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La fois passée, on a vu..

... Comment exprimer le temps de parcours T (n) d’un algorithme
en fonction de la taille n de l’instance d’entrée

▶ En comptant le nombre d’opérations effectuées, celles-ci
prenant habituellement un temps constant.

... Une manière d’exprimer le comportement asymptotique du
temps de parcours d’un algorithme, et de comparer la performance
de certains algorithme entre eux

▶ On utilise la notation de Landau : O(·), Ω(·) et Θ(·).

f (n) = O(g(n)) f (n) = Ω(g(n)) f (n) = Θ(g(n))

... Une première application sur quelques algorithmes de recherche
de maximum d’une liste.
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Rappel : temps de parcours d’algorithmes en notation
asymptotique

for i in range(n):
#TEMPS CONSTANT temps Θ(n)

for i in range(n):
for j in range(i+1, n):

#TEMPS CONSTANT
temps Θ(n2)

for i in range(n):
for j in range(i+1, n):

for k in range(j+1, n):
#TEMPS CONSTANT

temps Θ(n3)
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But de la leçon

Aujourd’hui on...

Aujourd’hui, on verra quelques algorithmes fameux :

▶ Deux algorithmes de recherche

▶ Deux algorithmes de tri
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Recherche dans une liste

Etant donnés une liste L quelconque de nombres et un nombre
x , trouver x dans L .

▶ Retourner un indice i tel que L[i] = x si x apparâıt dans
L , sinon retourner None .

▶ Sans utiliser l’instruction if x in L , dont on ne connâıt pas
le temps de parcours !

def recherche(L, x):
’’’
Entree: nombre x, liste L de nombres
Sortie: i t.q. L[i]=x si un tel i existe

None sinon
’’’
n = len(L)

for i in range(n):
if L[i] == x:

return i
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Recherche dans une liste - temps de parcours

Que vaut le temps de parcours de cet algorithme ?

def recherche(L, x):
n = len(L)
for i in range(n):

if L[i] == x:
return i

Il existe deux cas extrêmes :

1. Si x est en tête de liste, T (n) ∼ Θ(1) (temps constant)

2. Si x est en fin de liste ou n’apparâıt pas dans la liste,
T (n) ∼ Θ(n)

Rappel : le temps de parcours est défini dans le pire des cas,
c’est-à-dire pour la pire instance imaginable. Le temps de parcours
de cet algorithme est donc Θ(n) (linéaire en n).
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Recherche dans une liste triée

Question : Peut-on améliorer cet algorithme ?

▶ Pour une instance la plus générale possible, non.
Il faut parcourir toute la liste pour être sûr qu’un élément en
fasse partie ou non.

▶ Et si la liste était triée ?

Exemple : recherche de l’élément 17 dans la liste de 23 éléments.

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

Trouvé à l’index 14 de la liste en 3 itérations !

. Un autre exemple
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Recherche dans une liste triée

Exemple : recherche de l’élément 31 dans la liste de 23 éléments.

-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
-7, -3, -3, -1, 0, 0, 1, 2, 5, 6, 8, 9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

Pas trouvé en 5 itérations !
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Recherche par dichotomie

Cet exemple présente un type d’algorithme par dichotomie, auquel
nous serons de nouveau confrontés dans la suite de ce cours. Il
fonctionne de la manière suivante :

▶ Rechercher si une propriété est vérifiée dans un certain
ensemble.

▶ Si oui :
▶ Diviser cet ensemble par deux, et contrôler dans quel

sous-espace la propriété est vérifiée
▶ Répéter jusqu’à trouver le sous-espace le plus petit dans lequel

celle-ci est vérifiée.

▶ Si non, conclure.

