
y +1/1/60+ y

Enseignant : CDPetrescu
ICS - MAN
7 juillet 2022
Durée : 150 minutes

1
Toto Tata

SCIPER : 999999

Attendez le début de l’épreuve avant de tourner la page. Ce document est imprimé recto-verso,
il contient 16 pages. Ne pas dégrafer.

Indications générales

➢ Posez votre carte d’étudiant sur la table.
➢ L’utilisation d’une calculatrice et de tout outil électronique est interdite pendant l’épreuve.
➢ Pour les questions à choix multiple, on comptera les points indiqués si la réponse est correcte ou

0 point autrement (par exemple s’il n’y a aucune ou plus d’une réponse inscrite ou si la réponse est
incorrecte).

➢ Utilisez un stylo à encre noire ou bleu foncé et effacez proprement avec du correcteur blanc
si nécessaire. Toute réponse doit être rédigée en utilisant la place réservée à cet effet à la suite de
la question. N’écrivez pas dans les marges !

➢ Si une question est erronée, l’enseignant se réserve le droit de l’annuler.

Indications spécifiques

➢ A part le polycopié "Informatique et calcul scientifique (ICS - MAN) Première partie Programma-
tion Python" imprimé au Centre d’impression EPFL, aucun autre document n’est autorisé et ne
doit donc être consulté durant l’examen.

➢ Le polycopié mentionné peut être annoté mais les notes ajoutées doivent correspondre seulement à
la première partie "Programmation Python" du cours.

➢ Le polycopié mentionné ne doit contenir aucune feuille supplémentaire ajoutée d’une façon quel-
conque au document imprimé au centre d’impression EPFL.

y y

y +1/2/59+ y
Première partie : trois questions de type ouvert indépendantes

Répondre dans l’espace dédié.
Laisser libres les cases à cocher : elles sont réservées au correcteur.

Question 1: Cette question est notée sur 15 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

.5 .5 .5 .5 .5

6 7 8 9 10

.5 .5 .5 .5 .5

11 12 13 14 15

On donne ci-dessous le contenu d’une cellule Jupyter Notebook :

from copy import deepcopy
li1 = [10, [11, 12], 'hello ']
li2 = li1
li3 = list(li1)
li4 = deepcopy(li1)
print ('***** Première partie ')
print(id(li1) == id(li2))
print(id(li1) == id(li3))
print(id(li1) == id(li4))
print ('***** Deuxième partie ')
li1 [0] = 100
print(li2 [0])
print(li3 [0])
print(li4 [0])
print ('***** Troisième partie ')
print(li1 [1]. append (13))
print(li2 [1])
print(li3 [1])
print(li4 [1])
print ('***** Quatrième partie ')
print(li1 [2]. upper())
print(li2 [2])
print(li3 [2])
print(li4 [2])

Précisez ci-dessous les messages affichés suite à l’exécution de la cellule indiquée plus haut.

y y

y +1/3/58+ y

y y

y +1/4/57+ y
Question 2: Cette question est notée sur 14 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

.5 .5 .5 .5 .5

6 7 8 9 10

.5 .5 .5 .5

11 12 13 14

Soit une fonction réelle d’une variable réelle f : R → R dont la représentation graphique sur l’intervalle
[−5, 9] est donnée dans la figure ci-dessous.

5 4 3 2 1 0 1 2 3 4 5 6 7 8 9
x

5

4

3

2

1

0

1

2

3

4

5

6

7

8

9

f(x
)

Représentation graphique de f(x) - Méthode de bissection
f(x)

Vous pouvez dessiner et/ou écrire sur cette figure mais les notes que vous y ajouterez ne seront pas corrigées.

Par la suite, afin de répondre aux questions posées, vous devez faire des calculs "à la main" et donc vous
devez :

➢ utiliser certaines valeurs numériques lues directement sur le graphique mentionné ;

➢ n’écrire aucune ligne de code (c’est-à-dire n’écrire aucun programme destiné à être exécuté par un
ordinateur) ;

➢ écrire vos réponses aux endroits prévus à cet effet (sans justifications et sans détails de calcul).

