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La fois passée, on a vu..

Le module NumPy qui :

▶ permet d’effectuer des opérations mathématiques et
statistiques vectorisées sur un nouveau type d’objets, les
ndarray

Le module Matplotlib qui :

▶ permet la représentation graphique de données ou de fonctions

▶ le chargement ou la création d’images

Ces deux librairies s’utilisent souvent ensemble et sont
extrêmement répandues dans le monde scientifique.
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But de la leçon

Aujourd’hui on...

Aujourd’hui, on parlera science de l’algorithmique :

▶ Comment évaluer les performances d’un
programme/algorithme ?

▶ La notation de Landau

Il s’agit de la mise en pratique de nos connaissances en pro-
grammation !
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Qu’est-ce qu’un algorithme ?

Un algorithme est une procédure pour résoudre un problème.
▶ Il prend en entrée (input) une instance de ce problème
▶ et produit la sortie (output) correspondant à cette instance.

On peut assimiler un algorithme à une recette de cuisine 1.

1. comme celle du pudding à l’arsenic (remix)
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Qu’est-ce qu’un algorithme ?

Par exemple, on peut écrire un algorithme qui calcule le minimum
d’une liste de nombres.

▶ Entrée : une liste de nombre réels

▶ Sortie : le minimum des nombres de la liste
▶ Algorithme (en français, ou pseudo-code) :

1. Définir my min comme le premier élément de la liste
2. Parcourir chaque élément de la liste. S’il est plus petit que

my min , mettre my min = cet élément

3. Retourner my min . Celui-ci correspond donc au plus petit
élément de la liste.
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Qu’est-ce qu’un algorithme ?

Une instance possible de ce problème est la liste [10, -3, 7, 2] :

[10, -3, 7, 2] =⇒ calculate min =⇒ -3

Une autre instance serait la liste [8, 33, 5, -20, 0] :

[8, 33, 5, -20, 0] =⇒ calculate min =⇒ -20

Ne sont pas des instances valides de ce problème :

▶ [’a’, 2, ’c’]

▶ [[0, 1], [1, 2]]
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Algorithme vs. implémentation

Remarquons qu’à ce stade nous n’avons pas présenté
d’implémentation d’un algorithme.

▶ Un algorithme est une procédure générale pour résoudre un
problème.

▶ Un programme est une implémentation spécifique d’un
algorithme dans un langage de programmation donné, par
exemple Python, et sur un système donné.

▶ A un même algorithme correspondent donc plusieurs
implémentations 2.

▶ Les algorithmes vus dans ce cours seront donnés sous forme
de programmes Python.

2. Voir http://www.rosettacode.org pour des implémentations de divers
algorithmes en plus de 800 langages de programmation.
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Problème vs. algorithme

A un problème peuvent correspondre plusieurs algorithmes qui le
résolvent

▶ Comment caractériser ”le meilleur” ?

Pour certains problèmes on ne sait pas s’il existe un algorithme qui
les résoud 3 ; pour certains problèmes on sait qu’il n’en existe
aucun 4.

Pour certains problèmes, on ne connâıt encore aucun algorithme
efficace qui les résoud.

▶ Que veut dire ”efficace” ?

3. https://en.wikipedia.org/wiki/Collatz conjecture
4. https://en.wikipedia.org/wiki/Halting problem
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Critères d’évaluation d’un algorithme

Il y a plusieurs manières de déterminer l’efficacité d’un algorithme.

▶ Correctitude. L’algorithme doit calculer ce qu’il est censé
calculer ! Pour cela, on utilise un invariant de boucle (non
étudié dans le cadre de ce cours).

▶ Performance. La performance d’un algorithme s’évalue selon
différents critères :
▶ Le temps de parcours
▶ Espace requis en mémoire
▶ Nombre d’appels à la mémoire de disque
▶ . . .

Dans la suite, nous nous concentrerons sur l’étude du temps de
parcours.
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Analyse du temps de parcours

On s’intéresse au temps de parcours d’un algorithme en fonction
de la taille de l’entrée
▶ Si l’entrée est un objet possédant n éléments de taille fixe, on dira

que l’entrée est de taille n

On suppose en général que les opérations suivantes prennent un
temps constant :
▶ Opérations arithmétiques : addition, soustraction, multiplication,

division, reste entier,...

▶ Manipulation de données : créer une variable, affecter une valeur à
une variable, lire et comparer les valeurs de deux variable,...

▶ Opérations de contrôle : instructions if ,...

