EEEEN BN +1/1/60+

EPFL

Enseignant: L. Testa

Informatique et Calcul Scientifique (ICS) - MAN
Printemps 2024

Durée : —

Dalton Joe

SCIPER: 987654

Attendez le début de 1’épreuve avant de tourner la page. Ce document est imprimé recto-
verso, il contient 13 questions sur 16 pages, les derniéres pouvant étre vides. Ne pas dégrafer.
L’examen comporte un total de XX points.

e Posez votre carte d’étudiant.e sur la table.
e L’utilisation d’une calculatrice et de tout outil électronique est interdite pendant I’épreuve.
e Pour les questions a4 choix unique, on comptera:
les points indiqués si la réponse est correcte,
0 point si il n’y a aucune ou plus d’une réponse inscrite,
0 point si la réponse est incorrecte.
e Les algorithmes demandés sont & écrire sous forme de fonctions Python. Mettez votre code en forme
en respectant les indentations: 1 carreau = 1 espace (donc 4 carreaux = 1 tab).
e Vous n’avez pas besoin de commenter votre code mais vous pouvez le faire si vous pensez que cela
aide & sa compréhension.
e Utilisez un stylo & encre noire ou bleu foncé et effacez proprement avec du correcteur blanc
si nécessaire.
e Répondez dans l'espace prévu (aucune feuille supplémentaire ne sera fournie).

e Les brouillons ne sont pas & rendre: ils ne seront pas corrigés.

Respectez les consignes suivantes | Observe this guidelines | Beachten Sie bitte die unten stehenden Richtlinien

choisir une réponse | select an answer | ne PAS choisir une réponse | NOT select an answer Corriger une réponse | Correct an answer
Antwort auswahlen NICHT Antwort auswahlen Antwort korrigieren

X ¥V & [] []

ce qu'il ne faut PAS faire | what should NOT be done | was man NICHT tun sollte

% O Q0

EEEE B B +1/2/59+

Premiére partie, questions a choix unique

Pour chaque énoncé proposé, une ou plusieurs questions sont posées. Pour chaque question, marquer la
case correspondante & la réponse correcte sans faire de ratures. Il n’y a qu'une seule réponse correcte par
question.

Cette premiére partie évalue vos connaissances sur le langage Python.
Qu’affiche chacun des codes ci-dessous?

Question 1 (2 points)

try:
new = []
new.append (1+"2")
a = new[1]/0
a =1
print(a)
except
print("2")
except
print("3")
except
print("4")

M- []2
[[]3

Question 2 (2 points)

def mystere(*xargs):

d = {1}

j =0

for i in range(len(args)-1, -1, -1):
dlj] = argsl[il
joe=

return d

print(mystere(3, 5, 7, 9, 11))

[] {11:0, 9:1, 7:2, 5:3, 3:4} []{11:3, 9:5, 7:7, 5:9, 3:11}
B (0:11, 1.9, 2.7, 3:5, 4:3} [] {3:3, 5:5, 7:7, 9:9, 11:11}

Question 3 (2 points)

L1 [e, 1, 2]
L2 = [5, 5, 5]

L3 = [2#x+y for x in L1 for y in L2]

print(L3)

[]ro, 11, 13, 9, 11, 13, 9, 11, 13] (115, 7, 9
[]r15, 7, 91 B s s,
[]9, 9, 9

D [9, 11, 13] , 11, 11, 11, 13, 13, 13]

Question 4 (2 points)

i=2
while i < 10:
if i%2 == 0:
print(i,end=" ")
if i == 6:
break

[]2468
[J246

Question 5 (2 points)

def affichages(d):
for x in d:
print(dix], end = " ")
print ()
for x in d.items():
print(x[1], end = " ")
print ()
for x in d.values():
for y in d:
if dlyl == x:
print(y, end = " ")

dl = {"a":10, "b":20, "c":30}
affichages(d1)

Dabc

abc
abc

B o 20 30

10 20 30
abc

[[]10 20 30

10 20 30
10 20 30

Question 6 (2 points)

def surprise(t):
s = 0
for x in t:
s += x[1]
return s

tr = (v, 2), (3, 4, (5, 6), (7, 8)
print(surprise(t1))

[]36
[]4

+1/3/58+

[]23456789

B Aucune de ces réponses

Dabc

10 20 30
abc

Dabc

abc
10 20 30

[]10 20 30

abc
10 20 30

Question 7 (2 point)

L =1["a", "b", "a", "a",
for i in range(1, 4):
LLil += LLi+1]
for s in ("ab", "ba"):
if s in L:
print(s,

-ab1

ba 1

|:|ab2

ba 2

aNe

L.count(s))

Question 8 (2 points)

for i in range(4):
for j in range(i):
print(’*’ ,sep="]", end
print ()

*.%, %,

[:] * %,

*.

