
Informatique et Calcul Scientifique

Tuples, dictionnaires

26.03.2025

Luc Testa ICS - Cours 5 26.03.2025 1 / 41

La fois passée, on a vu...

▶ Notre première structure de données : les listes

▶ Les opérations sur les listes : ajouter/enlever des éléments,
lire/modifier des éléments, calculs sur les listes...

▶ Les compréhensions de liste

▶ la notion de copie superficielle et les conséquences de la
mutabilité

Luc Testa ICS - Cours 5 26.03.2025 2 / 41

But de la leçon

Aujourd’hui on...

...verra deux nouvelles structures de données :

▶ Les tuples

▶ Les dictionnaires.

et leur lien avec la définition de fonctions.

Luc Testa ICS - Cours 5 26.03.2025 3 / 41

Tuples

Un tuple, comme une liste, permet de regrouper et d’indexer des
données.

A la différence d’une liste, un tuple est un objet non mutable ! On
peut donc

▶ Créer un tuple

▶ Accéder à ses éléments en mode lecture uniquement.

On ne peut ni modifier un élément d’un tuple, ni lui
ajouter/enlever des éléments.

On peut cependant effectuer sur un tuple toutes les opérations
qu’on a vues sur les listes et qui ne les modifient pas.

Luc Testa ICS - Cours 5 26.03.2025 4 / 41

Créer un tuple

Un tuple est déclaré en utilisant des parenthèses rondes () .

▶ L’instruction t = (0, 2, 4, 6) crée un tuple contenant les

éléments 0, 2, 4 et 6 et l’affecte à la variable t .

▶ Pour créer un tuple vide : t = ()

▶ Pour créer un tuple à un élément : t = (1,) par exemple.

sans virgule , on affecte
a t la valeur 1
t = (1)
print(t, type(t))

avec virgule , on affecte
a t le tuple contenant 1
t = (1,)
print(f"{t} est un {type(t)}\
de taille {len(t)}")

Output :

1 <class ’int’>

(1,) est un <class ’tuple’> de
taille 1

Luc Testa ICS - Cours 5 26.03.2025 5 / 41

Créer un tuple

Un tuple est déclaré en utilisant des parenthèses rondes () .

▶ L’instruction t = (0, 2, 4, 6) crée un tuple contenant les

éléments 0, 2, 4 et 6 et l’affecte à la variable t .

▶ Pour créer un tuple vide : t = ()

▶ Pour créer un tuple à un élément : t = (1,) par exemple.

sans virgule , on affecte
a t la valeur 1
t = (1)
print(t, type(t))

avec virgule , on affecte
a t le tuple contenant 1
t = (1,)
print(f"{t} est un {type(t)}\
de taille {len(t)}")

Output :

1 <class ’int’>

(1,) est un <class ’tuple’> de
taille 1

Luc Testa ICS - Cours 5 26.03.2025 5 / 41

Créer un tuple

On peut créer un tuple à partir de n’importe quel autre objet
itérable :

▶ une liste,

▶ un autre tuple,

▶ un range,

▶ une châıne de caractères,

▶ ...

t1 = tuple(range(1, 8, 2))
t2 = tuple([1, 3, 5, 7])
t3 = tuple("1357")
print(t1)
print(t2)
print(t3)

Output :

(1, 3, 5, 7)

(1, 3, 5, 7)

(’1’, ’3’, ’5’, ’7’)

Luc Testa ICS - Cours 5 26.03.2025 6 / 41

Créer un tuple

On peut créer un tuple à partir de n’importe quel autre objet
itérable :

▶ une liste,

▶ un autre tuple,

▶ un range,

▶ une châıne de caractères,

▶ ...

t1 = tuple(range(1, 8, 2))
t2 = tuple([1, 3, 5, 7])
t3 = tuple("1357")
print(t1)
print(t2)
print(t3)

Output :

(1, 3, 5, 7)

(1, 3, 5, 7)

(’1’, ’3’, ’5’, ’7’)

Luc Testa ICS - Cours 5 26.03.2025 6 / 41

Calculs sur les tuples

Toutes les opérations qui ne modifient pas les listes s’appliquent
aussi pour les tuples.
▶ len(t) donne le nombre d’éléments du tuple t

▶ Les éléments de t sont indexés de 0 à len(t)-1 (ou de -1 à

-len(t) depuis la fin), t[i] est l’élément i

▶ max(t) , min(t) , sum(t) donnent le maximum, minimum, et la

somme des éléments de t si ces quantités sont bien définies

▶ t.count(x) , t.index(x) donnent le nombre d’ocurrences /

l’index de la première occurrence de la valeur x dans le tuple t

▶ t1 + t2 , t1 * n , n * t1 créent un nouveau tuple résultant de

la concaténation de t1 avec t2 ou de t1 avec lui-même n fois

▶ Les expressions booléennes x in t et x not in t permettent de

vérifier l’appartenance d’un élément de valeur x au tuple t

Luc Testa ICS - Cours 5 26.03.2025 7 / 41

Parcourir un tuple

Un tuple étant un objet itérable, on peut le parcourir à l’aide d’une
boucle for .

▶ On peut itérer sur ses éléments...

t = (1, 3, 5, 7)

for x in t:
print(x+1)

Output :

2
4
6
8

▶ ... ou sur ses indices

t = (1, 3, 5, 7)

for i in range(len(t)):
print(i+1, t[i]+1)

Output :

1 2
2 4
3 6
4 8

Luc Testa ICS - Cours 5 26.03.2025 8 / 41

Parcourir un tuple

Un tuple étant un objet itérable, on peut le parcourir à l’aide d’une
boucle for .

