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La fois passée, on a vu..

Le module NumPy qui :

P> permet d'effectuer des opérations mathématiques et
statistiques vectorisées sur un nouveau type d'objets, les
ndarray

Le module Matplotlib qui :
» permet la représentation graphique de données ou de fonctions

» le chargement ou la création d'images

Ces deux librairies s'utilisent souvent ensemble et sont
extrémement répandues dans le monde scientifique.
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But de la lecon

Aujourd’hui, on parlera science de I'algorithmique :

» Comment évaluer les performances d'un
programme/algorithme ?

» La notation de Landau

Il s’agit de la mise en pratique de nos connaissances en pro-
grammation !
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Qu'est-ce qu'un algorithme

Un algorithme est une procédure pour résoudre un probléme.
» |l prend en entrée (input) une instance de ce probleme
» et produit la sortie (output) correspondant a cette instance.

Entrée q Algorithme ‘ Sortie

On peut assimiler un algorithme a une recette de cuisine *.

Grand bol de strychnine
Morphine
Un bon verre de pétrole
Gouttes de ciglie recette
Bave de sangsue
Scorpion coupé tres fin
Poivre en grains

1. comme celle du pudding a I'arsenic (remix)
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https://www.youtube.com/watch?v=qOTQ9NJXAvE
https://www.youtube.com/watch?v=M1wF0aYumfE

Qu'est-ce qu'un algorithme?

Par exemple, on peut écrire un algorithme qui calcule le minimum
d’'une liste de nombres.

> Entrée : une liste de nombre réels
» Sortie : le minimum des nombres de la liste
» Algorithme (en francais, ou pseudo-code) :

1. Définir my_min comme le premier élément de la liste
2. Parcourir chaque élément de la liste. S'il est plus petit que
my_min , mettre my_min = cet élément

3. Retourner my_min . Celui-ci correspond donc au plus petit
élément de la liste.
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Qu'est-ce qu'un algorithme?

Une instance possible de ce probleme est la liste [10, -3, 7, 2]

(10, -3, 7, 21 = calculatemin | = -3

Une autre instance serait la liste [8, 33, 5, -20, 0]

[8, 33, 5, -20, @] = |calculate_min| => -20

Ne sont pas des instances valides de ce probleme :
> [,ay’ 2’ ,C’]
> [fe, 11, [1, 211
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Algorithme vs. implémentation

Remarquons qu’a ce stade nous n'avons pas présenté
d'implémentation d'un algorithme.
» Un algorithme est une procédure générale pour résoudre un
probleme.
» Un programme est une implémentation spécifique d'un
algorithme dans un langage de programmation donné, par
exemple Python, et sur un systeme donné.

> A un méme algorithme correspondent donc plusieurs

implémentations 2.

> Les algorithmes vus dans ce cours seront donnés sous forme
de programmes Python.

2. Voir http://www.rosettacode.org pour des implémentations de divers

algorithmes en plus de 800 langages de programmation.
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http://www.rosettacode.org

Probleme vs. algorithme

A un probleme peuvent correspondre plusieurs algorithmes qui le
résolvent

» Comment caractériser "le meilleur” ?

Pour certains problemes on ne sait pas s'il existe un algorithme qui
les résoud 3 ; pour certains problemes on sait qu'il n’en existe

aucun 4.

Pour certains problémes, on ne connaft encore aucun algorithme
efficace qui les résoud.

» Que veut dire "efficace” 7

3. https://en.wikipedia.org/wiki/Collatz_conjecture
4. https://en.wikipedia.org/wiki/Halting_problem
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https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Halting_problem

Criteres d'évaluation d'un algorithme

Il 'y a plusieurs manieres de déterminer I'efficacité d'un algorithme.

» Correctitude. L'algorithme doit calculer ce qu'il est censé
calculer! Pour cela, on utilise un invariant de boucle (non
étudié dans le cadre de ce cours).

» Performance. La performance d'un algorithme s’évalue selon
différents critéres :

» Le temps de parcours

» Espace requis en mémoire

» Nombre d'appels a la mémoire de disque

| S
Dans la suite, nous nous concentrerons sur |'étude du temps de
parcours.
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Analyse du temps de parcours

On s’intéresse au temps de parcours d'un algorithme en fonction
de la taille de I'entrée

» Si I'entrée est un objet possédant n éléments de taille fixe, on dira
que |'entrée est de taille n
On suppose en général que les opérations suivantes prennent un
temps constant :

» Opérations arithmétiques : addition, soustraction, multiplication,
division, reste entier,...

v

Manipulation de données : créer une variable, affecter une valeur a
une variable, lire et comparer les valeurs de deux variable,...