Passez à la page suivante, s’il vous plaît.

y y

y +1/5/56+ y
a) Afin de trouver numériquement un zéro de la fonction f dans l’intervalle [−4,8], on utilise la méthode
de bissection et on considère l’intervalle de départ [a0, b0] = [−4,8] (et faites attention et prenez comme
intervalle de départ l’intervalle [a0, b0] = [−4,8] et non pas l’intervalle [−5, 9]).

On considère les premières 4 itérations de la méthode de bissection (y compris la première itération pour
l’intervalle de départ d’indice 0).

En utilisant le graphique donné, calculez et complétez ci-dessous les valeurs manquantes où, pour chaque
indice i ∈ {0, 1, 2, 3} :

➢ ai est la limite gauche de l’intervalle choisi à l’itération i ;

➢ bi est la limite droite de l’intervalle choisi à l’itération i ;

➢ xi est la valeur approchée du zéro calculé ou lu pour l’itération i.

a0 = −4 b0 = 8 x0 =

a1 = b1 = x1 =

a2 = b2 = x2 =

a3 = b3 = x3 =

b) Donnez une estimation (une majoration) convenable de l’erreur e3 commise en utilisant la valeur approchée
x3 à la place de la valeur exacte (qui n’est pas connue) x̄ du zéro approximé par x3.
Complétez ci-dessous la valeur manquante.

e3 = |x̄− x3| <

y y

y +1/6/55+ y
Question 3: Cette question est notée sur 14 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

.5 .5 .5 .5 .5

6 7 8 9 10

.5 .5 .5 .5

11 12 13 14

On considère la fonction réelle d’une variable réelle f : R → R définie par :

f(x) = 2x− 9 + sin(2πx)

et dont la représentation graphique sur l’intervalle [3, 6] est donnée dans la figure ci-dessous.

3.0 3.5 4.0 4.5 5.0 5.5 6.0
x

3

2

1

0

1

2

3

f(x
)

Représentation graphique de f(x) - Intégration numérique
f(x)

Vous pouvez dessiner et/ou écrire sur cette figure mais les notes que vous y ajouterez ne seront pas corrigées.

Par la suite, afin de répondre aux questions posées, vous devez faire des calculs "à la main" et donc vous
devez :

➢ utiliser certaines valeurs numériques lues directement sur le graphique mentionné ;

➢ n’écrire aucune ligne de code (c’est-à-dire n’écrire aucun programme destiné à être exécuté par un
ordinateur) ;

➢ écrire vos réponses aux endroits prévus à cet effet (sans justifications et sans détails de calcul).

Passez à la page suivante, s’il vous plaît.

y y

y +1/7/54+ y
On note I la valeur exacte de l’intégrale définie de la fonction f sur l’intervalle [3, 6] :

I =

∫ 6

3

f(x)dx

Vous devez calculer "à la main" (c’est-à-dire sans écrire un programme destiné à être exécuté par un ordina-
teur) les valeurs approchées de I obtenues en utilisant, respectivement, les formules de quadrature composites
correspondant aux formules de Newton-Cotes non composites suivantes :

➢ la formule dite du point de gauche (cas où la valeur approchée de l’intégrale sera notée IPG) ;

➢ la formule dite du point de droite (cas où la valeur approchée de l’intégrale sera notée IPD) ;

➢ la formule du point milieu (cas où la valeur approchée de l’intégrale sera notée IPM) ;

➢ la formule du trapèze (cas où la valeur approchée de l’intégrale sera notée ITr).