▶ On peut itérer sur ses éléments...

t = (1, 3, 5, 7)

for x in t:
print(x+1)

Output :

2
4
6
8

▶ ... ou sur ses indices

t = (1, 3, 5, 7)

for i in range(len(t)):
print(i+1, t[i]+1)

Output :

1 2
2 4
3 6
4 8

Luc Testa ICS - Cours 5 26.03.2025 8 / 41

Parcourir un tuple

Un tuple étant un objet itérable, on peut le parcourir à l’aide d’une
boucle for .

▶ On peut itérer sur ses éléments...

t = (1, 3, 5, 7)

for x in t:
print(x+1)

Output :

2
4
6
8

▶ ... ou sur ses indices

t = (1, 3, 5, 7)

for i in range(len(t)):
print(i+1, t[i]+1)

Output :

1 2
2 4
3 6
4 8

Luc Testa ICS - Cours 5 26.03.2025 8 / 41

Un tuple est immutable

Une fois qu’un tuple a été créé, on ne peut plus modifier aucun de
ses éléments :

t = (1, "abc")
t[1] = "cde"

Output :

TypeError: ’tuple’ object does not
support item assignment

▶ Mais un tuple, comme une liste, contient des références à des
objets en mémoire, et peut donc contenir une référence à un
objet mutable, qui lui peut changer !

t = ([1, 2], "abc")
t[0].append (3)
print(t)

Output :

([1, 2, 3], ’abc’)

Luc Testa ICS - Cours 5 26.03.2025 9 / 41

Un tuple est immutable

Une fois qu’un tuple a été créé, on ne peut plus modifier aucun de
ses éléments :

t = (1, "abc")
t[1] = "cde"

Output :

TypeError: ’tuple’ object does not
support item assignment

▶ Mais un tuple, comme une liste, contient des références à des
objets en mémoire, et peut donc contenir une référence à un
objet mutable, qui lui peut changer !

t = ([1, 2], "abc")
t[0].append (3)
print(t)

Output :

([1, 2, 3], ’abc’)

Luc Testa ICS - Cours 5 26.03.2025 9 / 41

Un tuple est immutable

Une fois qu’un tuple a été créé, on ne peut plus modifier aucun de
ses éléments :

t = (1, "abc")
t[1] = "cde"

Output :

TypeError: ’tuple’ object does not
support item assignment

▶ Mais un tuple, comme une liste, contient des références à des
objets en mémoire, et peut donc contenir une référence à un
objet mutable, qui lui peut changer !

t = ([1, 2], "abc")
t[0].append (3)
print(t)

Output :

([1, 2, 3], ’abc’)

Luc Testa ICS - Cours 5 26.03.2025 9 / 41

Différences entre une liste et un tuple

La grande différence entre une liste et un tuple est que le premier
est mutable et le second immutable. Ceci a deux conséquences
principales :

1. Un tuple prend moins de place en mémoire qu’une liste. Les
opérations effectuées sur celui-ci (lecture, itération) sont ainsi
plus rapides que sur les listes.

2. La liste pouvant être modifiée, on l’utilisera plutôt pour
stocker des données qui sont susceptibles d’évoluer au cours
de votre programme.
On utilisera plutôt un tuple pour transporter des informations
d’un bout à l’autre de notre code en s’assurant que celles-ci
restent inchangées.

Luc Testa ICS - Cours 5 26.03.2025 10 / 41

Différences entre une liste et un tuple

La grande différence entre une liste et un tuple est que le premier
est mutable et le second immutable. Ceci a deux conséquences
principales :

1. Un tuple prend moins de place en mémoire qu’une liste. Les
opérations effectuées sur celui-ci (lecture, itération) sont ainsi
plus rapides que sur les listes.

2. La liste pouvant être modifiée, on l’utilisera plutôt pour
stocker des données qui sont susceptibles d’évoluer au cours
de votre programme.
On utilisera plutôt un tuple pour transporter des informations
d’un bout à l’autre de notre code en s’assurant que celles-ci
restent inchangées.

Luc Testa ICS - Cours 5 26.03.2025 10 / 41

Packing, unpacking

On peut simultanément affecter à une variable plusieurs valeurs qui
seront “emballées” dans un tuple. C’est l’opération de packing.

t = 1, 2, 3
print(t)

Output :

(1, 2, 3)

De même, on peut affecter un tuple de taille n à n variables
simultanément : le tuple sera “déballé” en n éléments qui seront
affectés aux n variables. C’est l’opération de unpacking

x, y, z = t
print(x, y, z, type(x))

Output :

1 2 3 <class ’int’>

Derrière une affectation multiple se cachent donc une opération de
packing et de unpacking.

x, y, z = 1, 2, 3
print(x, y, z)

Output :

1 2 3

Luc Testa ICS - Cours 5 26.03.2025 11 / 41

Packing, unpacking

On peut simultanément affecter à une variable plusieurs valeurs qui
seront “emballées” dans un tuple. C’est l’opération de packing.

t = 1, 2, 3
print(t)

Output :

(1, 2, 3)

De même, on peut affecter un tuple de taille n à n variables
simultanément : le tuple sera “déballé” en n éléments qui seront
affectés aux n variables. C’est l’opération de unpacking

x, y, z = t
print(x, y, z, type(x))

Output :

1 2 3 <class ’int’>

Derrière une affectation multiple se cachent donc une opération de
packing et de unpacking.