Opérations de contrdle : instructions if ,...
Appel d'une fonction

Accéder a un élément d'une liste L[i] étant donné l'index i

v vyYyy

Invoquer la fonction len() , et les méthodes append() et pop()
(sans arguments!) sur une liste.
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Exemple : rec r le maximum d’une liste

Reprenons I'exemple précédent et comptons le nombre d'opérations

effectuées.

def max_liste(L): Co

n = len(L) 1

max_L = L[0] Co

for i in range(1, n): Cy

if L[il > max_L: es (] n-A  erations
max_L = L[i] Ce
return max_L C3

L = [e, 3, 10, -7, 5]
max_liste(L)

L’appel a la fonction max_liste() prend un temps T(n)
TnN=cn+a+at+a+(a+tc+c) (n—1)=c+c'n

La fonction max_liste() a un temps de parcours linéaire en n.
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Mesurer le temps de parcours

La fonction time() du module time de Python retourne le temps
au moment de I'appel en secondes, calculé depuis une date de
référence qui dépend du systeme (souvent le ler janvier 1970).

» On l'utilisera pour mesurer le temps pris par un appel a la
fonction max_liste .

La fonction randrange(start, stop, step) du module random
retourne un nombre aléatoire entre start et stop (on utilisera
randrange(N) pour un grand entier N).

» On l'utilisera pour générer une liste L de grande taille qu'on
passera en argument a max_liste .

On peut finalement utiliser la librairie Matplotlib pour représenter
le temps pris par I'algorithme en fonction de la taille de I'instance.
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Mesurer le temps de parcours

import numpy as np
from time import time

def max_liste(L):
n = len(L)
max_L = L[0]
for i in range(1, n):
if L[i] > max_L:
max_L = L[i]
return max_L

N = 1000

a = np.random.rand(N)
to = time()

m = max_liste(a)

t1 = time ()

print(f"L’appel a pris {t1-t0} s")
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Mesurer le temps de parcours

Exercice : testez le temps de parcours de I'algorithme max_liste
en changeant la taille de la liste L .

» Ci-dessous : les temps de parcours empiriques observés pour

I'appel de max_liste() en fonction de la taille de la liste
fournie en entrée.

Temps de calcul [s]

0.0 0.2 04 0.6 0.8 Lo
Taille liste le6
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Exemple : somme maximale

Etant donnée une liste de n nombres (n > 2), donner un
algorithme qui calcule la plus grande somme de deux éléments

d’indices distincts de la liste.

Par exemple,
> Entrée : L = [945, 815, 1132, 731, 981, 673]

» Sortie : 1132 + 981 = 2113
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Exemple : somme maximale

La premiere méthode serait de parcourir toutes les paires
d'éléments (i,j) possibles.

def max_somme (L) :
Entree: liste L de nombres de taille n >= 2
Sortie: Somme maximale de deux elements de L

’ 9y

n = len(L)
max_s L[O] + LL1]

for i in range(n):
for j in range(i+1, n):
if LLil + LLj] > max_s:
max_s = L[i] + L[j]

return max_s

On appelle ce type d'algorithme qui essaie toutes les combinaisons
possibles un algorithme de force brute.
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Temps de parcours

Question : Combien de paires (i,j) distinctes existe-t-il ?

for i in range(n):
for j in range(i+1, n):
if LLi]l + LLj] > max_s:
max_s = L[i] + L[j]

» La boucle extérieure est exécutée n fois (i = @, ..., n-1).
> A la ieme itération de la boucle extérieure, la boucle
intérieure est exécutée n — i — 1 fois :
> i =0 : j parcourt range(l, n) : n—1 itérations
> i
> ...
» i =n-1: j parcourt range(n, n) : 0 itérations
» Temps de parcours des boucles imbriquées :

1 : j parcourt range(2, n) : n— 2 itérations

n(n—l).
2

» Temps de parcours de I'algorithme : T'(n) = con® + c1n + co.

c-[(n=1)+(mn-2)+---+14+0]=c-
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Temps de parcours

3.5 1 “A‘

3.0 ey

2.5 ‘J

2.0 A -

1.5 A

Temps de calcul [s]

1.0

0.5

0.0 1

T T T T T
o] 2000 4000 6000 8000 10000
Taille liste
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Somme maximale : un autre algorithme

Existe-t-il un autre algorithme plus performant pour résoudre le
méme probleme ?

» On peut chercher les deux plus grands éléments de la liste L .
Leur somme donne le résultat souhaité.

def max_somme_lineaire(L):
Entree: liste L de nombres de taille n >= 2
Sortie: Somme maximale de deux elements de L
n = len(L)
max1 = max_liste(L)
L.remove (max1)
max2 = max_liste(L)
return max1 + max2

Temps de parcours : T"(n) = csn+ ¢4
si on admet® que L.remove() a temps de parcours linéaire en n.