*| .

[:] *| %] .

[x[] .

Question 9 (2 points)

L = [[e], [0]]
L_prime = L.copy()
L.append([11])
L[1].append(1)
print(L, L_prime)

)

B cre1, ro, 11, [111 [rel, [o, 111
[] rre1, re, 11, [111 [rel, [el, [11]

Question 10 (2 points)

def oui_non(L, LT = [1, 31):
for x in L:

for y in L1:
if x < y:
print("oui”, end = " ")
else:
print(”"non", end = " ")

oui_non([2, 471)

- non oui non non

[] non non

+1/4/57+

DabZ

ba 1

|:| L’affichage produit une exception IndexError

kx|

[:] *| x| .

*| .

I

*ok ok,

[] rre1, re, 11, 111 CLel, [e, 11, [11]
[] Cre1, re, 11, [111 [lel, [el]

D oui non oui oui

D oui oui

°® N N BEN +1/5/56+

Question 11 (2 points)

On considére la modification suivante de l’algorithme de recherche binaire vu en cours.

def recherche_binaire(L ,x):

n = len(L)
bas = 0@
haut = n-1

count = @
while haut >= bas
count += 1
milieu = (basthaut)//2
if LLmilieu] == x:
return count
elif L[milieu] > x:
haut = milieu - 1
else
bas = milieu + 1
return float(’inf’)

Soit la liste L = [-8, -5, -4, -2, @, 1, 2, 9, 12, 15, 18, 20, 26, 28, 32, 35].
Qu’affiche l'instruction print(recherche_binaire(L,1))?

[Je []2
[]4 [E
[[] inf’

Question 12 (2 points)
Qu’affiche le code suivant 7

def my_func(L):

n = len(L)
bas = @
haut = n-1

while haut >= bas
milieu = (bas+haut)//2

if Lmilieu] == milieu:
bas = milieu + 1
else
haut = milieu - 1

return bas

L ="[e, 1, 2, 3, 4, 5]
print(my_func(L))

LT N I . +1/6/55+

Question 13 (2 points)
On considére les deux fonctions suivantes définies sur les entiers strictements supérieurs a 1:

fn) et g(n) = vnlogy(n).

N log,(n)
Laquelle des affirmations suivantes est vraie?

[f(n) = ©(g(n))

[] f(n) = O(g(n)) mais g(n) n'est pas O(f(n))

|:| On ne peut pas comparer I'ordre de croissance de f et de g
W (n) = O(f(n)) mais f(n) west pas O(g(n))

Question 14 (2 points)

Le graphe suivant représente les temps de parcours de quatre algorithmes différents pour résoudre le méme
probléme.

— 1:0.05n?

e 2:100 - l0g; (0
200 | g2 (n) (2):100-logz (n) ..o

—= 3:5n
--—- 4:120n-logz(n)

150 +

—_ .
c 7
= -~
.
100 4 e
_-=""(4):120n " logz (n)
.'. -""'
50 4 Pt
e (3):5n i
T D T T T (1):0.05n2
ol ==
1.0 15 2.0 2.5 3.0 3.5 4.0 4.5 5.0
n

Ordonnez les quatre algorithmes du plus efficace au moins efficace.

[J1342 []4231 []2314
[]2431 | RS []J1324

[T N +1/7/54+

Deuxiéme partie, questions de type ouvert

Répondre dans 'espace dédié. Laisser libres les cases & cocher: elles sont réservées au correcteur.

Question 15: Cette question est notée sur 8 points.

[Js L ds L Js [s [Js [Ja o[Is
W (L[k[l [l

Dans cet exercice, on va écrire un entier strictement positif quelconque N sous la forme N = 2P + r, avec p
le plus grand entier possible et 0 < r < 2P. Pour cela, on procéde en plusieurs étapes.

Note : Cet exercice comprend deux sous-questions, chacune peut étre résolue indépendamment.