x, y, z = 1, 2, 3
print(x, y, z)

Output :

1 2 3

Luc Testa ICS - Cours 5 26.03.2025 11 / 41

Packing, unpacking

On peut simultanément affecter à une variable plusieurs valeurs qui
seront “emballées” dans un tuple. C’est l’opération de packing.

t = 1, 2, 3
print(t)

Output :

(1, 2, 3)

De même, on peut affecter un tuple de taille n à n variables
simultanément : le tuple sera “déballé” en n éléments qui seront
affectés aux n variables. C’est l’opération de unpacking

x, y, z = t
print(x, y, z, type(x))

Output :

1 2 3 <class ’int’>

Derrière une affectation multiple se cachent donc une opération de
packing et de unpacking.

x, y, z = 1, 2, 3
print(x, y, z)

Output :

1 2 3

Luc Testa ICS - Cours 5 26.03.2025 11 / 41

Packing, unpacking

On peut simultanément affecter à une variable plusieurs valeurs qui
seront “emballées” dans un tuple. C’est l’opération de packing.

t = 1, 2, 3
print(t)

Output :

(1, 2, 3)

De même, on peut affecter un tuple de taille n à n variables
simultanément : le tuple sera “déballé” en n éléments qui seront
affectés aux n variables. C’est l’opération de unpacking

x, y, z = t
print(x, y, z, type(x))

Output :

1 2 3 <class ’int’>

Derrière une affectation multiple se cachent donc une opération de
packing et de unpacking.

x, y, z = 1, 2, 3
print(x, y, z)

Output :

1 2 3

Luc Testa ICS - Cours 5 26.03.2025 11 / 41

Packing, unpacking

On peut simultanément affecter à une variable plusieurs valeurs qui
seront “emballées” dans un tuple. C’est l’opération de packing.

t = 1, 2, 3
print(t)

Output :

(1, 2, 3)

De même, on peut affecter un tuple de taille n à n variables
simultanément : le tuple sera “déballé” en n éléments qui seront
affectés aux n variables. C’est l’opération de unpacking

x, y, z = t
print(x, y, z, type(x))

Output :

1 2 3 <class ’int’>

Derrière une affectation multiple se cachent donc une opération de
packing et de unpacking.

x, y, z = 1, 2, 3
print(x, y, z)

Output :

1 2 3

Luc Testa ICS - Cours 5 26.03.2025 11 / 41

Packing, unpacking

Lorsqu’une fonction retourne plusieurs valeurs, elle retourne en fait
un tuple contenant ces valeurs.

▶ Si une fonction retourne n valeurs, on peut donc directement
affecter à n variables les valeurs retournées par l’appel de la
fonction.

def aire_perim_rectangle(x, y):
aire = x * y
perimetre = 2 * x + 2 * y
return aire , perimetre

t = aire_perim_rectangle (2, 3)
print(t, type(t))

a, p = aire_perim_rectangle (2, 3)
print(a, p)

Output :

(6, 10) <class ’tuple’>

6 10

Luc Testa ICS - Cours 5 26.03.2025 12 / 41

Packing, unpacking

Lorsqu’une fonction retourne plusieurs valeurs, elle retourne en fait
un tuple contenant ces valeurs.

▶ Si une fonction retourne n valeurs, on peut donc directement
affecter à n variables les valeurs retournées par l’appel de la
fonction.

def aire_perim_rectangle(x, y):
aire = x * y
perimetre = 2 * x + 2 * y
return aire , perimetre

t = aire_perim_rectangle (2, 3)
print(t, type(t))

a, p = aire_perim_rectangle (2, 3)
print(a, p)

Output :

(6, 10) <class ’tuple’>

6 10

Luc Testa ICS - Cours 5 26.03.2025 12 / 41

Dictionnaires

Lors de l’écriture de programmes, on peut être amené à manipuler
des objets plus complexes.
▶ On aimerait par exemple associer un ”mot” avec une certaine

valeur. Souvenez-vous des arguments par mot-clés !

Une telle structure de données dite par correspondance existe en
Python. Il s’agit de dictionnaires.

▶ Un dictionnaire (dict) est une structure de données
non-ordonnée qui permet d’indexer des objets (les valeurs)
non pas avec des entiers 0, 1, 2, · · · mais avec des clés.

▶ Il s’agit d’un ensemble de paires dict = {clé: valeur} .

dict_007 = {
"nom": "Bond",
"prenom": "James",
"dob": 1920,

}
print(dict_007["dob"])

Output :

1920

Luc Testa ICS - Cours 5 26.03.2025 13 / 41

Dictionnaires

Lors de l’écriture de programmes, on peut être amené à manipuler
des objets plus complexes.
▶ On aimerait par exemple associer un ”mot” avec une certaine

valeur. Souvenez-vous des arguments par mot-clés !

Une telle structure de données dite par correspondance existe en
Python. Il s’agit de dictionnaires.

▶ Un dictionnaire (dict) est une structure de données
non-ordonnée qui permet d’indexer des objets (les valeurs)
non pas avec des entiers 0, 1, 2, · · · mais avec des clés.

▶ Il s’agit d’un ensemble de paires dict = {clé: valeur} .

dict_007 = {
"nom": "Bond",
"prenom": "James",
"dob": 1920,

}
print(dict_007["dob"])

Output :

1920

Luc Testa ICS - Cours 5 26.03.2025 13 / 41

Dictionnaires

Lors de l’écriture de programmes, on peut être amené à manipuler
des objets plus complexes.
▶ On aimerait par exemple associer un ”mot” avec une certaine

valeur. Souvenez-vous des arguments par mot-clés !