Un tel algorithme peut être implémenté de manière itérative.
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Recherche binaire (recherche par dichotomie)

def recherche_binaire(L, x):
’’’
Entree: nombre x, liste L de nombres triee
Sortie: i t.q. L[i]=x s’il existe , None sinon
’’’
n = len(L)
bas = 0
haut = n-1

while haut >= bas:
milieu = (bas + haut)//2
if L[milieu] == x:

return milieu
elif L[milieu] > x:

haut = milieu - 1
else:

bas = milieu + 1
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Recherche binaire : temps de parcours

Calculons le temps de parcours de cet algorithme.

▶ Chaque itération de la boucle while prend un temps
constant.

▶ On compte le nombre d’opérations effectuées.

Pour une entrée de taille n, quel est le nombre d’itérations de la
boucle while ?

▶ La taille de la liste qu’on considère est à peu près coupée en
deux à chaque itération.

▶ Lorsqu’on arrive à une liste de taille 1 (ou avant si l’élément
est trouvé), l’algorithme s’arrête après cette itération.
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Décomposition en puissances de 2

Question : Combien de fois faut-il diviser un entier n par 2
(division entière) pour arriver jusqu’à 1 ?

def decomposition(N):
co = 0
x = N/2
while x >= 1:

co +=1
x /= 2

return co

Output :

decomposition(1)=0
decomposition(3)=1
decomposition(4)=2
decomposition(8)=3
decomposition(13)=3
decomposition(16)=4
decomposition(25)=4
decomposition(32)=5

▶ Cet algorithme continue de diviser un nombre n par deux tant
que le résultat est supérieur ou égal à 1

▶ Autrement dit, il permet d’obtenir k tel que 2k ≤ n < 2k+1.
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Introduction à la fonction log

Soit n un entier strictement plus grand que 1. On suppose d’abord
que n est une puissance de 2, i.e., il existe k in N tel que n = 2k .

▶ Par définition, k est le logarithme en base 2 de n. On le
dénote par k = log2(n). Donc par définition, n = 2log2(n).

▶ log2(n) est le nombre de fois qu’il faut diviser n par 2 pour
arriver jusqu’à 1.

n log2(n)

1 0
2 1
4 2
8 3
16 4

▶ Si n n’est pas une puissance de 2, alors k n’est pas un entier.
Par exemple, log2 10 = 3.32, 23.32 = 10.
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Comportement de la fonction log à l’infini

▶ limn→∞[log2(n)] = +∞
▶ log2(n) crôıt vers l’infini quand n tend vers l’infini, mais

beaucoup plus lentement que n :

lim
n→∞

log2(n)

n
= 0.

▶ En particulier, log2(n) = O(n).
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Comportement de la fonction log à l’infini

Pour des puissances rationnelles p ≤ q,

[log2(n)]
p = O([log2(n)]

q).

▶ log2(n) = O([log2(n)]
2)
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Comportement de la fonction log à l’infini

Pour toute puissance p, et pour toute puissance strictement
positive q,

lim
n→∞

[log2(n)]
p

nq
= 0.

En particulier [log2(n)]
p = O(nq). Par exemple,

▶ [log2(n)]
2 = O(n)

▶ [log2(n)]
10 = O(n)

▶ [log2(n)]
1000 = O(

√
n)

La fonction log2(n) et ses puissances ont une croissance
logarithmique, qui est dominée par la croissance polynomiale
des puissances de n.

. si limn→∞
f (n)
g(n)

= 0, on dira que f est o(g) (“f est petit o de g”).
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Comportement de la fonction log à l’infini

Luc Testa ICS - Cours 9 30.04.2025 17 / 33



Recherche binaire - temps de parcours

La pire instance possible est une liste triée qui ne possède pas
l’élément cherché, ou pour laquelle celui-ci est trouvé lorsqu’on
arrive à une sous-liste de taille 1.

▶ Si la tranche de liste considérée ( L[bas:haut+1] ) à une itération
donnée est de taille ℓ, alors la tranche de liste considérée à la
prochaine itération est de taille ∼ ℓ/2.

▶ Dans ce cas, la boucle while termine après Θ(log2(n)) itérations.

