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La fois passée, on a vu..

... Comment exprimer le temps de parcours T(n) d'un algorithme
en fonction de la taille n de I'instance d'entrée
> En comptant le nombre d'opérations effectuées, celles-ci
prenant habituellement un temps constant.

... Une maniere d'exprimer le comportement asymptotique du
temps de parcours d'un algorithme, et de comparer la performance
de certains algorithme entre eux

» On utilise la notation de Landau : O(+), Q(-) et ©(-).

P Cgm -
)
o) ‘
— L
f(n) = O(g(n)) f(n) = Q(g(n)) f(n) = ©(g(n))

... Une premiéere application sur quelques algorithmes de recherche

de maximum d'une liste.
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Rappel : temps de parcours d'algorithmes en notation

asymptotique

for i in range(n):
#TEMPS CONSTANT

for i in range(n):
for j in range(i+1, n):
#TEMPS CONSTANT

for i in range(n):
for j in range(i+1, n):
for k in range(j+1, n):
#TEMPS CONSTANT
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But de la lecon

Aujourd’hui on...

Aujourd'hui, on verra quelques algorithmes fameux :

» Deux algorithmes de recherche

» Deux algorithmes de tri
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Recherche dans une liste

Etant donnés une liste L quelconque de nombres et un nombre
x , trouver x dans L.

» Retourner un indice i tel que L[i] = x si x apparait dans
L , sinon retourner None .

» Sans utiliser 'instruction if x in L, dont on ne connait pas
le temps de parcours !

def recherche(L, x):
Entree: nombre x, liste L de nombres
Sortie: i t.qg. L[iJ=x si un tel i existe
None sinon

’

n = len(L)

for i in range(n):
if L[i] == x:
return i
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Recherche dans une liste - temps de parcours

Que vaut le temps de parcours de cet algorithme ?

def recherche(L, x):
n = len(L)
for i in range(n):
if L[i] == x:
return i

Il existe deux cas extrémes :

1. Si x est en téte de liste, T(n) ~ ©(1) (temps constant)
2. Si x est en fin de liste ou n'apparait pas dans la liste,

T(n) ~ ©(n)

Rappel : le temps de parcours est défini dans le pire des cas,
c'est-a-dire pour la pire instance imaginable. Le temps de parcours
de cet algorithme est donc ©(n) (linéaire en n).
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Recherche dans une liste triée

Question : Peut-on améliorer cet algorithme ?

» Pour une instance la plus générale possible, non.
Il faut parcourir toute la liste pour &tre siir qu'un élément en
fasse partie ou non.

» Et si la liste était triée?

Exemple : recherche de I'élément 17 dans la liste de 23 éléments.

-7,-3,-3,-1,0,0,1,2,5,6,8,9,9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
-7,-3,-3,-1,0,0,1,2,5,6,8,9,9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
-7,-3,-3,-1,0,0,1,2,5,6,8,9,9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
-7,-3,-3,-1,0,0,1,2,5,6,8,9,9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

Trouvé a I'index 14 de la liste en 3 itérations !

. Un autre exemple
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Recherche dans une liste triée

Exemple : recherche de I'élément 31 dans la liste de 23 éléments.

-7,-3,-3,-1,0,0,1,2,5,6,8,9,9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
-7,-3,-3,-1,0,0,1,2,5,6,8,9,9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
-7,-3,-3,-1,0,0,1,2,5,6,8,09,09, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
-7,-3,-3,-1,0,0,1,2,5,6,8,9,9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
-7,-3,-3,-1,0,0,1,2,5,6,8,9,09, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
-7,-3,-3,-1,0,0,1,2,5,6, 8,9, 9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51
-7,-3,-3,-1,0,0,1,2,5,6,8,9,9, 13, 17, 18, 24, 26, 27, 32, 38, 47, 51

Pas trouvé en 5 itérations !
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Recherche par di

Cet exemple présente un type d’algorithme par dichotomie, auquel
nous serons de nouveau confrontés dans la suite de ce cours. Il
fonctionne de la maniere suivante :

» Rechercher si une propriété est vérifiée dans un certain
ensemble.
» Sioui:
» Diviser cet ensemble par deux, et contréler dans quel
sous-espace la propriété est vérifiée
P Répéter jusqu’a trouver le sous-espace le plus petit dans lequel
celle-ci est vérifiée.
» Si non, conclure.