Une telle structure de données dite par correspondance existe en
Python. Il s’agit de dictionnaires.

▶ Un dictionnaire (dict) est une structure de données
non-ordonnée qui permet d’indexer des objets (les valeurs)
non pas avec des entiers 0, 1, 2, · · · mais avec des clés.

▶ Il s’agit d’un ensemble de paires dict = {clé: valeur} .

dict_007 = {
"nom": "Bond",
"prenom": "James",
"dob": 1920,

}
print(dict_007["dob"])

Output :

1920

Luc Testa ICS - Cours 5 26.03.2025 13 / 41

Dictionnaires

Lors de l’écriture de programmes, on peut être amené à manipuler
des objets plus complexes.
▶ On aimerait par exemple associer un ”mot” avec une certaine

valeur. Souvenez-vous des arguments par mot-clés !

Une telle structure de données dite par correspondance existe en
Python. Il s’agit de dictionnaires.

▶ Un dictionnaire (dict) est une structure de données
non-ordonnée qui permet d’indexer des objets (les valeurs)
non pas avec des entiers 0, 1, 2, · · · mais avec des clés.

▶ Il s’agit d’un ensemble de paires dict = {clé: valeur} .

dict_007 = {
"nom": "Bond",
"prenom": "James",
"dob": 1920,

}
print(dict_007["dob"])

Output :

1920

Luc Testa ICS - Cours 5 26.03.2025 13 / 41

Dictionnaires

On peut penser à un dictionnaire de langues : il contient des paires
(mot, définition). On peut accéder à la définition en cherchant le
mot correspondant dans le dictionnaire.

▶ Comme un dictionnaire de langues, un dictionnaire Python
stocke des valeurs (les définitions) indexées par des clés
uniques (les mots).

d = {
"Pommier": "Arbre a frondaison arrondie

dont le fruit est la pomme.",
"Lune": "Satellite de la Terre ,

recevant sa lumiere du Soleil.",
"Tasse": "Petit recipient a anse ou

a oreilles , servant a boire.",
}

print(d["Tasse"])

Output :

Petit
récipient
à anse ou
à
oreilles,
servant à
boire.

Luc Testa ICS - Cours 5 26.03.2025 14 / 41

Opérations sur les dictionnaires

Comme les listes, les dictionnaires sont des objets mutables.

On peut donc :

▶ Créer un dictionnaire

▶ Effectuer des opérations de lecture :
▶ Lire un élément d’un dictionnaire
▶ Parcourir les clés/valeurs d’un dictionnaire
▶ ...

▶ Effectuer des opérations d’écriture :
▶ Modifier un élément d’un dictionnaire
▶ Ajouter/enlever un élément d’un dictionnaire
▶ ...

Luc Testa ICS - Cours 5 26.03.2025 15 / 41

Opérations sur les dictionnaires

Comme les listes, les dictionnaires sont des objets mutables.

On peut donc :

▶ Créer un dictionnaire
▶ Effectuer des opérations de lecture :

▶ Lire un élément d’un dictionnaire
▶ Parcourir les clés/valeurs d’un dictionnaire
▶ ...

▶ Effectuer des opérations d’écriture :
▶ Modifier un élément d’un dictionnaire
▶ Ajouter/enlever un élément d’un dictionnaire
▶ ...

Luc Testa ICS - Cours 5 26.03.2025 15 / 41

Opérations sur les dictionnaires

Comme les listes, les dictionnaires sont des objets mutables.

On peut donc :

▶ Créer un dictionnaire
▶ Effectuer des opérations de lecture :

▶ Lire un élément d’un dictionnaire
▶ Parcourir les clés/valeurs d’un dictionnaire
▶ ...

▶ Effectuer des opérations d’écriture :
▶ Modifier un élément d’un dictionnaire
▶ Ajouter/enlever un élément d’un dictionnaire
▶ ...

Luc Testa ICS - Cours 5 26.03.2025 15 / 41

Créer un dictionnaire

On peut créer un dictionnaire :

▶ vide, avec une paire d’accolades vide : d = {}

▶ contenant déjà des paires (clé, valeur) avec la syntaxe

d = {clé 1:valeur 1, clé 2:valeur 2, ..., clé n:valeur n,}

Pour la lisibilité on peut aussi introduire des retours de ligne :

d = {
cle_1: valeur_1 ,
cle_2: valeur_2 ,
...
cle_n: valeur_n ,

}

. La virgule après le dernier élément du dictionnaire est optionnelle mais
c’est une bonne pratique de l’inclure.

Luc Testa ICS - Cours 5 26.03.2025 16 / 41

https://docs.python.org/3/faq/design.html#why-does-python-allow-commas-at-the-end-of-lists-and-tuples

Créer un dictionnaire

On peut créer un dictionnaire :

▶ vide, avec une paire d’accolades vide : d = {}
▶ contenant déjà des paires (clé, valeur) avec la syntaxe

d = {clé 1:valeur 1, clé 2:valeur 2, ..., clé n:valeur n,}

Pour la lisibilité on peut aussi introduire des retours de ligne :

d = {
cle_1: valeur_1 ,
cle_2: valeur_2 ,
...
cle_n: valeur_n ,

}

. La virgule après le dernier élément du dictionnaire est optionnelle mais
c’est une bonne pratique de l’inclure.

