
y +1/2/59+ y
Divers Python

• input(text)
• print(x, y, sep=’ ’, end=’\n’)
• range(start, stop, step)
• len(s)
• IndexError, KeyError, NameError,
TypeError, ValueError, ZeroDivisionError

• <, >, <=, >=, ==, is, is not, and, or, in,
not in

Listes
• L = [1,2,3]
• x in L
• L.append(x)
• L.insert(i, x)
• L.pop()
• L.pop(i)
• L.remove(x)
• L1.extend(L2)
• L.count(x)
• L.index(x)
• L.copy()

Dictionnaires
• d = {key1: val1, key2: val2,}
• d.get(key)
• del d[key]
• d.keys()
• d.values()
• d.items()
• x in d/d.items()/d.values()/d.keys

NumPy
• import numpy as np
• np.sqrt(x), np.cos(x), np.sin(x)
• a = np.array(x)
• np.arange(start, stop, step)
• np.linspace(start, stop, N)
• np.zeros(shape)
• np.ones(shape)
• np.full(shape, x)
• np.empty(shape)
• np.eye(N)
• np.ndim(a)
• np.shape(a)
• np.reshape(a,shape)
• np.dot(a,b)
• np.round(a)
• np.concatenate(a, b)
• np.loadtxt(filename, usecols = None,
skiprows = 0, unpack = False)

• np.savetxt(filename, data, delimiter = ’ ’,
newline = ’\n’, header = ’ ’)

Matplotlib
• import matplotlib.pyplot as plt
• plt.plot(x, y, "–b", label=my_label)
• plt.xlabel(my_x_label)
• plt.ylabel(my_y_label)
• plt.legend()
• plt.title(my_title)
• plt.xlim(xmin, xmax)
• plt.ylim(ymin, ymax)

y y

y +1/3/58+ y
Algorithmique

• f ∼ O(g) si
∃C,N > 0 tq. ∀n > N, f(n) ≤ C · g(n)

• f ∼ Ω(g) si
∃C,N > 0 tq. ∀n > N, f(n) ≥ C · g(n)

• f ∼ Θ(g) si
f ∼ O(g) et f ∼ Ω(g)

Algorithme : Recherche binaire
Input : Une liste triée L, une valeur x
Output : L’indice de x dans L ou None si

non trouvé
a ← 0

b ← longueur(L) − 1

while b ≥ a do
m ←

�
a + b

2

�

if L[m] = x then
return m

else
if L[m] < x then

a ← m + 1

else
b ← m − 1

return None

Algorithme : Tri par sélection
Input : Une liste L de taille n

Output : La liste L triée par ordre
croissant

n ← longueur(L)

for i ← 0 to n − 1 do
min_ind ← i

for j ← i + 1 to n do
if L[j] < L[min_ind] then

min_ind ← j

échanger L[i] et L[min_ind]

Algorithme : Tri à bulles
Input : Une liste L de taille n

Output : La liste L triée par ordre
croissant

n ← longueur(L)

for i ← 0 to n − 1 do
for j ← 0 to n − 1 − i do

if L[j] > L[j + 1] then
échanger L[j] et L[j + 1]

Algorithme : Tri par insertion
Input : Une liste L de taille n

Output : La liste L triée par ordre
croissant

n ← longueur(L)

for i ← 1 to n − 1 do
j ← i

while j > 0 et L[j] < L[j − 1] do
échanger L[j] et L[j − 1]

j ← j − 1

Équations non linéaires

Algorithme : Méthode de la bissection
Input : Une fonction f continue sur [a, b]

avec f(a) · f(b) < 0, et une
précision ε > 0

Output : Une approximation d’une racine
de f sur [a, b]

while b − a > ε do
m ← a + b

2
if f(m) = 0 then

return m

else
if f(a) · f(m) < 0 then

b ← m

else
a ← m

return a + b

2

• kmin > log2

� |b0 − a0|
ε

�
− 1

Algorithme : Méthode de la sécante
Input : Une fonction f , deux

approximations x0 et x1, tolérance
ε > 0

Output : Une approximation d’une racine
de f

repeat
x ← x1 − (x1 − x0)

f(x1) − f(x0)
f(x1)

x0 ← x1

x1 ← x

until |f(x1)| < ε

return x1

y y

y +1/4/57+ y
Algorithme : Méthode de Newton
Input : Une fonction dérivable f , sa

dérivée f ′, une valeur initiale x0,
une tolérance ε > 0

Output : Une approximation d’une racine
de f

repeat
if f ′(x0) = 0 then

return Erreur : dérivée nulle

x0 ← x0 − f(x0)

f ′(x0)

until |f(x0)| < ε

return x0

• Ces deux méthodes se basent sur
xk+1 = xk − q−1

k f(xk)

Algorithme : Méthode de Picard
Input : Une fonction ϕ, une valeur initiale

x0, une tolérance ε > 0

Output : Une approximation d’un point
fixe de ϕ

repeat
x1 ← ϕ(x0)

x0 ← x1

until |x1 − x0| < ε

return x1

Intégration numérique

• φk(t) =

MY

j=1
j ̸=k

t − tj

tk − tj

• Changement de variable :
x =

xi+1 − xi

2
· t + xi + xi+1

2

• ωj =

Z +1

−1

φj(t) dt

• J(g) =

MX

j=1

ωj g(tj)

• Méthode du point de gauche :
Jg
i (f) = (xi+1 − xi) · f (xi)

Exacte pour les polynômes de degré 0

• Méthode du point de droite :
Jd
i (f) = (xi+1 − xi) · f (xi+1)

Exacte pour les polynômes de degré 0

• Méthode de Riemann :
JR
i (f) = (xi+1 − xi) · f (ξ), où ξ est un

nombre aléatoire entre xi et xi+1

Exacte pour les polynômes de degré 0

• Méthode du point milieu :
JPM
i (f) = (xi+1 − xi) · f

�
xi + xi+1

2

�

Exacte pour les polynômes de degré ≤ 1

• Méthode des trapèzes :
JTR
i (f) = (xi+1 − xi) ·

f(xi) + f(xi+1)

2
Exacte pour les polynômes de degré ≤ 1

• Méthode de Simpson :
JS
i (f) =

xi+1 − xi

6
·

�
f(xi) + 4f

�
xi + xi+1

2

�
+ f(xi+1)

�

Exacte pour les polynômes de degré ≤ 3

• eabs(h) ≤ C · hr+1

y y