Conclusion : L’algorithme de recherche binaire a donc temps de
parcours Θ(log2(n)) dans le pire des cas.
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Comparaisons des deux algorithmes de recherche

La recherche simple a un temps de parcours linéaire
[T1(n) ∼ Θ(n)] alors que l’algorithme de recherche binaire a un
temps de parcours logarithmique [T2(n) ∼ Θ(log2(n)].

▶ Etant donnée une liste non triée, comment la trier pour
pouvoir la donner en entrée à recherche binaire ?

▶ Quel est le coût de trier une liste ? A partir de combien
d’appels à recherche binaire sur une liste est-ce que cela
vaut la peine de trier la liste auparavant ?
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Algorithmes de tri

Il existe une multitudes d’algorithmes différents pour trier une liste
ou un dictionnaire. Dans ce cours, nous allons nous concentrer sur
les deux premiers.

▶ tri par sélection

▶ tri par insertion

▶ tri à bulles

▶ tri par fusion

▶ tri rapide

▶ ...

On peut trier des objets selon beaucoup de critères différents. Ici,
nous les trierons dans l’ordre croissant.

Luc Testa ICS - Cours 9 30.04.2025 20 / 33



Tri par sélection

Idée : dans une liste triée, le premier élément est le plus petit, le
deuxième est le 2e plus petit, etc.

▶ On recherche le plus petit élément de la liste
qu’on place en première position.

▶ Puis on recherche le deuxième plus petit élément
(le plus petit de la sous-liste restante) qu’on
place en deuxième position

▶ Ainsi de suite jusqu’à avoir parcouru toute la
liste.

=⇒ On fait donc grandir une sous-liste triée, en insérant à chaque
fois le minimum des éléments restants à la fin de cette sous-liste. 1

1. Exemple interactif : https://visualgo.net/bn/sorting
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Tri par sélection

L’implémentation de cet algorithme en Python est la suivante.

def tri_par_selection(L):
’’’
Entree: liste L de nombres
Trie L
’’’
n = len(L)
for i in range(n):

m = L[i]
m_index = i
for j in range(i+1,n):

if L[j] < m:
m = L[j]
m_index = j

L[i], L[m_index] = L[m_index], L[i]
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Tri par sélection : temps de parcours

Que vaut son temps de parcours ?

▶ On commence par comparer le 1e

élément au n − 1 éléments restants

▶ Puis on compare le 2e élément aux
n − 2 éléments restants

▶ ...

▶ Finalement, on compare le (n − 1)e au
dernier.

Y a-t-il une distinction entre le pire des cas, pour l’instance la plus
défavorable, et d’autres cas ?

▶ Non, il y a exactement (n − 1) + (n − 2) + . . .+ 1 = n(n−1)
2

opérations qui prennent un temps constant, donc
Tsel(n) = Θ(n2).
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Tri par insertion

Idée : trier une liste comme on trie une main à un jeu de cartes.

▶ On sélectionne le ie élément, et on le
compare avec l’élément i − 1.
→ S’il est plus petit, on les échange puis le
compare avec l’élément i − 2, puis i − 3,
jusqu’à le comparer aux i − 1 élément
précédents (triés) si besoin.
→ Sinon, il est à sa bonne place.

▶ Par échanges successifs, on le met à la place
j ≤ i telle que L[j-1] ≤ L[j] ≤ L[j+1] .

=⇒ On fait grandir une sous-liste triée, en insérant un élément à la
fois à la bonne place dans cette sous-liste 2.

2. https://www.hackerearth.com/practice/algorithms/sorting/insertion-sort/visualize/
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Tri par insertion

Voici une implémentation de l’algorithme par insertion.

def tri_par_insertion(L):
’’’
Entree: liste L de nombres
Trie L
’’’
n = len(L)
for i in range(n):

j = i
while j > 0 and L[j] < L[j-1]:

L[j], L[j-1] = L[j-1], L[j]
j -= 1
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Tri par insertion : temps de parcours

Que vaut son temps de parcours ?