Luc Testa ICS - Cours 5 26.03.2025 16 / 41

https://docs.python.org/3/faq/design.html#why-does-python-allow-commas-at-the-end-of-lists-and-tuples

Créer un dictionnaire

On peut créer un dictionnaire :

▶ vide, avec une paire d’accolades vide : d = {}
▶ contenant déjà des paires (clé, valeur) avec la syntaxe

d = {clé 1:valeur 1, clé 2:valeur 2, ..., clé n:valeur n,}

Pour la lisibilité on peut aussi introduire des retours de ligne :

d = {
cle_1: valeur_1 ,
cle_2: valeur_2 ,
...
cle_n: valeur_n ,

}

. La virgule après le dernier élément du dictionnaire est optionnelle mais
c’est une bonne pratique de l’inclure.

Luc Testa ICS - Cours 5 26.03.2025 16 / 41

https://docs.python.org/3/faq/design.html#why-does-python-allow-commas-at-the-end-of-lists-and-tuples

Créer un dictionnaire

▶ Les clés peuvent être n’importe quel objet non mutable

d = {
1: "poire",
"deux": "pomme",
3.0: "prune",
(4,5): "fraise",

}

d = {[1, 2]: 3}
Output :

TypeError: unhashable type: ’list’

▶ Les clés doivent être uniques. Si on définit plusieurs paires
(clé, valeur) avec la même clé, seule la dernière sera gardée.

d = {1:123, 2:123, 1:345}
print(d)

Output :

{1: 345, 2: 123}

Luc Testa ICS - Cours 5 26.03.2025 17 / 41

Créer un dictionnaire

▶ Les clés peuvent être n’importe quel objet non mutable

d = {
1: "poire",
"deux": "pomme",
3.0: "prune",
(4,5): "fraise",

}

d = {[1, 2]: 3}
Output :

TypeError: unhashable type: ’list’

▶ Les clés doivent être uniques. Si on définit plusieurs paires
(clé, valeur) avec la même clé, seule la dernière sera gardée.

d = {1:123, 2:123, 1:345}
print(d)

Output :

{1: 345, 2: 123}

Luc Testa ICS - Cours 5 26.03.2025 17 / 41

Créer un dictionnaire

▶ Les clés peuvent être n’importe quel objet non mutable

d = {
1: "poire",
"deux": "pomme",
3.0: "prune",
(4,5): "fraise",

}

d = {[1, 2]: 3}
Output :

TypeError: unhashable type: ’list’

▶ Les clés doivent être uniques. Si on définit plusieurs paires
(clé, valeur) avec la même clé, seule la dernière sera gardée.

d = {1:123, 2:123, 1:345}
print(d)

Output :

{1: 345, 2: 123}

Luc Testa ICS - Cours 5 26.03.2025 17 / 41

Créer un dictionnaire à partir d’une liste ou d’un tuple

L’instruction dict(L) crée un dictionnaire à partir d’une liste L

de paires (de tuples de taille 2) :

L = [(1,"a"), (2,"b"), (3, "c")]
d = dict(L)
print(d)

Output :

{1: ’a’, 2: ’b’, 3: ’c’}

De même on peut créer un dictionnaire à partir d’un tuple de
paires (donc un tuple de tuples) :

t = ((1,"a"), (2,"b"), (1, "c"))
d = dict(t)
print(d)

Output :

{1: ’c’, 2: ’b’}

Luc Testa ICS - Cours 5 26.03.2025 18 / 41

Créer un dictionnaire à partir d’une liste ou d’un tuple

L’instruction dict(L) crée un dictionnaire à partir d’une liste L

de paires (de tuples de taille 2) :

L = [(1,"a"), (2,"b"), (3, "c")]
d = dict(L)
print(d)

Output :

{1: ’a’, 2: ’b’, 3: ’c’}

De même on peut créer un dictionnaire à partir d’un tuple de
paires (donc un tuple de tuples) :

t = ((1,"a"), (2,"b"), (1, "c"))
d = dict(t)
print(d)

Output :

{1: ’c’, 2: ’b’}

Luc Testa ICS - Cours 5 26.03.2025 18 / 41

Créer un dictionnaire à partir d’une liste ou d’un tuple

L’instruction dict(L) crée un dictionnaire à partir d’une liste L

de paires (de tuples de taille 2) :

L = [(1,"a"), (2,"b"), (3, "c")]
d = dict(L)
print(d)

Output :

{1: ’a’, 2: ’b’, 3: ’c’}

De même on peut créer un dictionnaire à partir d’un tuple de
paires (donc un tuple de tuples) :

t = ((1,"a"), (2,"b"), (1, "c"))
d = dict(t)
print(d)

Output :

{1: ’c’, 2: ’b’}

Luc Testa ICS - Cours 5 26.03.2025 18 / 41

Accéder à un élément

On peut accéder à l’élément de clé key du dictionnaire d avec la

syntaxe d[key] , si un tel élément existe :

d_fruits = {
10: "poire",
20: "pomme",
30: "prune",

}
print(d_fruits[10])

Output :

poire

S’il n’y a pas d’élément de clé key dans d , d[key] produira une
erreur :

print(d_fruits[5])
Output :

KeyError: 5

Luc Testa ICS - Cours 5 26.03.2025 19 / 41

Accéder à un élément

On peut accéder à l’élément de clé key du dictionnaire d avec la

syntaxe d[key] , si un tel élément existe :

d_fruits = {
10: "poire",
20: "pomme",
30: "prune",

}
print(d_fruits[10])