Un tel algorithme peut &tre implémenté de maniére itérative.
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Recherche binaire (recherche par dichotomie)

def recherche_binaire(L, x):
Entree: nombre x, liste L de nombres triee
Sortie: i t.q. L[il=x s’il existe, None sinon

’ 9y

n = len(L)
bas = @
haut = n-1

while haut >= bas:
milieu = (bas + haut)//2
if Llmilieul == x:
return milieu
elif L[milieu] > x:
haut = milieu - 1
else:
bas = milieu + 1
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Recherche binaire : temps de parcours

Calculons le temps de parcours de cet algorithme.

» Chaque itération de la boucle while prend un temps
constant.

» On compte le nombre d'opérations effectuées.
Pour une entrée de taille n, quel est le nombre d'itérations de la
boucle while ?

> La taille de la liste qu'on considére est a peu prés coupée en
deux a chaque itération.

» Lorsqu'on arrive a une liste de taille 1 (ou avant si I'élément
est trouvé), 'algorithme s'arréte aprés cette itération.
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Décomposition en puissances de 2

Question : Combien de fois faut-il diviser un entier n par 2
(division entiére) pour arriver jusqu'a 17

Output :
def decomposition(N): decomposition(1)=0
co = 0 decomposition(3)=1
x = N/2 decomposition(4)=2
while x >= 1: decomposition(8)=3
co +=1 decomposition(13)=3
X /= 2 decomposition(16)=4
return co decomposition(25)=4
decomposition(32)=5

» Cet algorithme continue de diviser un nombre n par deux tant
que le résultat est supérieur ou égal a 1

» Autrement dit, il permet d’obtenir k tel que 2k < n < 2k+1,
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Introduction a la fonction log

Soit n un entier strictement plus grand que 1. On suppose d'abord
que n est une puissance de 2, i.e., il existe k in N tel que n = 2.
» Par définition, k est le logarithme en base 2 de n. On le
dénote par k = log,(n). Donc par définition, n = 2'°82(")
» log,(n) est le nombre de fois qu'il faut diviser n par 2 pour
arriver jusqu'a 1.

n | Toga(n)
1 0
2 1
4 2
8 3
16 4

» Si n n'est pas une puissance de 2, alors k n'est pas un entier.
Par exemple, log, 10 = 3.32, 2332 — 10.
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Comportement de la fonction log a I'infini

> lim,_o0[logs(n)] = 400

» log,(n) croit vers l'infini quand n tend vers 'infini, mais

beaucoup plus lentement que n :

. logy(n
jim 082(7) _ ¢
n—o0 n
» En particulier, log,(n) = O(n).
50
4
30
20 — Ir::g_Z(n)
10
0
0 10 20 Bb 40 50
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Comportement de la fonction log a I'infini

Pour des puissances rationnelles p < q,
[loga(n)]” = O([loga(n)]?).

> log,(n) = O([logy(n)]?)

= log_2(n)
(log_2(n))~2
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Comportement de la fonction log a I'infini

Pour toute puissance p, et pour toute puissance strictement
positive g,

} log,(n)|P

o loga(m)l?

n—o0 n9

En particulier [logy(n)]P = O(n9). Par exemple,
> [logy(n)]* = O(n)
> [logy(n)]'® = O(n)
> [logy(n)]** = O(V/n)
La fonction log,(n) et ses puissances ont une croissance

logarithmique, qui est dominée par la croissance polynomiale
des puissances de n.

. s limpoo =0, on dira que f est o(g) ("f est petit o de g").
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Comportement de la fonction log a I'infini
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Recherche binaire - temps de parcours

La pire instance possible est une liste triée qui ne possede pas
I'élément cherché, ou pour laquelle celui-ci est trouvé lorsqu’on
arrive a une sous-liste de taille 1.

while haut >= bas:
milieu = (bas + haut)//2
if L[milieul] == x:
return milieu
elif L[milieul] > x:
haut = milieu - 1
else:
bas = milieu + 1

» Si la tranche de liste considérée ( L[bas:haut+1] ) a une itération
donnée est de taille ¢, alors la tranche de liste considérée a la
prochaine itération est de taille ~ ¢/2.