(a) Ecrivez une fonction decomposition qui prend comme paramétre un nombre entier strictement positif
N (pas besoin de tester cette condition dans le corps de la fonction), et qui divise ce nombre par deux
tant que le résultat de cette opération n’est pas strictement inférieur a4 1. Cette fonction doit retourner

(i) le nombre p de divisions effectuées
(ii) le reste r de cette opération tel que N = 2P + 7.

Par exemple, l'instruction decomposition(4) doit retourner (2,0) car 4 = 2%*2+0@, decomposition(7)
doit retourner (2,3) car 7 = 2*2+3 et decomposition(9) doit retourner (3,1) car 9 = 2*x2%2+1.

+1/8/53+

[N N +1/9/52+

(b) Ecrivez un programme qui

(i) génére un nombre aléatoire compris entre 1 et 100

(ii) appelle la fonction définie au point (a)
(iii) affiche le résultat a 1’écran sous la forme : N = 2x*xp+r.
Par exemple, 16 = 2x*4+0 et 15 = 2**3+7.

Indication: On rappelle que la fonction randint(a,b) du module random de la bibliothéque standard
de Python prend comme paramétres deux nombres a et b et retourne un nombre aléatoire appartenant

a l'intervalle (a,b).

BEE B B BE | ¥1/10/51+
Solution
a)
def decomposition(N):
co = 0
x = N/2
while x >=1:
co +=1
X /= 2

reste = N-2%%co
return co, reste

b)
import random as ra

N = ra.randint (0,100)
p,r = decomposition(N)

c)
print(f"{N} = 2*{p}+{r}")

Baréme :
1 points : définition de la fonction, deux points, return (co, reste)
3 points : corps de la fonction, while (et non for), mise a jour de la condition d’arret et de co

)
)
(¢) 2 points : import et utilisation de randint
(d) 1 point : utilisation de la fonction créée

)

[N N +1/11/50+

Question 16: Cette question est notée sur 6 points.
Question 17

[JsLJs [s [o[Js [s
W [k Ck Ol L

Ecrivez une fonction list_to_dict qui prend en entrée une liste L de nombres, et retourne un dictionnaire
d tel que:

e Les clés de d sont les éléments de L
e La valeur associée a une clé x est la liste des indices ot x apparait dans la liste L.
Par exemple,
e Pour la liste [10, 20, 10, 30] en entrée, list_to_dict doit retourner {10:[0, 2], 20:[1], 30:[3]}
e Pour une liste vide en entrée, list_to_dict doit retourner un dictionnaire vide.

Il n’y a pas besoin de vérifier que I’argument fourni en entrée a la fonction list_to_dict est bien une liste
de nombres.

Solution
def list_to_dict(L):
d = {}
for i in range(len(L)):
if L[i] not in d:
dfL[i]] = [i]
else:
dlL[il].append(i)
return d

OU ENCORE

def list_to_dict(L):

d = {}
for x in L:
dix] = [1]

for i in range(len(L)):
d[L[i]].append(i)
return d

Baréme :
(a) 1 point : fonction bien définie

(b) 1 point: on crée un dictionnaire initialement vide, on fait some sort of update dessus, c’est lui qu'on
retourne

(¢) 0.5 points: je veux voir une boucle qui itére sur la liste, et dont le corps modifie le dictionnaire.

(d) 1.5 point: on distingue le cas de la premiére fois qu’on voit une valeur vs les autres fois: soit avec un
if-else comme dans la premiére solution, soit avec un parcours préliminaire de la liste comme dans la
deuxiéme solution. Dont 0.5 points pour la liste vide ou la liste [

(e) 2 points: le append: 1 point pour faire un append, 0.5 pour append un indice et pas une valeur (ou
peut-étre 0.5 et 1 respectivement), 0.5 points pour faire le append sur le bon objet: d[L[i]]

(f) Si quelqu’un itére sur les valeurs de la liste et pas les indices, et utilisent index() sans se rendre compte
qu’ils n’auront que la premiére occurrence, mais tout le reste marche: 4 points maximum (j’ai méme
envie de dire 3 points max)

EE EBE B +1/12/49+

Question 17: Cette question est notée sur 18 points.
Question 18

[JaLds [L da [Jo [ds [l Jal Js [Js[Js = [Js[]s[]s
W [(Rl el [l Lol o [Jul il s

Rappelons les régles du Feuille Caillou Ciseaux, aussi appelé "Rock Paper Scissors" ou Shifumi. Chaque
joueur choisit un coup parmi les trois possibles: Feuille, Caillou ou Ciseaux, en sachant que la feuille bat le
caillou, le caillou bat les ciseaux et les ciseaux battent la feuille, comme indiqué dans le diagramme ci-dessous:

Feuille

bat
bat

Ciseaux Caillou

“~—

bat

Si on représente Feuille par 0, Caillou par 1 et Ciseaux par 2, le tableau suivant présente les différents coups
possibles ainsi que le coup gagnant pour chaque possibilité.

| o 1 2
Egalité 0 2
0 Egalité 1

2 1 Egalité

Vous souhaitez écrire un programme pour permettre a votre amie Alice de jouer & Feuille Caillou Ciseaux
a distance avec Bob qui se situe a I’autre bout du monde. Pour cela, Bob vous envoie par email un fichier
fcc. txt contenant ses 5 prochaines actions, que vous placez dans le dossier courant, c’est-a-dire le dossier
ou vous exécuterez votre fichier .py ou votre Jupyter Notebook. De plus, vous convenez ensemble du code
Feuille = 0, Caillou = 1 et Ciseaux = 2.

Par exemple si le contenu de fichier est comme ci-dessous, cela indique que Bob jouera Feuille au premier
tour, Caillou aux deux suivants, puis Feuille et finalement Ciseaux.

Fichier ’fcc.txt’

0
1
1
0
2

Note : Cet exercice comprend cing sous-questions, chacune peut étre résolue indépendamment.

(a) Commencez par importer les coups de Bob, et stockez-les dans la liste ami.

N N BEEEN +1/13/48+

(b) Créez une fonction testinput() qui demande a I'utilisatrice (Alice) d’entrer un nombre entier compris
entre 0 et 2 inclus. Tant que la valeur entrée ne satisfait pas ces conditions, votre fonction doit continuer
A demander un nombre & Alice. Elle doit finalement retourner cette valeur.
Si Alice rentre 4, 2.1 ou "deux", le programme doit afficher : On avait dit @, 1 ou 2 ! et lui
redemander d’entrer un nombre.

[N N +1/14/47+
o

(¢) Ecrivez un programme qui, pour chaque coup joué par Bob, demande & Alice d’entrer un nombre
compris entre 0 et 2, compare ce nombre avec celui joué par Bob, et stocke le nom du vainqueur (Alice,
Bob ou Egalité) dans une liste resultat. Si Alice a joué [0, @, @, @, @], alors resultat doit contenir
["Egalite”, "Alice"”, "Alice", "Egalite"”, "Bob"].

Vous pouvez utiliser directement la variable ami ainsi que la fonction testinput().

[N +1/15/46+
o

(d) Une fois les cing tours effectués, écrire les résultats dans un fichier final.txt. Chaque ligne de ce
fichier doit correspondre au résultat d’un tour.

(e) Alafin de la partie, Bob vous renvoie un nouveau fichier avec ses 5 prochaines actions. Que devons-nous
modifier au code du point (d) pour rajouter le résultat de ces 5 parties a la fin du fichier final.txt?

B BEEE B B | 1/16/45+
Solution
a)
with open(”fcc.txt") as f:
ami = f.readlines ()
b)

def testinput():
while True:

try:
you = int(input(’entre un nombre entre @ et 2’))
if you > 2 or you < 0:
raise (’entre 0 et 27)
return you
except:
print(”0On avait dit @, 1 ou 2")
c)
ami = [int(x) for x in amil

resultat = []
for bob in ami:
alice = testinput()

if bob-alice == 1 or alice == 0 and bob == 2:
resultat.append(”"Bob")
elif alice == bob:

resultat.append("Egalite”)

else:

resultat.append(”"Alice")
print(resultat)

d)

with open(”final.txt”,’w’) as f:
for i in resultat:
f.write(i+"\n")

e)

print(”"I1 aurait fallu changer 1’argument ’'w’ en ’a’.")