Rappel : On considère une partition σ d’un intervalle d’intégration réel [a, b] en n sous-intervalles tel que
σ = {x0, x1, ..., xi−1, xi, xi+1, ..., xn−1, xn} où x0 = a et xn = b.
Pour une fonction f à intégrer sur l’intervalle [a, b] :

➢ la formule de quadrature composite du point de gauche est donnée par :

IPG(f) =

n−1∑
i=0

(xi+1 − xi)f(xi)

➢ la formule de quadrature composite du point de droite est donnée par :

IPD(f) =

n−1∑
i=0

(xi+1 − xi)f(xi+1)

Afin de calculer ces valeurs approchées de I, vous devez choisir chaque fois une partition (ou une subdivision)
régulière de l’intervalle d’intégration [3,6] en trois sous-intervalles.

Écrivez ci-dessous (aux endroits prévus à cet effet) les quatre valeurs approchées demandées.

IPG =

IPD =

IPM =

ITr =

y y

y +1/8/53+ y
Deuxième partie - deux questions de type ouvert se rapportant au même énoncé

Répondre dans l’espace dédié.
Laisser libres les cases à cocher : elles sont réservées au correcteur.

Les deux questions suivantes se rapportent au même énoncé.
Vous pouvez répondre à la deuxième question en supposant la première question résolue correctement.

Enoncé

Soit une fonction réelle d’une variable réelle y(t) : R → R qui est continûment différentiable sur R (c’est-
à-dire y ∈ C1(R)) et qui satisfait l’équation différentielle et la condition initiale du problème de Cauchy
suivant : {

y′ (t) = y(t) + 2(t− 1)et

y (0) = 1

Question 4: Cette question est notée sur 15 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

.5 .5 .5 .5 .5

6 7 8 9 10

.5 .5 .5 .5 .5

11 12 13 14 15

Afin de résoudre numériquement le problème de Cauchy mentionné dans l’énoncé ci-dessus, on choisit le
schéma de Runge-Kutta explicite à 3 étapes donné ci-dessous (avec les notations habituelles) : un+1 = un +

h

6
(K1 + 4K2 +K3)

u0 = y0

où:
K1 = f (tn, un)

K2 = f

(
tn +

h

2
, un +

h

2
K1

)
K3 = f (tn+1, un + h(2K2 −K1))

On vous demande d’implémenter ce schéma numérique en définissant une fonction Python nommée rk3()
et qui doit :

∗ avoir 5 paramètres :

➢ f : la pente (la dérivée) de la solution recherchée ;

➢ t0 : le moment initial de l’étude ;

➢ y0 : la valeur initiale de la solution ;

➢ T : le moment final de l’étude ;

➢ N : le nombre de sous-intervalles ;

∗ retourner :

➢ t : le vecteur (1D array) avec les points (les instants) où la solution approchée a été calculée ;

➢ u : le vecteur (1D array) avec les valeurs calculées de la solution approchée.

Ecrivez à la page suivante la définition (l’en-tête et le corps) de la fonction Python rk3().

y y

y +1/9/52+ y

y y

y +1/10/51+ y
Question 5: Cette question est notée sur 14 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

.5 .5 .5 .5 .5

6 7 8 9 10

.5 .5 .5 .5

11 12 13 14

On considère que la fonction Python rk3() (précisée à la question antérieure) a été définie correctement et
qu’elle est disponible directement par son nom dans le code à écrire.

Vous devez résoudre le problème de Cauchy mentionné dans l’énoncé pour une durée d’étude de 2.1
secondes et en respectant les consignes données sous forme de commentaires dans le canevas de code ci-
dessous. Complétez le canevas de code ci-dessous comme indiqué.

