appelante finit ainsi ;
o False autrement.
» s.removeprefix(prefix)
retourne (a partir de la version 3.9 de Python) :
o une nouvelle string s[len(prefix) :], si s commence par la string argument prefix ;
o la string appelante s, autrement.
» s.removesuffix(suffix)
retourne (a partir de la version 3.9 de Python) :
o une nouvelle string s[: -len(suffix)], si s finit par la string argument suffix ;
o la string appelante s, autrement.
> s.swapcase()
retourne une copie de la string appelante dans laquelle toutes les minuscules sont converties en majuscules

et vice versa.

CDPetrescu Strings 9/19

A4 Méthodes d'instance de la classe str — exemples

Chapitre 9

S =

'qu\'il Soit une Fois un Roi'

print (s.upper()) #affiche QU'IL SOIT UNE FOIS UN ROI

print(s.lower()) #faffiche qu'il soit une fois un roi
print(s.capitalize()) #faffiche Qu'il soit une fois un roi

print (s.swapcase()) #affiche QU'IL sOIT UNE fOIS UN rOI

1i1 = s.split()

print(1lil) #taffiche ["qu'il", 'Soit', 'une', 'Fois', 'un', 'Roi']
1i2 = s.split('oil")

print(1i2) #affiche ["qu'il S", 't une F', 's un R', '']

1i3 = s.split('oil', 1)

print(1i3) #faffiche ["qu'il S", 't une Fois un Roi']

1i4 = s.rsplit('oi', 2)

print(1i4) #faffiche ["qu'il Soit une F", 's un R', '']

sl = ""'gu'ill Soit

une Fois

un Roi'"'

1i5 = sl.splitlines()

print(1ib) #faffiche ["qu'il Soit", 'une Fois', 'un Roi']
print(sl.splitlines(True)) #affiche ["qu'il Soit\n", 'une Fois\n', 'un Roi']
CDPetrescu Strings 9/20

Chapitre 9

A4 Méthodes d'instance de la classe str — exemples (suite)

1il = ["gqu'il", 'Soit', 'une', 'Fois', 'un', 'Roi']

s ="' ".join(1il)

print(s) #taffiche qu'il Soit une Fois un Roi

1i2 = ['il", 'est', 3, 'fois',

#fci-dessous => TypeError: sequence item 2: expected str instance, int found
#s2 = ' ".join(1i2)

print(s.find('o0i'")) #affiche 7

print(s.find('io")) #affiche -1

print(s.find('oi', 8)) #affiche 16

print(s.rfind('oci', =10, =3)) #affiche 16

print(s.rindex('oi')) #affiche 24

print(s.replace('oi', '"*")) #affiche qu'il S*t une F*s un R*
print(s.replace('oi', '"*', 2)) #faffiche qu'il S*t une F*s un Roi
print(s.strip('ogi')) #affiche u'il Soit une Fois un R
print(s.lstrip('ogi')) #affiche u'il Soit une Fois un Roi
print(s.rstrip('ogi')) #affiche qu'il Soit une Fois un R
print(s.startswith('oi', 7)) #affiche True

print(s.endswith('oi', 0, 8)) #affiche False

print(s.endswith('oi', 0, 9)) #affiche True

CDPetrescu Strings 9/21

Chapitre 9

CDPetrescu Strings 9/22

Chapitre 10

Exceptions

P«;tfum

CDPetrescu 10/1

Chapitre 10

Exceptions

Une exception est une circonstance (souvent non désirée) qui peut intervenir durant l'exécution d'un

programme et compromettre son déroulement normal.

Le langage Python implémente un mécanisme d'exceptions qui permet un traitement flexible, robuste et

efficace des situations anormales/spéciales susceptibles d'apparaitre au Runtime (dues, par exemple, a une

mauvaise introduction de données par 1'utilisateur ou a un probléme de connexion entre le programme et un

périphérique).