▶ Appel d’une fonction

▶ Accéder à un élément d’une liste L[i] étant donné l’index i

▶ Invoquer la fonction len() , et les méthodes append() et pop()

(sans arguments !) sur une liste.
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Exemple : rechercher le maximum d’une liste

Reprenons l’exemple précédent et comptons le nombre d’opérations
effectuées.

L’appel à la fonction max liste() prend un temps T (n)

T (n) = c0 + c1 + c2 + c3 + (c4 + c5 + c6)(n − 1) = c + c ′n.

La fonction max liste() a un temps de parcours linéaire en n.
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Mesurer le temps de parcours

La fonction time() du module time de Python retourne le temps
au moment de l’appel en secondes, calculé depuis une date de
référence qui dépend du système (souvent le 1er janvier 1970).

▶ On l’utilisera pour mesurer le temps pris par un appel à la
fonction max liste .

La fonction randrange(start, stop, step) du module random

retourne un nombre aléatoire entre start et stop (on utilisera

randrange(N) pour un grand entier N ).

▶ On l’utilisera pour générer une liste L de grande taille qu’on
passera en argument à max liste .

On peut finalement utiliser la librairie Matplotlib pour représenter
le temps pris par l’algorithme en fonction de la taille de l’instance.
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Mesurer le temps de parcours

import numpy as np
from time import time

def max_liste(L):
n = len(L)
max_L = L[0]
for i in range(1, n):

if L[i] > max_L:
max_L = L[i]

return max_L

N = 1000
a = np.random.rand(N)

t0 = time()
m = max_liste(a)
t1 = time()
print(f"L’appel a pris {t1-t0} s")
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Mesurer le temps de parcours

Exercice : testez le temps de parcours de l’algorithme max liste

en changeant la taille de la liste L .

▶ Ci-dessous : les temps de parcours empiriques observés pour
l’appel de max liste() en fonction de la taille de la liste
fournie en entrée.
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Exemple : somme maximale

Etant donnée une liste de n nombres (n ≥ 2), donner un
algorithme qui calcule la plus grande somme de deux éléments
d’indices distincts de la liste.

Par exemple,

▶ Entrée : L = [945, 815, 1132, 731, 981, 673]

▶ Sortie : 1132 + 981 = 2113
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Exemple : somme maximale

La première méthode serait de parcourir toutes les paires
d’éléments (i,j) possibles.

def max_somme(L):
’’’
Entree: liste L de nombres de taille n >= 2
Sortie: Somme maximale de deux elements de L
’’’
n = len(L)
max_s = L[0] + L[1]

for i in range(n):
for j in range(i+1, n):

if L[i] + L[j] > max_s:
max_s = L[i] + L[j]

return max_s

On appelle ce type d’algorithme qui essaie toutes les combinaisons
possibles un algorithme de force brute.

Luc Testa ICS - Cours 8 16.04.2025 16 / 42



Temps de parcours

Question : Combien de paires (i,j) distinctes existe-t-il ?

for i in range(n):
for j in range(i+1, n):

if L[i] + L[j] > max_s:
max_s = L[i] + L[j]

▶ La boucle extérieure est exécutée n fois ( i = 0, . . ., n-1 ).
▶ A la ième itération de la boucle extérieure, la boucle

intérieure est exécutée n − i − 1 fois :
▶ i = 0 : j parcourt range(1, n) : n − 1 itérations

▶ i = 1 : j parcourt range(2, n) : n − 2 itérations
▶ · · ·
▶ i = n-1 : j parcourt range(n, n) : 0 itérations

▶ Temps de parcours des boucles imbriquées :

c · [(n − 1) + (n − 2) + · · ·+ 1 + 0] = c · n(n − 1)

2
.

▶ Temps de parcours de l’algorithme : T ′(n) = c2n
2 + c1n + c0.
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Temps de parcours
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Somme maximale : un autre algorithme

Existe-t-il un autre algorithme plus performant pour résoudre le
même problème ?

▶ On peut chercher les deux plus grands éléments de la liste L .
Leur somme donne le résultat souhaité.

def max_somme_lineaire(L):
’’’
Entree: liste L de nombres de taille n >= 2
Sortie: Somme maximale de deux elements de L
’’’
n = len(L)
max1 = max_liste(L)
L.remove(max1)
max2 = max_liste(L)
return max1 + max2

Temps de parcours : T ′′(n) = c3n + c4
si on admet 5 que L.remove() a temps de parcours linéaire en n.