Baréme :

(a) 1 point :
1 point :

(b) 1 point :
1 point :
1 point :
1 point :

(¢) 1 point :
1 point :

1 point

1 point :

(d) 1 point :
1 point :

(e) 1 point :

ouverture et fermeture du fichier avec les bons arguments
stockage des infos avec readlines

fonction bien définie

boucle while pour que ¢a demande sans cesse
try.. except

raise exception pour >2 ou <0

changer str en int

itérer sur la liste des coups chargés
structure "if" correcte

gestion de la liste "resultat"

ouverture et fermeture en mode écriture 'w’ ou "r+" ou directement ’append’
écriture avec le retour a la ligne (0.5 pts pour ¢a)

append. s’il a déja ouvert en mode append, ca se discute en fonction de sa justification

Question 18: Cette question est notée sur 7 points.
Question 19

On donne l'algorithme ci-dessous.

def mafonction(L):

n = len(L)
for i in range(n-1,-1,-1):
j=i

while j < n-1 and L[j] > L[j+1]:
L[j1, LOj+1] = L[3+11, L[]
j =1

print(f"{i}e element: {L}")

(a) Qu'affichent les instructions suivantes?

L =101, 3, 0, -6, 100, -1]
mafonction(L)

+1/17/44+

BN NN +1/18/43+

(b) Quel algorithme vu en cours fonctionne selon le méme principe que celui-ci?

(¢) On dénote par T'(n) le temps de parcours de I’algorithme mafonction() lorsqu’il prend en entrée une
liste de taille n, dans le pire des cas. Donner 'ordre de croissance de T'(n) en notation O(+), en justifiant
briévement votre réponse.

BN B BN +1/19/42+
o

(d) Pour quelles instances le temps de parcours est-il minimal? Donner l'ordre de croissance du temps de
parcours dans le meilleur des cas en notation O(-), en justifiant briévement votre réponse.

PS N BN B BE +1/20/41+

Solution

(a) 5e élément: [1, 3, 0, -6, 100, -1]
4e élément: [1, 3, 0, -6, -1, 100]
3e élément: [1, 3, 0, -6, -1, 100]
2e élément: [1, 3, -6, -1, 0, 100]
le élément: [1, -6, -1, 0, 3, 100]
Oe élément: [-6, -1, 0, 1, 3, 100]

(b) Le tri par insertion.

(c) Le pire des cas se produit lorsque a itération i de la boucle for, la boucle while itére i fois, ce qui
correspond & un temps de parcours de O(n?).

(d) Le meilleur des cas se produit lorsque la boucle while itére zéro fois a chaque itération de la boucle
for, c’est lorsque la liste est déja triée. Dans ce cas, chaque itération de la boucle for prend un temps
constant et on a un temps de parcours qui est O(n).

B N B BN +1/21/40+

Question 19: Cette question est notée sur 9 points.

Question 20

La fonction surprise() ci-dessous est une implémentation d’un algorithme itératif qui prend un nombre réel
N en entrée.

def surprise(N):
co = 0
N /= 2
while N>=1:
co += 1
N /= 2
return co

(a) Qu’affichent les instructions suivantes?

L=101,1.7, 2,5, 8, 15]

for i in L:
print(surprise(i))

(b)

[l HN N [. +1/22/39+

Soit T'(N) le temps de parcours de la fonction surprise() en fonction de la valeur du nombre en en-
trée N. Donnez l'ordre de croissance de T(N) en notation ©(+), en justifiant briévement votre réponse.

Solution

(a)

W w N = OO

La boucle while itére ©(log,(NNV)) fois (le nombre de fois qu’il faut diviser N par deux pour arriver a
un nombre inférieur a 1) et chaque itération prend un temps constant. Le temps total de parcours est
donc O(logy(N)).

def dec_bin_rec(N):
if N < 2:
return 0
else:
return 1 + dec_bin_rec(N/2)

11 fallait tout d’abord comprendre du point (a) que cet algorithme calculait le log, d’un nombre. C’est-
a-dire le nombre de fois qu’on peut la diviser par deux et obtenir un résultat plus grand que 1.

On en tire le cas de base de notre algorithme récursif. Effectivement, log,(z) = 0 si < 2. Si notre
nombre de base N est inférieur a deux, alors forcément N/2 < 1 et la fonction doit retourner 0.

Le reste de ’algorithme fonctionne de la maniére suivante. On retourne le nombre de fois qu’on peut
le diviser par deux. Tant que le cas de base n’est pas atteint, on implémente le compteur de divisions
par 1 et on appelle récursivement la fonction pour N/2 jusqu’a atteindre le cas de base pour lequel on

[N N +1/23/38+

retourne la valeur 0.

Celui-ci atteint, on remonte les différentes couches tout en les comptant. Le nombre d’appels récursifs
correspond donc au nombre de couches, et vaut 14+ (1 +...(14+0)...).