▶ A la ie itération, on compare le ie

élément (bleu) avec les (i − 1)
éléments précédents, au plus.

▶ Dans ce cas, les instructions dans la
boucle while s’exécutent au plus

1 + 2 + · · ·+ (n − 1) =
n(n − 1)

2
fois.

Le temps de parcours de l’algorithme de tri par insertion vaut donc
Tins(n) ∼ Θ(n2).
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Tri par insertion : temps de parcours

Y a-t-il une distinction entre le pire des cas, pour l’instance la plus
défavorable, et d’autres cas ?

def tri_par_insertion(L):
n = len(L)
for i in range(n):

j = i
while j > 0 and L[j] < L[j-1]:

L[j], L[j-1] = L[j-1], L[j]
j -= 1

▶ Le meilleur des cas correspond à une liste déjà triée. On ne
rentre pas dans la boucle while , et ne parcourt donc qu’une
fois tous les éléments.

▶ Le pire des cas correspond à une liste triée à l’envers. On
rentre alors n(n−1)

2 fois dans la boucle while .
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Comparaison des algorithmes de tri

Ces deux algorithmes ne sont pas optimaux pour des instances de
grande taille car Θ(n2). Certains algorithmes non étudiés dans ce
cours ont une complexité moins élevée :

▶ Tri par fusion : Θ(n log2 n)

▶ Tri rapide : Θ(n2)

Question : Comment choisir quel algorithme utiliser ?

... ça dépend.

▶ de la disposition initiale de l’instance d’entrée,

▶ et nous n’avons abordé que le critère du temps de parcours !

La méthode sort() de Python utilise un mélange du tri par
insertion et du tri par fusion. Il a aussi une complexité Θ(n log2 n).
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Bonus : complexité exponentielle

Une grandeur très répandue en cryptographie est la suite de
Fibonacci.

Pour n ∈ N, le nème nombre de
Fibonacci est défini comme

fn =


0, n = 0

1, n = 1

fn−1 + fn−2, n ≥ 2

def fib(n):
if n == 0:

return 0
elif n == 1:

return 1
return fib(n-1) + fib(n-2)

Luc Testa ICS - Cours 9 30.04.2025 29 / 33



Bonus : complexité exponentielle

Quelle serait la complexité de cet algorithme ?

def fib(n):
if n == 0:

return 0
elif n == 1:

return 1
return fib(n-1) + fib(n-2)

fib(n) appelle fib(n-1) et

fib(n-2) , qui elles-mêmes

appellent fib(n-2) et

fib(n-3) , etc...

Le nombre d’opérations dans
fib(n+1) vaut (environ) le

double de fib(n) .
Le temps de parcours de cet
algorithme suit une loi
exponentielle : T (n) ∼ an, a > 1
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Bonus : complexité exponentielle

Une telle situation est à éviter absolument ! Ici, T = 434 s pour
N = 45.

Heureusement, il existe généralement un moyen de contourner
cette croissance exponentielle.
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Bonus : complexité exponentielle

Une multitude de situations physiques et sociales ont en réalité une
croissance exponentielle. On peut citer 3 :

▶ La croissance d’une
population

▶ La propagation d’une
maladie (covid)

▶ L’utilisation de
ressources naturelles

Mathématiquement, f (n) = f0 · (1 + r)n

3. population,ressources
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Take Home Message

En faisant l’hypothèse que l’instance est triée, l’algorithme de
recherche binaire [O(log2 n)] est plus efficace que l’algorithme
de force brute [O(n)].
Comment trier une liste ?

▶ Tri par sélection : On insère le bon élément à la fin de
la sous-liste triée.

▶ Tri par insertion : On insère chaque élément à la bonne
place dans la sous-liste triée.

Ces deux algorithmes ont une complexité temporelle O(n2)
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