Parmi les avantages du mécanisme d'exception Python, on peut mentionner :
e une bonne lisibilité du code grace a une séparation claire entre le code ordinaire et les instructions qui
A " < n"n .
gerent les "anomalies" ;
e la possibilit¢ de propager les exceptions au niveau des appels successifs des méthodes, afin d'en

assurer un traitement optimal.

Le déclenchement d'une exception est intercepté et produit une interruption du cours normal du

programme dont I'exécution est aiguillée vers un gestionnaire d'exceptions approprié.

CDPetrescu Exceptions 10/2

Chapitre 10

Erreurs versus exceptions

En Python, 1l y a deux catégories principales d'erreurs :
» erreurs de syntaxe (qui se produisent quand la syntaxe du langage n'est pas respectée et elles doivent
étre corrigées pour que l'exécution soit ensuite possible) ;
» erreurs logiques ou exceptions (qui peuvent apparaitre a 1'exécution d'un code qui n'a pas d'erreur de

syntaxe et elles peuvent étre traitées au Runtime sans que le programme s'arréte).

Il y a aussi d'autres catégories d'erreurs comme "out of memory error" ou "recursion error" mais, le plus

souvent, ces erreurs ne sont pas traitées durant 1'exécution et produisent l'arrét du programme.

Une classe d'exception (prédéfinie ou non) :

» est associée a une certaine circonstance anormale/spéciale pouvant intervenir au cours du

fonctionnement d'un programme (au Runtime) ;
» doit contenir (normalement) toutes les informations nécessaires a un traitement approprié de la

situation occurrente.

Autrement dit, une instance d'une classe d'exception (ou, simplement, une exception) doit étre un "objet
diagnostic" qui décrit ce qui s'est produit afin de permettre a un gestionnaire d'exceptions de traiter

I'anomalie qui a déclenché 'exception.

CDPetrescu Exceptions 10/3

Chapitre 10

Classes d'exception

Toute classe d'exception (prédéfinie ou définie par le programmeur) doit hériter (directement ou pas) de la

classe de base BaseException qui :
» est une classe native (built-in) ;
> est la fille de la classe object ;
» est la racine (oot en anglais) de la hiérarchie d'exceptions ;
» a plusieurs filles (a savoir quatre) parmi lesquelles la classe native Exception dont certaines de ses

classes descendantes natives seront présentées par la suite.

Malgré le grand nombre de classes d'exception prédéfinies (voir les exemples de classes natives ci-dessous),

le programmeur peut et, parfois, doit définir ses propres classes d'exception (qui doivent hériter de la classe

native Exception).

La qualité du traitement d'exceptions dépend en grande mesure de la capacité du programmeur d'anticiper

les éventuelles situations non désirées pouvant intervenir au Runtime et de prévoir des solutions alternatives

capables de permettre au programme de continuer a s'exécuter correctement.

CDPetrescu Exceptions 10/4

Chapitre 10

Classes natives d'exceptions — exemples

La classe Exception est (normalement) la classe de base (directe ou pas) pour toutes les exceptions

prédéfinies qui n'entrainent pas une sortie du systéme et pour les exceptions définies par le programmeur.

On lance ("automatiquement") une exception de type :
» IndexError quand l'indice d'une séquence est en dehors de la plage de valeurs valides ;
» KeyError quand une clé recherchée n'est pas trouvée parmi les clés existantes d'un dictionnaire ;
» NameError quand un nom (non qualifié¢) local ou global n'est pas trouvé ;
» OverflowError quand le résultat d'une opération arithmétique est trop grand pour étre représenté ;
» RuntimeError quand une erreur qui n'a pas une catégorie prédéfinie plus spécifique se produit ;
» Stoplteration quand la fonction next() signale qu'il n'y a plus d'élément produit par un itérateur ;

» TypeError quand une opération/fonction est appliquée pour un objet qui n'a pas le type approprié ;

» ValueError quand une opération/fonction regoit un opérande/argument qui a le bon type mais une

valeur non valide (et le probleme n'est pas de type IndexError) ;

» ZeroDivisionError quand le deuxiéme opérande de 1'opération de division ou de modulo est zéro ;

» SystemExit (fille de la classe BaseException) quand la fonction sys.exit() est appelée.