Importez la bibliothèque NumPy

Définissez une fonction Python nommé f() avec le bon nombre d'arguments
et qui correspond au membre de droite de l'équation différentielle du problème
de Cauchy à résoudre , c'est -à-dire à la première dérivée de la solution recherchée

Déclarez (créez) une variable locale nommée t_in et donnez -lui une valeur initiale qui
correspond au moment initial de l'étude

Déclarez (créez) une variable locale nommée y_in et donnez -lui une valeur initiale qui
correspond à la valeur initiale de la solution recherchée

Déclarez (créez) une variable locale nommée t_fin et donnez -lui une valeur initiale qui
correspond au moment final de l'étude

Déclarez (créez) une variable locale nommée nb qui correspond au nombre de sous -intervalles
de la partition choisie et donnez -lui la valeur 32 comme valeur initiale

Appelez la fonction rk3() avec les bons arguments pour résoudre le problème de Cauchy donné
et stockez les résultats retournés par l'appel dans deux variables nommées temps et solutions

Affichez le message suivant :
Au moment final AAA la solution approchée vaut BBB !
où AAA doit être la valeur du temps qui correspond à la fin de la durée d'étude
et BBB doit être la valeur de la solution approchée à la fin de la durée d'étude

Fin du code

y y

y +1/11/50+ y
Troisième partie, questions à choix unique

Pour chaque question, marquer la case correspondante à la réponse correcte sans faire de ratures.
Il n’y a qu’une seule réponse correcte par question.

Question 6 (6 points)

On donne ci-dessous le contenu d’une cellule Jupyter Notebook.
li_out = []
for m in range (1,4):

li_in = []
for n in range (1,4):

if m % 2 == 1:
li_in.append(m+n)

li_out.append(li_in)
res = [print(el, end = ' ') for el in li_out]
print(res)

Cochez la case qui correspond à l’affichage obtenu suite à l’exécution de la cellule ci-dessus.

[2, 3, 4] [] [4, 5, 6] [None, None, None]

[2, 3, 4] [4, 5, 6] [None, None]

[2, 3, 4, 5] [] [4, 5, 6, 7] [None, None, None, None]

[2, 3, 4] [] [4, 5, 6] [None]

Question 7 (6 points)

On donne ci-dessous le contenu d’une cellule Jupyter Notebook.
nb = -12
li = [1, 2, 3]
dic = {100: 200, 200: 100}
nb = li
li = dic
dic = nb
print(F'{nb = }, {li = }, {dic = } ')

Cochez la case qui correspond à l’affichage obtenu suite à l’exécution de la cellule ci-dessus.

un message d’erreur

nb = [1, 2, 3], li = {100: 200, 200: 100}, dic = [1, 2, 3]

nb = [1, 2, 3], li = {100: 200, 200: 100}, dic = -12

nb = {100: 200, 200: 100}, li = -12, dic = [1, 2, 3]

Question 8 (6 points)

Parmi les affirmations ci-dessous, précisez l’affirmation qui est fausse en cochant la case correspondante.

Le langage Python est un langage orienté objets.

Le langage Python est un langage indépendant de plateforme.

Le langage Python est un langage statiquement typé.

L’implémentation de référence du langage Python est écrite en langage C.

y y

y +1/12/49+ y
Question 9 (6 points)

On donne ci-dessous le contenu d’une cellule Jupyter Notebook.
x = 'je', 'tu ', 'elle/il '
y = ['suis ', 'es', 'est ']
z = {el : y[-i] for el in x for i in range(1, len(x) + 1)}
print(z)

Cochez la case qui correspond à l’affichage obtenu suite à l’exécution de la cellule ci-dessus.

{’je’: ’suis’, ’tu’: ’es’, ’elle/il’: ’est’}

{’je’: ’suis’, ’tu’: ’suis’, ’elle/il’: ’suis’}

{’je’: ’est’, ’tu’: ’es’, ’elle/il’: ’suis’}

un message d’erreur

Question 10 (6 points)

On donne ci-dessous le contenu d’une cellule Jupyter Notebook.
import numpy as np
tab = np.array ([[1,2,3], [4,5,6], [7,8,9], [10 ,11 ,12]])
print(tab.shape , end=' ')
print(tab[:, 1], end=' ')
print(tab[1, :], end=' ')
print(tab[3:, :1])

Cochez la case qui correspond à l’affichage obtenu suite à l’exécution de la cellule ci-dessus.