5. Sinon, modifiez max liste pour qu’elle rende les deux plus grands éléments de la
liste d’un coup, et vérifiez que son temps de parcours est toujours linéaire en n.
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Temps de parcours
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Somme maximale : le meilleur algorithme ?

Quel est l’algorithme le plus performant, max somme ou
max somme lineaire ?

▶ Exécutez le code ci-dessous pour différentes tailles de liste L .

import numpy as np
from t ime import t ime

N = 1000
a = np . random . rand (N)

t0 = t ime ( )
max somme l i n ea i r e (L )
t1 = t ime ( )
p r i n t ( ” l ’ appe l a p r i s ” , t1 - t0 , ” s econde s ” )

t0 = t ime ( )
max somme(L)
t1 = t ime ( )
p r i n t ( ” l ’ appe l a p r i s ” , t1 - t0 , ” s econde s ” )
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Temps de parcours
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Notation O(·)

Le calcul du temps de parcours avec le module time est
problématique : le temps de parcours varie d’un langage de
programmation à l’autre, d’une machine à l’autre, d’un moment à
l’autre sur la même machine...

▶ Pour évaluer la performance d’un algorithme indépendamment
des détails d’implémentation, on utilisera la notation de
Landau O(·) : c’est un outil mathématique qui permet de
caractériser la vitesse asymptotique de croissance d’une
fonction.

▶ On s’intéressera au comportement asymptotique d’un
algorithme, i.e., à son temps de parcours en fonction de la
taille n de l’entrée lorsque n tend vers l’infini.
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Notation O(·)

Définition (Grand O)

Soient n ∈ N, et f , g des fonctions positives de n. On dira que “f
est O(g)” ou “f = O(g)” s’il existe des réels C > 0, N > 0 tels
que

∀n > N f (n) ≤ C · g(n).

Reformulation : f est O(g) si lim supn→∞
f (n)

g(n)
≤ C .
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Exemples

f = O(g) ⇐⇒ ∃C ,N > 0 t.q. ∀n > N f (n) ≤ C · g(n).

▶ 1000n = O(n2) :
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Exemples

f = O(g) ⇐⇒ ∃C ,N > 0 t.q. ∀n > N f (n) ≤ C · g(n).

▶ 1000n = O(n2) :
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Exemples

f = O(g) ⇐⇒ ∃C ,N > 0 t.q. ∀n > N f (n) ≤ C · g(n).

▶ 1000n = O(n2) :
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Puissances rationnelles

f = O(g) ⇐⇒ ∃C ,N > 0 t.q. ∀n > N f (n) ≤ C · g(n).

En général, pour des puissances rationnelles p ≤ q,

np = O(nq)

▶ n = O(n), n = O(n2)

▶ n2 = O(n3)

▶
√
n = O(n)

▶ ...

Si p < q, alors np = O(nq) mais nq n’est pas O(np).

La relation np = O(cnp) est valide pour toute constante c > 0.
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Exemples

n = O(100n) = O(n2)
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Exemples

n = O(n2) = O(n3)
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Exemples

√
n = O(n)
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Polynômes

f = O(g) ⇐⇒ ∃C ,N > 0 t.q. ∀n > N f (n) ≤ C · g(n).

Pour p ≤ q rationnels ou entiers, f , g polynômes de degré p, q
respectivement,

f (n) = O(g(n))

▶ 2n + 100 = O(n2)

▶ 2n + 100 = O(n)

▶ n + 106 = O(n)

▶ n2 + 1000n + 106 = O(n3)

▶ n2 + 1000n + 106 = O(n2)

▶ n +
√
n = O(n)

▶ n
√
n + 1000n = O(n1.6)

▶ · · ·
Si p < q, alors f = O(g) mais g n’est pas O(f ).
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Exemples

n2 + 2n + 100 = O(n2)

Luc Testa ICS - Cours 8 16.04.2025 33 / 42



Notation Ω(·)

Définition (Grand Omega)

Soit n ∈ N, et f , g des fonctions positives de n.
Si g = O(f ), on dira que f = Ω(g).

Une définition équivalente :

f = Ω(g) ⇐⇒ ∃C ,N > 0 t.q. ∀n > N f (n) ≥ C · g(n).
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Notation Θ(·)

Définition (Grand Theta)

Soit n ∈ N, et f , g des fonctions positives de n. Si f = O(g) et
g = O(f ), on dira que f = Θ(g) (et g = Θ(f )).