CDPetrescu Exceptions 10/5

Le mécanisme d'exceptions :

» fait intervenir plusieurs mots clés (keywords), a savoir : try, raise, except, as, else et finally ;

Meécanisme d'exceptions

Chapitre 10

» implique une structuration spécifique du code qui, assez souvent, se présente comme dans l'instruction

structurée try ci-dessous.

try :
bloc_try

except (Exception_1 1,
bloc_except 1

except (Exception_n_1,
bloc_except n
else :
bloc_else
finally :
bloc_finally

..., Exception 1 m) :

... Exception_n_p):

CDPetrescu

Exceptions

10/6

Chapitre 10

Meécanisme d'exceptions (suite)

Plus précisement .

» l'en-téte try est suivi par le bloc try (indenté) qui contient le code susceptible de produire des
exceptions ;

» un en-téte except prévoit (assez souvent) une classe d'exception ou un tuple de classes d'exceptions a
traiter dans le bloc_except correspondant (qui est indent¢) ;

» l'en-téte else est suivi(e) par le bloc else (indenté) qui contient du code qui est exécuté seulement si
aucune exception n'est lancée ;

» l'en-téte finally est suivi(e) par le bloc finally (indenté) qui contient le code qui est toujours exécuté

(indépendamment du fait qu'une exception a ¢té lancée ou pas).

En outre :
» la clause try doit étre suivie par au moins une clause except ;
» un en-téte except peut avoir aussi d'autres formes qui seront mentionnées par la suite ;
» la clause else est facultative mais, si elle est présente, elle doit venir juste apres les en-tétes except ;

» la clause finally est facultative mais, si elle est présente, elle doit venir tout a la fin.

CDPetrescu Exceptions 10/7

Chapitre 10

Meécanisme d'exceptions (suite)

Une clause except représente en fait un gestionnaire d'exceptions (exceptions handler en anglais) qui
attrape (catches en anglais) et traite I'exception ; son en-téte peut aussi étre utilisé :
» sans aucune indication (entre le mot clé et le séparateur deux-points) et, dans ce cas, toutes les
exceptions lancées sont traitées dans le bloc_except correspondant a cet en-téte ;

> avec un seul élément de la forme :

ClasseException as nom_instance

ou nom_instance est un identificateur valide associ¢ a une instance de la (i.e. un objet de type) classe

d'exception ClasseException.

De plus :
> les exceptions placées dans plusieurs en-tétes except successifs doivent (normalement) commencer
avec la plus spécifique et finir avec la plus générique ;
» la clause else permet d'éviter le traitement accidentel d'éventuelles exceptions qui n'ont pas été
anticipées pour le code protégé par l'instruction structurée try ;
» le clause finally est en fait un gestionnaire de nettoyage (clean-up handler en anglais) car, dans le

bloc finally, on peut prévoir les opérations a effectuer obligatoirement a la fin des autres traitements.

CDPetrescu Exceptions 10/8

Chapitre 10

Mécanisme de délégation

Il convient de mentionner que si une instruction structurée try qui comporte une clause finally est quittée :
» suite a une instruction break ou continue qui passe le controle en dehors de la boucle qui contenait le
try ;
» suite a une instruction return qui fait sortir de la fonction dont le corps abritait le try ;

la clause finally est d'abord exécutée.

Une exception lancée peut étre traitée par un gestionnaire d'exceptions (un bloc except) approprié

conformément a un mécanisme de propagation spécifique dit de délégation.