» Dans ce cas, la boucle while termine aprés ©(log,(n)) itérations.

Conclusion : L'algorithme de recherche binaire a donc temps de
parcours ©(log,(n)) dans le pire des cas.
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Comparaisons des deux algorithmes de recherche

La recherche simple a un temps de parcours linéaire
[T1(n) ~ ©(n)] alors que I'algorithme de recherche binaire a un

temps de parcours logarithmique [T2(n) ~ O(log,(n)].
» Etant donnée une liste non triée, comment la trier pour
pouvoir la donner en entrée a recherche_binaire 7

» Quel est le colit de trier une liste ? A partir de combien
d'appels a recherche_binaire sur une liste est-ce que cela
vaut la peine de trier la liste auparavant?
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Algorithmes de tri

Il existe une multitudes d'algorithmes différents pour trier une liste
ou un dictionnaire. Dans ce cours, nous allons nous concentrer sur
les deux premiers.

P tri par sélection
tri par insertion
tri a bulles

tri par fusion

tri rapide

vVvYyyvyy

On peut trier des objets selon beaucoup de criteres différents. Ici,
nous les trierons dans |'ordre croissant.

Luc Testa ICS - Cours 9 30.04.2025 20 /33



Tri par sélection

Idée : dans une liste triée, le premier élément est le plus petit, le
deuxiéme est le 2° plus petit, etc.

» On recherche le plus petit élément de la liste
qu'on place en premiére position.

» Puis on recherche le deuxieme plus petit élément
(le plus petit de la sous-liste restante) qu'on
place en deuxiéme position

» Ainsi de suite jusqu'a avoir parcouru toute la
liste.

= On fait donc grandir une sous-liste triée, en insérant a chaque
fois le minimum des éléments restants 3 la fin de cette sous-liste. !

1. Exemple interactif : https://visualgo.net/bn/sorting
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Tri par sélection

L'implémentation de cet algorithme en Python est la suivante.

def tri_par_selection(L):

)

Entree: liste L de nombres

Trie L

n = len(L)

for i in range(n):
m = L[i]
m_index = i

for j in range(i+1,n):
if L[] < m:
m = L[j]l
m_index = j
LLil, L[m_index] = L[m_index], L[i]
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Tri par sélection : temps de parcours

Que vaut son temps de parcours?

B
[3]5]

» On commence par comparer le 1°
élément au n — 1 éléments restants

!
H

» Puis on compare le 2° élément aux
n — 2 éléments restants

> ..

= E
(95
-
]

o [
=] [=]

» Finalement, on compare le (n — 1)¢ au
dernier.

Y a-t-il une distinction entre le pire des cas, pour |'instance la plus
défavorable, et d'autres cas?

» Non, il y a exactement (n—1)+(n—2)+ ...+ 1= @
opérations qui prennent un temps constant, donc
Tea(n) = ©(n?).
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Tri par insertion

Idée : trier une liste comme on trie une main a un jeu de cartes.

» On sélectionne le i® élément, et on le
compare avec |'élément i — 1.
— S’il est plus petit, on les échange puis le v
compare avec |'élément / — 2, puis i — 3,

jusqu’a le comparer aux i — 1 élément v

précédents (triés) si besoin.
— Sinon, il est a sa bonne place. v

» Par échanges successifs, on le met a la place
J <itelle que L[j-1]1 < L[j] < LLj+1].

= On fait grandir une sous-liste triée, en insérant un élément a la
fois a la bonne place dans cette sous-liste 2.

2. https://www.hackerearth.com/practice/algorithms/sorting/insertion-sort/visualize/
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Tri par insertion

Voici une implémentation de |'algorithme par insertion.

def tri_par_insertion(L):
Entree: liste L de nombres
Trie L
n = len(L)
for i in range(n):
j=i
while j > @ and L[j] < L[j-11:
LCjl, LCj-11 = LLj-11, LLj]
3 ==
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Tri par insertion : temps de parcours

Que vaut son temps de parcours?