Output :

poire

S’il n’y a pas d’élément de clé key dans d , d[key] produira une
erreur :

print(d_fruits[5])
Output :

KeyError: 5

Luc Testa ICS - Cours 5 26.03.2025 19 / 41

Accéder à un élément

On peut accéder à l’élément de clé key du dictionnaire d avec la

syntaxe d[key] , si un tel élément existe :

d_fruits = {
10: "poire",
20: "pomme",
30: "prune",

}
print(d_fruits[10])

Output :

poire

S’il n’y a pas d’élément de clé key dans d , d[key] produira une
erreur :

print(d_fruits[5])
Output :

KeyError: 5

Luc Testa ICS - Cours 5 26.03.2025 19 / 41

Accéder à un élément

Pour éviter une erreur si l’élément recherché n’existe pas dans le
dictionnaire, on peut exécuter l’instruction d.get(key) .

▶ La méthode get de la classe dict retourne l’élément de clé

key si un tel élément existe, et retourne None autrement.

d_fruits = {
10: "poire",
20: "pomme",
30: "prune",

}
print(d_fruits.get (10))
print(d_fruits.get(5))

Output :

poire
None

Luc Testa ICS - Cours 5 26.03.2025 20 / 41

Accéder à un élément

Pour éviter une erreur si l’élément recherché n’existe pas dans le
dictionnaire, on peut exécuter l’instruction d.get(key) .

▶ La méthode get de la classe dict retourne l’élément de clé

key si un tel élément existe, et retourne None autrement.

d_fruits = {
10: "poire",
20: "pomme",
30: "prune",

}
print(d_fruits.get (10))
print(d_fruits.get (5))

Output :

poire
None

Luc Testa ICS - Cours 5 26.03.2025 20 / 41

Insérer/modifier un élément

L’instruction d[key] = val permet :

▶ s’il n’existe pas d’élément de clé key dans le dictionnaire d ,

d’insérer la paire (key, val)

▶ s’il existe un élément de clé key dans le dictionnaire d , de

modifier sa valeur à val .

d_fruits = {}
d_fruits[10] = "poire"
print(d_fruits)
d_fruits[20] = "pomme"
print(d_fruits)
d_fruits[10] = "fraise"
print(d_fruits)

Output :

{10: ’poire’}
{10: ’poire’, 20: ’pomme’}
{10: ’fraise’, 20: ’pomme’}

Luc Testa ICS - Cours 5 26.03.2025 21 / 41

Insérer/modifier un élément

L’instruction d[key] = val permet :

▶ s’il n’existe pas d’élément de clé key dans le dictionnaire d ,

d’insérer la paire (key, val)

▶ s’il existe un élément de clé key dans le dictionnaire d , de

modifier sa valeur à val .

d_fruits = {}
d_fruits[10] = "poire"
print(d_fruits)
d_fruits[20] = "pomme"
print(d_fruits)
d_fruits[10] = "fraise"
print(d_fruits)

Output :

{10: ’poire’}
{10: ’poire’, 20: ’pomme’}
{10: ’fraise’, 20: ’pomme’}

Luc Testa ICS - Cours 5 26.03.2025 21 / 41

Insérer/modifier un élément

L’instruction d[key] = val permet :

▶ s’il n’existe pas d’élément de clé key dans le dictionnaire d ,

d’insérer la paire (key, val)

▶ s’il existe un élément de clé key dans le dictionnaire d , de

modifier sa valeur à val .

d_fruits = {}
d_fruits[10] = "poire"
print(d_fruits)
d_fruits[20] = "pomme"
print(d_fruits)
d_fruits[10] = "fraise"
print(d_fruits)

Output :

{10: ’poire’}
{10: ’poire’, 20: ’pomme’}
{10: ’fraise’, 20: ’pomme’}

Luc Testa ICS - Cours 5 26.03.2025 21 / 41

Supprimer un élément

L’instruction del d[key] supprime l’élément de clé key du

dictionnaire d

d = {10: "poire", 20:"pomme"}
del d[10]
print(d)

Output :

{20: ’pomme’}

▶ S’il n’existe pas d’élément de clé key dans d , del d[key]

produit une erreur.

del d[3]
Output :

KeyError: 3

Luc Testa ICS - Cours 5 26.03.2025 22 / 41

Supprimer un élément

L’instruction del d[key] supprime l’élément de clé key du

dictionnaire d

d = {10: "poire", 20:"pomme"}
del d[10]
print(d)

Output :

{20: ’pomme’}

▶ S’il n’existe pas d’élément de clé key dans d , del d[key]

produit une erreur.

del d[3]
Output :

KeyError: 3

Luc Testa ICS - Cours 5 26.03.2025 22 / 41

Petit point mémoire

Attention ! Tout comme les listes, les dictionnaires ne stockent pas
des objets mais des références vers ces objets.

▶ Si l’objet est mutable, alors sa modification sera répercutée
sur le dictionnaire :

original = [1, 2, 3]
d = {"cle": original}
original.append (4)

print(original , d, sep=’\n’)

Output :

[1, 2, 3, 4]

{’cle’: [1, 2, 3, 4]}

▶ S’il est immuable, on crée simplement une nouvelle référence

original = 10
d = {"cle": original}
original += 5

print(original , d, sep=’\n’)

Output :

15

{’cle’: 10}

Luc Testa ICS - Cours 5 26.03.2025 23 / 41

Petit point mémoire

Attention ! Tout comme les listes, les dictionnaires ne stockent pas
des objets mais des références vers ces objets.