Par exemple, si une exception est lancee a 1'exécution d'une premiere fonction :

» cette exception peut étre traitée localement (dans le corps de cette premiére fonction) ;

» sinon, l'exception est propagée vers la fonction appelante (i.e. celle qui a appelé la premiére fonction)

et qui peut traiter 1'exception ;

» sinon, la délégation du traitement de I'exception continue éventuellement jusqu'au programme

principal qui est le dernier a pouvoir encore traiter l'exception ;
» sinon, le programme s'arréte avec un message d'erreur qui contient des informations utiles au
débogage concernant I'exception produite et le contexte de son lancement (informations stockées dans

un objet "trace d'appels" - traceback en anglais).

CDPetrescu Exceptions 10/9

Chapitre 10

Meécanisme d'exceptions — fonctionnement

Concretement, le mécanisme d'exceptions présenté auparavant fonctionne de la maniere suivante :
- si aucune exception n'est lancée dans le bloc try :
o aucun gestionnaire d'exceptions except n'est exécuté ;
o l'éventuelle clause else est exécutée, sauf si l'instruction structurée a €té quittée a la suite d'une
instruction break, continue ou return ;
o l'éventuelle clause finally est toujours exécutée ;
- siune premiere exception est lancée dans le bloc try :

o le bloc try est quitte définitivement ;

o un gestionnaire d'exception appropri¢ est recherché en respectant 'ordre des clauses except ;

o des que le premier gestionnaire convenable est trouvé :

= Ja clause except respective est exécutee ;
= Jes éventuelles clauses except suivantes et 'éventuelle clause else sont ignorées ;
= |'éventuelle clause finally est exécutée ;
o si aucun gestionnaire convenable n'est trouvé parmi les clauses except :
= |'éventuelle clause finally est exécutée ;

* un gestionnaire appropri¢ est recherché dans le code englobant ou dans la pile des appels.

CDPetrescu Exceptions 10/10

Chapitre 10

Meécanisme d'exceptions — exemples

Par la suite, on donne :

- dans la colonne de gauche, le code a exécuter ;

- dans la colonne de droite, un ou deux exemples de résultats obtenus en exécutant le code de gauche.

age = int(input('Votre age : "))
print(f'L\'dge = {age} ans.')

Votre age : abec
ValueError: invalid literal for int() with
base 10: 'abc'

try:
age = int(input('Votre age : "))
print(f'L\'dge = {age} ans.')

SyntaxError: invalid syntax

try:
print ('Debut try ")
age = int(input('Votre age : "))
print('Fin try !")

except:
print('L\'dge a été corrigée ')
age = 20

print(f'L\'dge = {age} ans.')

Début try !
Votre age : 25
Fin try !

L'édége = 25 ans.

Votre age : abc
L'age a été corrigé !
L'édége = 20 ans.

CDPetrescu

Exceptions 10/11

Chapitre 10

Meécanisme d'exceptions — exemples (suite)

try:
print('Debut try ")
age = int(input('Votre age : "))
print('Fin try !")

except Exception:
print('L\'dge a été corrigée ')
age = 20

print(f'L\'dge = {age} ans.')

Début try !
Votre &ge : 25
Fin try !

L'age = 25 ans.

Début try !

Votre age : abec
L'age a été corrigé !
L'age = 20 ans.

try:

print('Debut try ")

age = int(input('Votre age : "))

print('Fin try !")
except ValueError:

age = 20

print('L\'dge a été corrigé ")
else:

print ('Pas d\'exception !")
print(f'L\'dge = {age} ans.')

Début try !

Votre &ge : 25
Fin try !

Pas d'exception !
L'édge = 25 ans.

Votre age : abec
L'age a été corrigé !
L'age = 20 ans.

CDPetrescu

Exceptions 10/12

Chapitre 10

Meécanisme d'exceptions — exemples (suite)

try:

print('Debut try ')

age = int(input('Votre age

print('Fin try !")
except ValueError:

age = 20

print('L\'dge a été corrigé
else:

print ('Pas d\'exception
finally:

print('Toujours execute !'")
print(f'L\'dge = {age} ans.')