Bl1is]2]4]
s

> A la /® itération, on compare le /®
v élément (bleu) avec les (i — 1)
éléments précédents, au plus.

v » Dans ce cas, les instructions dans la

boucle while s'exécutent au plus

v
1]23]5 4 1424+ (n—1)= =—— fois.
[1[2]3]5]4] (n-1= "1
2[3]4]5]

Le temps de parcours de I'algorithme de tri par insertion vaut donc
Tis(n) ~ ©(n?).

Luc Testa ICS - Cours 9 30.04.2025 26 / 33



Tri par insertion : temps de parcours

Y a-t-il une distinction entre le pire des cas, pour l'instance la plus
défavorable, et d'autres cas?

def tri_par_insertion(L):

n = len(L)
for i in range(n):
j=i

while j > @ and L[j] < L[j-11:
LCj1, LLj-1] LCj-11, LLj]
j =1

» Le meilleur des cas correspond a une liste déja triée. On ne
rentre pas dans la boucle while, et ne parcourt donc qu'une
fois tous les éléments.

» Le pire des cas correspond a une liste triée a I'envers. On

~1) .. .
rentre alors w fois dans la boucle while .
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Comparaison des algorithmes de tri

Ces deux algorithmes ne sont pas optimaux pour des instances de
grande taille car ©(n?). Certains algorithmes non étudiés dans ce
cours ont une complexité moins élevée :

» Tri par fusion : ©(nlog, n)
» Tri rapide : ©(n?)

Question : Comment choisir quel algorithme utiliser ?
... ¢a dépend.
» de la disposition initiale de I'instance d'entrée,
P et nous n'avons abordé que le critere du temps de parcours!

La méthode sort() de Python utilise un mélange du tri par
insertion et du tri par fusion. Il a aussi une complexité ©(nlog, n).
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Bonus : complexité exponentielle

Une grandeur trés répandue en cryptographie est la suite de
Fibonacci.

Pour n € N, le neme nombre de

Fibonacci est défini comme \
0, n=20

fn - ].7 n —= ].
fn—l + fn—2a n= 2

def fib(n):
if n == 0:
return @
elif n == 1:
return 1
return fib(n-1) + fib(n-2)
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Bonus : complexité exponentielle

Quelle serait la complexité de cet algorithme?

def fib(n): fib(n) appelle fib(n-1) et
if == 0: . ~
’ nretum 0 fib(n-2) , qui elles-mémes
elif n == 1: appellent fib(n-2) et
return 1
return fib(n-1) + fib(n-2) fib(n-3) , etc...
com Le nombre d'opérations dans
e e fib(n+1) vaut (environ) le
y / >\, doublede fib(n).
£1b(3) £1b(2) £1b £1b(1
VAN /. VAN Le temps de parcours de cet
@ O @O e o wo algorithme suit une loi
e o exponentielle : T(n) ~a", a>1
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Bonus : complexité exponentielle
Une telle situation est a éviter absolument! Ici, T = 434 s pour

Calcul du N*® terme de la suite de Fibonacci
x
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Bonus : complexité exponentielle

Une multitude de situations physiques et sociales ont en réalité une
croissance exponentielle. On peut citer3 :

Global primary energy consumplion by source

» La croissance d'une PP—

pOpU|ati0n 140,000 TWh

120,000 TWh

» La propagation d'une so0ga0Twn

maladie (covid) S

» L'utilisation de fooonTn
ressources naturelles Jp—

1800 1850 1900 1950 2022

Mathématiquement, f(n) =fo- (1 +r)"

3. population,ressources
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https://populationmatters.org/the-facts-resources-consumption/

Take Home Message

En faisant I'hypothese que I'instance est triée, |'algorithme de
recherche binaire [O(log, n)] est plus efficace que I'algorithme
de force brute [O(n)].

Comment trier une liste ?

» Tri par sélection : On insére le bon élément a la fin de
la sous-liste triée.

» Tri par insertion : On insére chaque élément a la bonne
place dans la sous-liste triée.

Ces deux algorithmes ont une complexité temporelle O(n?)
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