® HEEE B B +1/2/59+
Divers Python NumPy
* input(text) * import numpy as np
* print(x, y, sep="", end="\n’) * np.sqgrt(x), np.cos(x), np.sin(x)
* range(start, stop, step) * a = np.array(x)
* len(s) np.arange(start, stop, step)
* IndexError, KeyError, NamekError, * np.linspace(start, stop, N)

TypeError, ValueError, ZeroDivisionError
* np.zeros(shape)

e <, >, <=, >=, ==, s, is not, and, or, in,
not in * np.ones(shape)
* np.full(shape, x)
Listes * np.empty(shape)

* np.eye(N)

e L=1[1,2,3]
* np.ndim(a)

e XinlL

* np.shape(a)

L.append(x)
PP * np.reshape(a,shape)

e L.insert(i, x)

* np.dot(a,b)
* L.popl()

* np.round(a)
* L.pop(i)

* np.concatenate(a, b)
* L.remove(x)

* np.loadtxt(filename, usecols = None,
* Ll.extend(L2) skiprows = 0, unpack = False)
* L.count(x) * np.savetxt(filename, data, delimiter ="",
e L.index(x) newline = '\n’, header =" ")
* L.copy()
Matplotlib
Dictionnaires * import matplotlib.pyplot as plt
« d = {keyl: vall, key2: val2,} * plt.plot(x, y, "-b", label=my_label)
* d.get(key) * plt.xlabel(my_x_label)
o del d[key] * plt.ylabel(my_y_label)
* d.keys() * plt.legend()
e d.values() * plt.title(my title)
e d.items() e plt.xlim(xmin, xmax)
* x in d/d.items()/d.values()/d.keys * plt.ylim(ymin, ymax)

[T N

Algorithmique

* f~O(g)si

IC,N > 0tq. Vn > N, f(n) < C -g(n)

* f~Qg)si

3C,N > 0tq. Vn > N, f(n) > C - g(n)

* f ~ O(g) si
F~O(g) et f~ Q)

Algorithme : Recherche binaire

Input : Une liste triée L, une valeur z

Output : L'indice de = dans L ou None si
non trouvé

a<+ 0

b « longueur(L) — 1

while b > a do

a -+ bJ

m e {
if L[m] = « then
| returnm
else
if L[m] < « then
‘ a+—m-+1
else
L b+—m-—-1

return None

Algorithme : Tri par sélection

Input : Une liste L de taille n
Output : La liste L triée par ordre
croissant
n <+ longueur(L)
fori+ Oton —1do
min_ind < i
forj+ i1+ 1tondo
if L[j] < L[min_ind] then
L min_ind + j

| échanger L[i] et L[min_ind]

Algorithme : Tri a bulles

Input : Une liste L de taille n
Output : La liste L triée par ordre
croissant

n <+ longueur(L)
fori < Oton —1do

forj«+ O0ton—1—-ido

if L[j] > L[j + 1] then
L | échanger L[j] et L[j + 1]

+1/3/58+

Algorithme : Tri par insertion

Input : Une liste L de taille n
Output : La liste L triée par ordre
croissant
n <+ longueur(L)
fori < 1ton —1do
Jg1
while j > 0et L[j] < L[j — 1] do
échanger L[j] et L[j — 1]
Ljej—l

Equations non linéaires

Algorithme : Méthode de la bissection

Input : Une fonction f continue sur [a, b]
avec f(a) - f(b) < 0, et une
précision € > 0

Output : Une approximation d’une racine

de f sur [a, b]
while b —a > ¢ do
a+b

m
2

if f(m) = 0 then

| returnm
else
if f(a) - f(m) < 0 then
‘ b+—m
else
[a+m

a+b

return

by —
. kmin > 10g2 (loao|) —1
€

Algorithme : Méthode de la sécante

Input : Une fonction f, deux
approximations zo et x;, tolérance
e>0

Output : Une approximation d’une racine

de f
repeat
(z1 — o)

f(wl) - f(wo)

T < 1 —

F(z1)

g < T1

Tr1 < T
until |f(z1)]| < e
return z;

Algorithme : Méthode de Newton

Input : Une fonction dérivable f, sa
dérivée f’, une valeur initiale xg,
une tolérance e > 0
Output : Une approximation d’une racine
de f
repeat
if f/(x¢) = 0 then
t return Erreur : dérivée nulle

To <« To — f(zo0)
I/ (o)
until |f(xo)| < €
return z,

* Ces deux méthodes se basent sur
—1
Tht1 = Tk — G, f(xk)

Algorithme : Méthode de Picard

Input : Une fonction ¢, une valeur initiale
o, Une tolérance e > 0
Output : Une approximation d’'un point
fixe de ¢
repeat
x1 + ¢(x0)
g < T1
until |:E1 — :130| < €
return z;

+1/4/57+ Py

Intégration numeérique

M

t — tj
Pr(t) =
,1;[1 b =
J£k

Changement de variable :
_ Tip1 — T; t+ wi+$i+1
2 2

+1
wi= [eit)ar

J(g) = Z w; g(t;)

Méthode du point de gauche :
JE(f) = (Tig1 —) - f ()
Exacte pour les polyn6mes de degré 0

Méthode du point de droite :
JAS) = (@ig1 — i) - f (ig1)
Exacte pour les polyn6mes de degré 0

Méthode de Riemann :

JHf) = (@ip1 — z3) - £(€), ou € est un
nombre aléatoire entre z; et z; 1

Exacte pour les polyn6mes de degré 0

Méthode du point milieu :
T; +Cci+1>

JiPM(f)Z(wiﬂ—fb‘i)'f(5
Exacte pour les polyndmes de degré < 1

Méthode des trapezes :
JIR(F) = (zip1 — ;) - F(x:) + f(xigt1)

Exacte pour les polyndmes de degré < 1

Méthode de Simpson :
Li41 — &4
JS e e
2 ==+
x; + x;
(f(fl?i) +4f (2+1) + f(mi—i-l))
Exacte pour les polyn6mes de degré < 3

€abs(h) < C - hrtl