(3, 4) [1 4 7 10] [1 2 3] [[11]]

(4, 3) [2 5 8 11] [4 5 6] [[11]]

(3, 4) [1 4 7 10] [4 5 6] [[10]]

(4, 3) [2 5 8 11] [4 5 6] [[10]]

Question 11 (6 points)

On calcule numériquement une intégrale définie (d’une fonction réelle d’une variable réelle qui est continue)
à l’aide d’une formule de quadrature composite basée sur une formule non composite de degré d’exactitude
3 (comme la méthode de Simpson).
Si on passe d’une partition régulière avec n sous-intervalles à une partition régulière plus fine avec 2n sous-
intervalles (c’est-à-dire si on divise le pas de la partition régulière par 2), alors l’erreur sera divisée par k (où
k est une valeur que vous devez préciser).
Précisez la valeur de k (pour que l’affirmation précédente soit vraie) en cochant la case correspondante.

k = 2

k = 8

k = 16

k = 4

y y

y +1/13/48+ y
Question 12 (6 points)

Soient les points P0(t0, p0) = P0(−2, 3), P1(t1, p1) = P1(0, 5) et P2(t2, p2) = P2(2,−1).

Cochez la case qui correspond aux polynômes de la base de Lagrange {φ0(t), φ1(t), φ2(t)} associée aux
points mentionnés.

{
φ0(t) =

t2

8
+

t

4
, φ1(t) = − t2

4
+ 1, φ2(t) =

t2

8
− t

4

}
{
φ0(t) = 3

(
t2

8
− t

4

)
, φ1(t) = 5

(
− t2

4
+ 1

)
, φ2(t) = −

(
t2

8
+

t

4

)}
{
φ0(t) = − t2

4
+ 1, φ1(t) =

t2

8
− t

4
, φ2(t) =

t2

8
+

t

4

}
{
φ0(t) =

t2

8
− t

4
, φ1(t) = − t2

4
+ 1, φ2(t) =

t2

8
+

t

4

}

Question 13 (6 points)

Soit le schéma numérique de Runge-Kutta explicite à 3 étapes donné ci-dessous (avec les notations
habituelles) :  un+1 = un +

h

6
(K1 + 4K2 +K3)

u0 = y0

où:
K1 = f (tn, un)

K2 = f

(
tn +

h

2
, un +

h

2
K1

)
K3 = f (tn+1, un + h(2K2 −K1))

Parmi les tableaux de Butcher ci-dessous, choisissez celui qui correspond au schéma numérique mentionné
et cochez la case respective.

0 0 0 0

1/2 1/2 0 0

1 −1 2 0

1/6 4/6 1/6

1/6 0 0 0

4/6 1/2 0 0

1/6 −1 2 0

0 1/2 1

0 0 0 0

1/2 1/2 0 0

0 −1 2 0

1/6 4/6 1/6

0 0 0 0

1/2 1/2 0 0

1 2 −1 0

1/6 4/6 1/6

y y

y +1/14/47+ y
Formulaire

Bibliothèque Python NumPy
import numpy as np

np.array(object, dtype=None)
np.linspace(start, stop, num=50, endpoint=True, retstep=False)
np.logspace(start, stop, num=50, endpoint=True)
np.arange(start, stop, step)
np.zeros(shape, dtype=float)
np.ones(shape, dtype=None)
np.empty(shape, dtype=float)
np.zeros_like(a, dtype=None)
np.ones_like(a, dtype=None)
np.empty_like(a, dtype=None)
ndarray.ndim
ndarray.shape
np.shape(a)
ndarray.dtype
ndarray.size
np.eye(N)
np.reshape(a, newshape)
np.dot(a, b)
ndarray.T
ndarray.transpose()
np.transpose(a)
np.linalg.det(a)
np.linalg.inv(a)
np.linalg.eig(a)
np.random.rand()
np.random.rand(N)
np.random.uniform(low=0.0, high=1.0)
np.copy(a)
np.loadtxt(fname, comments=’#’, skiprows=0, usecols=None, unpack=False)
np.savetxt(fname, X, fmt=’%.18e’, delimiter=’ ’, newline=’\n’, header=’ ’, footer=’ ’, comments=’#’)