"))

r)
)

Début try !
Votre age
Fin try !
Pas d'exception !
Toujours exécuté !
L'éage = 25 ans.

25

Début try !

Votre age abc
L'age a été corrigé !
Toujours exécuté !
L'édége = 20 ans.

try:

print('Debut try ")

age = int(input('Votre age

print('Fin try !")
except ValueError:

age = 20

print('L\'dge a été corrigé
else:

print ('Pas d\'exception
except Exception:

print ('Autre type d\'excpeption
print (f'L\'dge = {age} ans.')

"))

)
)

)

SyntaxError: invalid syntax

CDPetrescu

Exceptions

10/13

Chapitre 10

Meécanisme d'exceptions — exemples (suite)

try:
age = int(input('Votre age) SyntaxError: invalid syntax
else:
print ('Pas d\'exception !")
print(f'L\'dge = {age} ans.')
try:
age = int(input('Votre age "))
except ValueError:
age = 20 SyntaxError: invalid syntax
print('L\'dge a été corrigée ')
finally:
print('Toujours execute !'")
else:
print ('Pas d\'exception !")
print(f'L\'dge = {age} ans.')
try:
age = int(input('Votre age "))
except (ValueError as ve, Exception as e):
print(ve) SyntaxError: invalid syntax
age = 20
print('L\'dge a été corrige ")
else:

)

{age} ans.'")

print ('Pas d\'exception
print (£'L\'age

CDPetrescu Exceptions

10/14

Chapitre 10

Meécanisme d'exceptions — exemples (suite)

try:
print('Debut try ')
age = int(input('Votre age : "))
print('Fin try !")

except ValueError as ve:

print ('Avant correction :', ve)

age = 20

print('L\'dge a été corrigée ')
else:

print ('Pas d\'exception !")
print(f'L\'dge = {age} ans.')

Début try !

Votre age : 25

Fin try !

Pas d'exception !

L'age = 25 ans.

Début try !

Votre age : abc

Avant correction invalid literal for
int() with base 10: 'abc'
L'adge a été corrigé !
L'age = 20 ans.

try:
print('Debut try ")
age = int(input('Votre age : "))
print('Fin try !")

except Exception as e:

print ('Avant correction :', e)

age = 20

print('L\'dge a été corrigé ")
else:

print ('Pas d\'exception !")
print(f'L\'dge = {age} ans.')

Début try !

Votre age : 25
Fin try !

Pas d'exception !
L'age = 25 ans.

Votre age : abc

Avant correction invalid literal for
int() with base 10: 'abc'

L'dge a été corrigé !

L'age = 20 ans.

CDPetrescu

Exceptions 10/15

Meécanisme d'exceptions — exemples (suite)

Chapitre 10

try: Votre &ge : 25
age = int(input('Votre age : ")) Fin try !
print('Fin try ') Pas d'exception !
except (TypeError, ValueError) : L'age = 25 ans.
age = 20
print('L\'dge a été corrige ") Votre age : abe

else:
print ('Pas d\'exception !")
print(f'L\'dge = {age} ans.')

L'adge a été corrigé !
L'dge = 20 ans.

try:
age = int(input('Votre age : "))
print('Fin try !")
except TypeError
print('Le cas TypeError !'")
except ValueError

Votre age : 25
Fin try !

Pas d'exception !
Toujours exécuté !
L'éage = 25 ans.

print('Le cas ValueError !")
age = 20 T
print('L\'dge a été corrigée ') Votre age : abc

except Exception: Le cas ValueError !
print('Le cas Exception !'") L'age a été corrigé !

else: Toujours exécuté !
print('Pas d\'exception !") L'age = 20 ans.

finally:
print('Toujours execute !")

print(f'L\'dge = {age} ans.')