▶ Si l’objet est mutable, alors sa modification sera répercutée
sur le dictionnaire :

original = [1, 2, 3]
d = {"cle": original}
original.append (4)

print(original , d, sep=’\n’)

Output :

[1, 2, 3, 4]

{’cle’: [1, 2, 3, 4]}

▶ S’il est immuable, on crée simplement une nouvelle référence

original = 10
d = {"cle": original}
original += 5

print(original , d, sep=’\n’)

Output :

15

{’cle’: 10}

Luc Testa ICS - Cours 5 26.03.2025 23 / 41

Petit point mémoire

Attention ! Tout comme les listes, les dictionnaires ne stockent pas
des objets mais des références vers ces objets.

▶ Si l’objet est mutable, alors sa modification sera répercutée
sur le dictionnaire :

original = [1, 2, 3]
d = {"cle": original}
original.append (4)

print(original , d, sep=’\n’)

Output :

[1, 2, 3, 4]

{’cle’: [1, 2, 3, 4]}

▶ S’il est immuable, on crée simplement une nouvelle référence

original = 10
d = {"cle": original}
original += 5

print(original , d, sep=’\n’)

Output :

15

{’cle’: 10}

Luc Testa ICS - Cours 5 26.03.2025 23 / 41

Appartenance

On peut vérifier l’appartenance d’une clé à un dictionnaire avec le
mot-clé in :

d = {
"pomme": "malus domestica",
"poire": "pyrus communis",
"fraise": "fragaria x ananassa",

}

print("pomme" in d)
print("mangue" not in d)

Output :

True
True

Luc Testa ICS - Cours 5 26.03.2025 24 / 41

Appartenance

On peut vérifier l’appartenance d’une clé à un dictionnaire avec le
mot-clé in :

d = {
"pomme": "malus domestica",
"poire": "pyrus communis",
"fraise": "fragaria x ananassa",

}

print("pomme" in d)
print("mangue" not in d)

Output :

True
True

Luc Testa ICS - Cours 5 26.03.2025 24 / 41

Parcourir un dictionnaire

Un dictionnaire est un objet itérable. Comme pour les ranges,
listes, strings, tuples, on peut itérer sur ses clés avec une boucle
for .

▶ Les éléments du dictionnaire sont alors parcourus dans le
même ordre que celui dans lequel il a été rempli.

for x in d:
print(x)

Output :

pomme
poire
fraise

Parcourir les clés d’un dictionnaire nous donne accès également
aux valeurs associées.

for x in d:
print(f"d[{x}] = {d[x]}")

Output :

d[pomme] = malus domestica
d[poire] = pyrus communis
d[fraise] = fragaria ×
ananassa

Luc Testa ICS - Cours 5 26.03.2025 25 / 41

Parcourir un dictionnaire

Un dictionnaire est un objet itérable. Comme pour les ranges,
listes, strings, tuples, on peut itérer sur ses clés avec une boucle
for .

▶ Les éléments du dictionnaire sont alors parcourus dans le
même ordre que celui dans lequel il a été rempli.

for x in d:
print(x)

Output :

pomme
poire
fraise

Parcourir les clés d’un dictionnaire nous donne accès également
aux valeurs associées.

for x in d:
print(f"d[{x}] = {d[x]}")

Output :

d[pomme] = malus domestica
d[poire] = pyrus communis
d[fraise] = fragaria ×
ananassa

Luc Testa ICS - Cours 5 26.03.2025 25 / 41

Parcourir un dictionnaire

Un dictionnaire est un objet itérable. Comme pour les ranges,
listes, strings, tuples, on peut itérer sur ses clés avec une boucle
for .

▶ Les éléments du dictionnaire sont alors parcourus dans le
même ordre que celui dans lequel il a été rempli.

for x in d:
print(x)

Output :

pomme
poire
fraise

Parcourir les clés d’un dictionnaire nous donne accès également
aux valeurs associées.

for x in d:
print(f"d[{x}] = {d[x]}")

Output :

d[pomme] = malus domestica
d[poire] = pyrus communis
d[fraise] = fragaria ×
ananassa

Luc Testa ICS - Cours 5 26.03.2025 25 / 41

Parcourir un dictionnaire

On peut aussi parcourir les clés, les valeurs ou les paires
(clé, valeur) d’un dictionnaire d en itérant respectivement sur les
vues 1 d.keys() , d.values() ou d.items() .

d_fruits = {
10: "poire",
20: "pomme",
30: "prune",

}

for x in d_fruits.keys():
print(x)

print ()

for x in d_fruits.values ():
print(x)

Output :

10
20
30

poire
pomme
prune

1. Vues en Python
Luc Testa ICS - Cours 5 26.03.2025 26 / 41

https://docs.python.org/3/library/stdtypes.html#dictionary-view-objects

Parcourir un dictionnaire

On peut aussi parcourir les clés, les valeurs ou les paires
(clé, valeur) d’un dictionnaire d en itérant respectivement sur les
vues 1 d.keys() , d.values() ou d.items() .

d_fruits = {
10: "poire",
20: "pomme",
30: "prune",

}

for x in d_fruits.keys():
print(x)

print ()

for x in d_fruits.values ():
print(x)

Output :

10
20
30

poire
pomme
prune

1. Vues en Python
Luc Testa ICS - Cours 5 26.03.2025 26 / 41

https://docs.python.org/3/library/stdtypes.html#dictionary-view-objects

Parcourir un dictionnaire

Itérer sur la vue d.items() revient à itérer sur des tuples.