5. Sinon, modifiez max_liste pour qu’elle rende les deux plus grands éléments de la
liste d'un coup, et vérifiez que son temps de parcours est toujours linéaire en n.
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Temps de parcours
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Somme maximale : le meilleur algorithme ?

Quel est I'algorithme le plus performant, max_somme ou
max_somme_lineaire ?

P> Exécutez le code ci-dessous pour différentes tailles de liste L .

import numpy as np
from time import time

1000
np.random.rand (N)

a

t0 = time ()

max_somme_lineaire (L)

tl = time()

print ("1 appel a pris”, tl - t0, "secondes”)

t0 = time ()
max_somme (L)
tl = time()
print ("1 appel a pris”, tl - t0, "secondes”)
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Temps de parcours
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Le calcul du temps de parcours avec le module time est
problématique : le temps de parcours varie d'un langage de
programmation a l'autre, d’'une machine a I'autre, d'un moment a
I'autre sur la méme machine...

» Pour évaluer la performance d'un algorithme indépendamment
des détails d'implémentation, on utilisera la notation de
Landau O(-) : c'est un outil mathématique qui permet de
caractériser la vitesse asymptotique de croissance d’une
fonction.

» On s'intéressera au comportement asymptotique d'un
algorithme, i.e., a son temps de parcours en fonction de la
taille n de I'entrée lorsque n tend vers I'infini.
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Notation O(+)

Définition (Grand O)
Soient n € N, et f, g des fonctions positives de n. On dira que “f
est O(g)" ou “f = O(g)" s'il existe des réels C >0, N > 0 tels

que
Vn> N f(n) < C-g(n).

C%lv\')

Reformulation : f est O(g) si limsup,_,

Luc Testa ICS - Cours 8 16.04.2025 24 / 42



{ f=0(g) < 3C,N>0 tq. Vn> N f(n) < C-g(n). l

> 1000n = O(n?) :

1000n < @an pour tout n > 1.
C N

50000 11— 1000n

1000n*
40000

30000

20000

10000
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f=0(g) <= 3IC,N>0tqg. Vn>N f(n) <C-g(n). l

» 1000n = O(n?) :

1000n < 50n° pour tout n > 20.
N— N~
C N

120000 { — 1000n
50n*
100000
80000
60000

40000 /
20000 /

0 10 20 30 40 50

0
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f=0(g)«<=3IC,N>0tqg. Vn>N f(n) < C-g(n).

» 1000n = O(n?) :

1000n < 0.1n* pour tout n > 10000.

c ~
le7
- 1000n
30 0.1n*
25
20

15 /
10
0s /

0.0

0 2500 5000 7500 10000 12500 15000 17500
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Puissances rationnelles

f=0(g)«<=3IC,N>0tqg. Vn>N f(n) < C-g(n). ‘

En général, pour des puissances rationnelles p < g,

nP = O(n9)

» n=0O(n), n=0O(n?)
> n? = 0O(n%)
> /= O(n)
> ..
Si p < g, alors n? = O(n9) mais n? n'est pas O(nP).

La relation n? = O(cnP) est valide pour toute constante ¢ > 0.
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Exemples

n = O(100n) = O(n?)

1000000 { — o,
100n
gooooo { —— "2
600000
400000
200000
0
0 200 400 600 800 1000
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Exemples

n=0(n?) =0(n%)

25000

20000

15000

10000

Luc Testa

n~3

w4

ICS - Cours 8

16.04.2025
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Exemples

—— sqrt(n)

20

0 20 40 60 80 100
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Polyn6mes

’ f—O(g) « IC,N >0 t.q. Yn> N f(n) < C-g(n).

Pour p < g rationnels ou entiers, f, g polyn6mes de degré p, g
respectivement,

2n + 100 = O(n?)

2n+ 100 = O(n)

n+10% = O(n)

n? 4 1000n + 106 = O(n®)
n? 4+ 1000n + 10° = O(n?)
n++/n= O(n)

ny/n +1000n = O(nl-®)

> ...

vVvyVvyvyVvyYyvyy

Si p < g, alors f = O(g) mais g n'est pas O(f).
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Exemples

n? 4 2n + 100 = O(n?)

— n~2+2n+ 100
3001 15nn2
3000 {
2500 1
2000
1500 |
1000 1
500 ,
—‘_//
01 i
0 10 20 30 a0 i
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Notation Q(-)

Définition (Grand Omega)
Soit n € N, et f, g des fonctions positives de n.
Sig = O(f), on dira que f = Q(g).

Une définition équivalente :

f=Q(g) < 3IC,N >0 tq. VYn> N f(n)> C-g(n).