Bibliothèque Python Matplotlib
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

plt.figure(num=None, figsize=None)
plt.plot(x, y, arguments_optionnels)
plt.axhline(y=0, xmin=0, xmax=1, arguments_optionnels)
plt.axvline(x=0, ymin=0, ymax=1, arguments_optionnels)
plt.errorbar(x, y, yerr=None, xerr=None, fmt=’ ’, ecolor=None, arguments_optionnels)
plt.bar(x, height, width=0.8, bottom=None, arguments_optionnels)
plt.fill(x, y, arguments_optionnels)
plt.axis(’equal’)
plt.axis(’scaled’)
plt.grid(visible=None)
plt.xlabel(xlabel, loc=None)
plt.ylabel(ylabel, loc=None)
plt.xlim(left, right)

y y

y +1/15/46+ y
plt.ylim(bottom, top)
plt.legend(loc=’best’)
plt.title(label)
plt.show()
plt.savefig(fname, format=None)
mpimg.imread(fname, format=None)
plt.imshow(X)
mpimg.imsave(fname, X)

Méthodes numériques (préparées par les étudiant(e)s)

Equations non linéaires
1 - Méthode de bissection
On considère [a0, b0] et f(a0) ∗ f(b0) < 0 (condition de Bolzano)
Si f(an) ∗ f(xn) < 0, an+1 = an et bn+1 = xn

Si f(bn) ∗ f(xn) < 0, an+1 = xn et bn+1 = bn
Avantages : aucune hypothèse hormis la continuité et converge du moment que f(a0) ∗ f(b0) < 0

Mais : méthode lente qui ne peut pas être généralisée à Rn

2 - Méthode de Picard
On considère une approximation de départ x0 et xn+1 = g(xn).
Si g ∈ C0 et xn → l, alors méthode Picard convergente et l point fixe de g.

|xm − xn| ≤
Kn

1−K
|g(x0)− x0|

Condition d’arrêt : x̄−xn =
1

1− g′(ξn)
(xn+1 −xn) et |xn+1 −xn| < ϵ (convergence pas forcément garantie)

3 - Méthode de Newton
Théorème Soit f ∈ C2. Si f admet un 0 simple, alors :
∃ϵ > 0 t.q. si on choisit x0 ∈ [x̄− ϵ, x̄+ ϵ], alors (xn) converge vers x̄ et convergence quadratique.

xn+1 = xn − f(xn)

f ′(xn)
et condition d’arrêt : |xn − xn−1| < ϵ ou |rn| = |f(xn)| < ϵ

Avantages : vitesse de convergence élevée, à condition d’avoir un bon x0, peut-être généralisée à des systèmes
d’équations linéaires, mais à chaque étape il faut calculer la dérivée, dont l’expression explicite n’est pas
forcément connue, f ∈ C2.

Calcul intégral
1 - Interpolation de Lagrange

φk(t) =
∏m

j=0,j ̸=k

t− tj
tk − tj

polynôme de degré m

φk(tk) = 1, φk(tj) = 0 pour j ̸= k

Polynôme de Lagrange : p(t) =
∑m

j=0 pjφj(t)

2 - Formules de quadrature non composites
Soit [xi, xi+1] ⊂ [a, b], on le remplace par [−1, 1] en posant

x =
xi + xi+1

2
+

xi+1 − xi

2
t (1) et on note f((1)) = g(t) et

∫ xi+1

xi
f(x)dx =

xi+1 − xi

2

∫ 1

−1
g(t)dt

µj =
∫ 1

−1
ϕj(t)dt et J(g) =

∑m
j=0 µjg(tj)