Une définition équivalente :

f = Θ(g) ⇐⇒ ∃C1,C2,N > 0 t.q. ∀n > N

C1 · g(n) ≤ f (n) ≤ C2 · g(n).
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Exemples

▶ Pour tous polynômes f et g de même degré,

f (n) = Θ(g(n))

▶ Pour toutes sommes f et g de puissances rationnelles avec le
même terme dominant,

f (n) = Θ(g(n))

▶ 10n2 + 7n + 30 = Θ(n2)
▶ 1000n2 + 42 = Θ(n2)
▶ 100n

√
n = Θ(n

√
n + n) = Θ(n

√
n)

▶ · · ·
La notation Θ(·) cache les constantes et les termes d’ordre
inférieur, et donne le comportement asymptotique d’une fonction
de n (lorsque n tend vers l’infini).
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Exemples

n2 = Θ(10n2 + 7n + 30) = Θ(10n2) = Θ(11n2) = Θ(n2) etc...

Luc Testa ICS - Cours 8 16.04.2025 37 / 42



Temps de parcours d’algorithmes en notation asymptotique

On aimerait exprimer le temps de parcours d’un algorithme comme
une fonction T (n) de la taille n de l’entrée, puis utiliser la notation
de Landau pour estimer la vitesse de croissance de T (n).

▶ Problème : pour la taille n de l’entrée fixée, le temps de
parcours d’un algorithme peut également dépendre de
l’instance du problème qui lui est fournie en entrée !
▶ Par exemple, problème du tri (voir semaine prochaine)
▶ Pour les trois algorithmes de ce cours ( max liste ,

max somme , max somme lineaire ), le temps de parcours est
indépendant de l’instance du problème fournie en entrée.

En général, pour un algorithme donné, on définit T (n) comme le
temps de parcours de cet algorithme sur une instance de taille n au
pire des cas.

Borner le temps de parcours d’un algorithme au pire des cas offre
une garantie sur le temps de parcours.
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Temps de parcours d’algorithmes en notation asymptotique

Soit T (n) le temps de parcours d’un algorithme pour une entrée de
taille n au pire des cas.

▶ Si on donne une fonction f1(n) telle que T (n) = O(f1(n)), f1
est une borne supérieure sur le temps de parcours de
l’algorithme.

▶ Si on donne une fonction f2(n) telle que T (n) = Ω(f2(n)), f2
est une borne inférieure sur le temps de parcours de
l’algorithme.

▶ Si on donne une fonction f (n) telle que T (n) = Θ(f (n)), f
est à la fois une borne supérieure et une borne inférieure sur le
temps de parcours de l’algorithme : elle décrit le
comportement asymptotique du temps de parcours.
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Comportement asymptotique de max liste

Pour une entrée de taille n, max liste a temps de parcours (au
pire des cas) T (n) = c + c ′n donc max liste a un temps de
parcours qui est O(n) (linéaire en la taille de l’entrée).

Question : Peut-on mieux faire (asymptotiquement) ?

▶ Non ! Tout algorithme qui recherche le maximum d’une liste
de nombres doit au moins parcourir toute la liste, et donc une
borne inférieure triviale sur le temps de parcours d’un tel
algorithme est T ′(n) = Ω(n).

Un algorithme de recherche du maximum avec temps de parcours
Θ(n) est donc asymptotiquement optimal.
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Comparaison des algorithmes étudiés dans ce cours

Pour une entrée de taille n :
▶ max somme a temps de parcours (au pire des cas)

T ′(n) = c2n
2 + c1n + c0 = O(n2) :

c’est un temps de parcours quadratique en n.

▶ max somme lineaire a temps de parcours (au pire des cas)
T ′′(n) = c3n + c4 = O(n) :
c’est un temps de parcours linéaire en n.

max somme lineaire est donc un meilleur algorithme
(asymptotiquement) que max somme pour la résolution du
problème étudié : le temps de parcours de max somme lineaire est
dominé asymptotiquement par le temps de parcours de
max somme : T ′′(n) = O(T ′(n)).

Question : Peut-on mieux faire ?

▶ Non ! il faut parcourir toute la liste au moins une fois.
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Take Home Message

Un algorithme est une série d’étapes permettant de résoudre
un problème.

▶ Il existe plusieurs algorithmes pour résoudre un
problème donné, certains pouvant être plus efficaces
que d’autres.

▶ On définit l’efficacité au travers du temps de parcours
asymptotique de l’implémentation, en considérant la
pire instance possible de ce problème.

▶ On catégorise ce temps de parcours en utilisant la
notation de Landau T (n) = Θ(·)
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