éLW)

Cs(“—)
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Notation O(-)

Définition (Grand Theta)
Soit n € N, et f, g des fonctions positives de n. Si f = O(g) et
g = O(f), on dira que f = O(g) (et g = ©(f)).

Une définition équivalente :

-

f:@(g) <— 4G, G,N >0 tq.Vn> N
G -g(n) < f(n) < G- g(n).

Co g

>

Jon)

g
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» Pour tous polyndmes f et g de méme degré,

» Pour toutes sommes f et g de puissances rationnelles avec le
méme terme dominant,

> 10n% +7n+ 30 = ©(n?)
> 10001 4 42 = ©(n?)

» 100ny/n = ©(ny/n+ n) = ©(ny/n)

> ...

La notation ©(-) cache les constantes et les termes d'ordre
inférieur, et donne le comportement asymptotique d'une fonction
de n (lorsque n tend vers I'infini).

Luc Testa ICS - Cours 8 16.04.2025 36 / 42



n? = ©(10n% + 7n + 30) = ©(10n%) = ©(11n?) = O(n?) etc...

- n"2
25000 10n"~2 + 7n + 30
—— 1ln"2
20000
15000
10000
5000
0
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Temps de parcours d'algorithmes en notation asymptotique

On aimerait exprimer le temps de parcours d'un algorithme comme
une fonction T(n) de la taille n de I'entrée, puis utiliser la notation
de Landau pour estimer la vitesse de croissance de T(n).

» Probleme : pour la taille n de I'entrée fixée, le temps de
parcours d'un algorithme peut également dépendre de
I'instance du probleme qui lui est fournie en entrée!

> Par exemple, probléeme du tri (voir semaine prochaine)
> Pour les trois algorithmes de ce cours ( max_liste ,

max_somme , max_somme_lineaire ), le temps de parcours est
indépendant de I'instance du probléme fournie en entrée.

En général, pour un algorithme donné, on définit T(n) comme le
temps de parcours de cet algorithme sur une instance de taille n au
pire des cas.

Borner le temps de parcours d'un algorithme au pire des cas offre
une garantie sur le temps de parcours.
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Temps de parcours d'algorithmes en notation asymptotique

Soit T(n) le temps de parcours d'un algorithme pour une entrée de
taille n au pire des cas.

» Si on donne une fonction fi(n) telle que T(n) = O(f(n)), A
est une borne supérieure sur le temps de parcours de
I'algorithme.

» Si on donne une fonction f(n) telle que T(n) = Q(f(n)), f
est une borne inférieure sur le temps de parcours de
I"algorithme.

» Si on donne une fonction f(n) telle que T(n) = ©(f(n)), f
est a la fois une borne supérieure et une borne inférieure sur le
temps de parcours de I'algorithme : elle décrit le
comportement asymptotique du temps de parcours.
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Comportement asymptotique de max_liste

Pour une entrée de taille n, max_liste a temps de parcours (au
pire des cas) T(n) = ¢ + ¢’n donc max_liste a un temps de
parcours qui est O(n) (linéaire en la taille de I'entrée).

Question : Peut-on mieux faire (asymptotiquement) ?

» Non! Tout algorithme qui recherche le maximum d'une liste
de nombres doit au moins parcourir toute la liste, et donc une
borne inférieure triviale sur le temps de parcours d'un tel
algorithme est T'(n) = Q(n).

Un algorithme de recherche du maximum avec temps de parcours
©(n) est donc asymptotiquement optimal.
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Comparaison des algorithmes étudiés dans ce cours

Pour une entrée de taille n :
> max_somme a temps de parcours (au pire des cas)
T'(n) = @n® + an+c = O(n?) :
c'est un temps de parcours quadratique en n.
> max_somme_lineaire a temps de parcours (au pire des cas)
T"(n) =cn+ca = O(n) :
c'est un temps de parcours linéaire en n.

max_somme_lineaire est donc un meilleur algorithme
(asymptotiquement) que max_somme pour la résolution du
probleme étudié : le temps de parcours de max_somme_lineaire est
dominé asymptotiquement par le temps de parcours de
max_somme : T”(n) = O(T'(n)).
Question : Peut-on mieux faire?

» Non! il faut parcourir toute la liste au moins une fois.
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Take Home Message

Un algorithme est une série d'étapes permettant de résoudre
un probleme.

» || existe plusieurs algorithmes pour résoudre un
probleme donné, certains pouvant étre plus efficaces
que d'autres.

» On définit |'efficacité au travers du temps de parcours
asymptotique de I'implémentation, en considérant la
pire instance possible de ce probleme.

» On catégorise ce temps de parcours en utilisant la
notation de Landau T(n) = O(-)
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