CDPetrescu Exceptions

10/16

Chapitre 10

Lancement d'une exception

Parfois, le programmeur peut anticiper qu'une situation spéciale/non désirée/exceptionnelle pourrait se

produire dans certaines circonstances quand une instruction (simple ou structurée) est exécutée.

Par conséquent, il peut prévoir une instruction raise qui, si la situation anticipée se produit, lance

explicitement une exception et interrompt le déroulement "normal" du programme qui continue avec le

traitement de cette exception par un éventuel gestionnaire d'exceptions approprié et trouvé localement ou

grace au mécanisme de délégation.

On dit que l'instruction raise léve ou_lance une exception et elle peut se trouver a tout endroit du code, y

compris dans des blocs try (qui peuvent étre éventuellement imbriqués) ou dans des blocs except ou finally.

Une telle instruction commence par le mot clé raise qui peut étre :
» seul, cas ou clle propage la derni¢re exception active dans la portée courante (par exemple dans un
bloc except) ;
- suivi par une classe d'exception (la classe prédéfinie native Exception ou une de ses descendantes

natives ou définies par le programmeur) ;

- suivi par une instance d'une classe d'exception (le plus souvent créée sur place).

CDPetrescu Exceptions 10/17

Chapitre 10

Lancement d'une exception (suite)

Plus précisément, si le mot clé raise est :
- seul et s'il n'y a pas d'exception active dans la portée courante, alors une exception RuntimeError est
lancée/levée ;

- suivi par une expression qui correspond a une classe d'exception, alors une instance de cette classe est

créée (a l'aide du constructeur sans argument de la classe respective) et lancée.

Le bloc try d'une instruction structurée try contient d'habitude des instructions a risque, potentiellement
capables de lancer (au moins) une exception qui peut étre :

» créée pour 'occasion avec une instruction raise a cause d'une situation "anormale" anticipée et qui s'est

produite a l'exécution ;
o dans ce cas, si cette exception est traitée par une clause except qui vient par la suite (apres le bloc
try), on parle d'un traitement local de cette exception ;

» propagée et obtenue par délégation, par exemple, suite a l'appel d'une méthode qui a généré (a cause du

contexte de son appel) 1'exception a gérer sans que la méthode l'ait traitée elle-méme localement ;

o dans ce cas, on parle d'un traitement par délégation d'une telle exception.

CDPetrescu Exceptions 10/18

Chapitre 10

Création et lancement d'une exception — exemples

def corriger temp abs(temp):
try:
if temp < O:
raise Exception('Temp KO !")
print('Pas de probleme !")
except
if temp > - 273:
temp = 273 + temp
print('Traitement local
return temp
print('Delegation
raise
print('Apres raise
else:
print ('Pas d\'exception
return temp
finally:
print('Toujours execute
print (corriger temp abs(20))

r)

)

)

)

)

print('*" * 20)
print (corriger temp abs(-100))
print('*" * 20)

print (corriger temp abs(-500))

Pas de probleme !
Pas d'exception !
Toujours exécuté !
20

* ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
Traitement local !
Toujours exécuté !
173

LR b b b b b b b b b b b b b b b b 4
Délégation !
Toujours exécuté !

Exception: Temp KO !

CDPetrescu

Exceptions

10/19

Chapitre 10

Création et lancement d'une exception — exemples (suite)

try: Début try !
print('Debut try ') Votre age : 25
age = int(input('Votre adge : ")) Fin try !
print('Fin try ") Pas d'exception !

. . 4
except ValueError: Toujours execute .

age = 20
Exception: Just for fun !
print('L\'dge a été corrigée ')
else: Début try !
print('Pas d\'exception !") Votre age : abc
finally: L'age a été corrigé !
print ('Toujours exécuté ') Toujours exécuté !
raise Exception('Just for fun '') |

] Exception: Just for fun !
print('Trop tard !")

print(f'L\'dge = {age} ans.')

CDPetrescu Exceptions 10/20