3 - Formules de Newton-Cotes
Point milieu : m = 0

φ0(t) = 1 ; µ0 = 2 ; JPM
i (f) = (xi+1 − xi)f(

xi + xi+1

2
)

Trapèze : m = 1

t0 = −1, t1 = 1, φ0(t) =
t− 1

−2
, φ1(t) =

t+ 1

2
, µ0 = µ1 = 1,

JTr
i (f) = (xi+1 − xi)

f(xi) + f(xi+1)

2

y y

y +1/16/45+ y
Simpson : m = 2

t0 = −1, t1 = 0, t2 = 1, φ0(t) =
1

2
(t2 − t), φ1(t) = −t2 + 1, φ2(t) =

1

2
(t2 + t), µ0 =

1

3
, µ1 =

4

3
, µ2 =

1

3

JS
i (f) = (xi+1 − xi)(

1

6
f(xi) +

4

6
f(

xi+1 + xi

2
) +

1

6
f(xi+1))

Newton : m = 3

t0 = −1, t1 = −1

3
, t2 =

1

3
, t3 = 1, φ0(t) = − 1

16
(9t3 − 9t2 + t+ 1)

φ1(t) =
9

16
(3t3 − t2 − 3t+ 1)

φ2(t) = − 9

16
(3t3 + t2 − 3t− 1)

φ3(t) =
1

16
(9t3 + 9t2 − t− 1)

µ0 =
1

4
, µ1 =

3

4
= µ2, µ3 =

1

4

JN
i (f) = (xi+1 − xi)(

1

8
f(xi) +

3

8
f(xi +

1

3
(xi+1 − xi)) +

3

8
f(xi +

2

3
(xi+1 − xi)) +

1

8
f(xi+1))

EDO de premier ordre - Problème de Cauchy

h =
T − t0
N

si partition régulière
On pose fn = f(tn, un), h = tn+1 − tn et fn+1 = f(tn+1, un+1) :

• Schéma général{
un+1 = un + h · (méthode)

u0 = y0

• Euler progressif: un+1 = un + hfn

• Euler rétrograde: un+1 = un + hfn+1

avec fn+1 qui dépend de un+1

• Crank-Nicolson: un+1 = un + h
2 (fn + fn+1)

• Heun: un+1 = un + h
2 [fn + f(tn + h, un + hfn)]

• Euler modifiée:
un+1 = un + hf

(
tn + 1

2h, un + h
2 fn

)
• Runge-Kutta classique:

un+1 = un + h
6 (K1 + 2K2 + 2K3 +K4)

➢ K1 = f(tn, un)

➢ K2 = f
(
tn + h

2 , un + h
2K1

)
➢ K3 = f

(
tn + h

2 , un + h
2K2

)
➢ K4 = f(tn+1, un + hK3)

• Tableau de Butcher

Le tableau suivant :

c1 a1,1 . . . a1,s
...

...
. . .

...
cs as,1 . . . as,s

b1 . . . bs

se décode dans la forme du schéma général d’une
méthode de résolution d’EDO1 de la manière suiv-
ante:

un+1 = un + h (b1K1 + . . .+ biKi + . . .+ bsKs)

avec Ki = f
(
tn + cih, un + h

∑s
j=1 ai,jKj

)
Erreurs :
ũn = yn−1 + hf(tn−1, yn−1) (pour Euler progressif)
Erreur de troncature totale : en = |yn − un| = |yn − ũn + ũn − un|
Erreur de troncature locale : |yn − ũn|

Erreur de troncature locale unitaire : τn(h) =
|yn − ũn|

h
Erreur de troncature locale unitaire maximale : τ (h) = max

n=1,...,N
τn (h)

Erreur de troncature transportée : |ũn − un|
Erreur de troncature totale avec signe : dn = yn − un

Pour la stabilité : h ≤ 2

max
t∈[t0,T]

∣∣∣∣∂f∂y (t, y (t))

∣∣∣∣

y y