for x in d_fruits.items():
print(x)

print ()

tuple unpacking
for x, y in d_fruits.items():

print(x, y)

Output :

(10, ’poire’)
(20, ’pomme’)
(30, ’prune’)

10 poire
20 pomme
30 prune

Luc Testa ICS - Cours 5 26.03.2025 27 / 41

Parcourir un dictionnaire

Itérer sur la vue d.items() revient à itérer sur des tuples.

for x in d_fruits.items():
print(x)

print ()

tuple unpacking
for x, y in d_fruits.items():

print(x, y)

Output :

(10, ’poire’)
(20, ’pomme’)
(30, ’prune’)

10 poire
20 pomme
30 prune

Luc Testa ICS - Cours 5 26.03.2025 27 / 41

Compréhension de dictionnaire

Comme pour les listes, on peut créer de manière compacte un
dictionnaire en compréhension.

d = {cle:val for element in ensemble_depart if condition}

Les deux programmes ci-dessous créent le même dictionnaire :
d = {1: 1, 2: 4, 3: 9, 4: 16}

d = {}
for x in range(1, 5):

d[x] = x**2
d = {x : x**2 for x in range(1, 5)}

Luc Testa ICS - Cours 5 26.03.2025 28 / 41

Compréhension de dictionnaire

Comme pour les listes, on peut créer de manière compacte un
dictionnaire en compréhension.

d = {cle:val for element in ensemble_depart if condition}

Les deux programmes ci-dessous créent le même dictionnaire :
d = {1: 1, 2: 4, 3: 9, 4: 16}

d = {}
for x in range(1, 5):

d[x] = x ** 2
d = {x : x**2 for x in range(1, 5)}

Luc Testa ICS - Cours 5 26.03.2025 28 / 41

Compréhension de dictionnaire

Les deux programmes ci-dessous créent le même dictionnaire.
Lequel ?

L = [10, 20, 30]
t = ("a", "b", "c")

d = {}
for x in L:

for y in t:
d[x] = y

L = [10, 20, 30]
t = ("a", "b", "c")

d = {x:y for x in L for y in t}

Luc Testa ICS - Cours 5 26.03.2025 29 / 41

Compréhension de dictionnaire

Les deux programmes ci-dessous créent le même dictionnaire
d = {10: ’a’, 20: ’b’, 30: ’c’}

L = [10, 20, 30]
t = ("a", "b", "c")

d = {}
for i in range (3):

d[L[i]] = t[i]

L = [10, 20, 30]
t = ("a", "b", "c")

d = {L[i]:t[i] for i in range (3)}

Luc Testa ICS - Cours 5 26.03.2025 30 / 41

Application : dictionnaires imbriqués

Que se passe-t-il si on veut stocker des données plus complexes ?

▶ Il est possible de créer un dictionnaire dont les valeurs sont
elles-mêmes des dictionnaires. On parle alors de dictionnaire
imbriqué.

Celui-ci prend la forme suivante :

d i c t im b r i q u e = {
” d i c tA ” : {” c l e 1A ” : va l eu r 1A , ” c l e 2A ” : v a l e u r 2A } ,
” d i c tB ” : {” c l e 1B ” : va l eu r 1B , ” c l e 2B ” : v a l e u r 2B } ,

}

Remarquons que les clés de chaque dictionnaire (cle 1A , cle 1B)
ne sont pas nécessairement les mêmes.

Luc Testa ICS - Cours 5 26.03.2025 31 / 41

Dictionnaires imbriqués : exemple

Prenons l’exemple d’un hôpital. Celui-ci stocke les données de
chaque patient, ainsi que les tests que celui-ci a effectués.

▶ Pour chaque nouveau patient, on créera un dictionnaire
patient1 .

▶ Il contiendra le dictionnaire informations qui englobe toutes
les informations concernant le patient.

▶ Ce ”sous-dictionnaire” sera indexé par le mot-clé infos .

p a t i e n t 1 = {}
i n f o rma t i o n s = { ’ name ’ : ’ A l i c e ’ , ’DOB’ : ’ 27 . 06 . 1992 ’ ,

’ we ight ’ : 56 , ’ s ex ’ : ’F ’ }
p a t i e n t 1 [” i n f o s ”] = i n f o rma t i o n s

p r i n t (p a t i e n t 1)

Ce code produira le texte suivant :
patient1 = {’infos’: {’name’: ’Alice’, ’DOB’:
’27.06.1992’, ’weight’: 56, ’sex’: ’F’}}

Luc Testa ICS - Cours 5 26.03.2025 32 / 41

Dictionnaires imbriqués : exemple

Admettons qu’on mesure la fréquence cardiaque ainsi que le taux d’oxygène de
cette personne toutes les minutes pendant 5 minutes. On stocke ces résultats

dans deux dictionnaires : HR et o2, associés aux valeurs Heart rate et

Oxygen level .

t ime = [0 ,1 , 2 , 3 , 4 , 5]
f r e q = [88 , 90 , 94 , 82 , 86 , 85]
o 2 l e v e l = [96 , 97 , 96 , 96 , 97 , 96]

HR = {” t ime ” : t ime , ” f r e qu en c y ” : f r e q }
o2 = {” t ime ” : t ime , ”O2” : o 2 l e v e l }

Pour simplifier le stockage des résultats, on crée un dictionnaire
measurements qui contient HR et o2.

measurements = {”Heart r a t e ” : HR, ”Oxygen l e v e l ” : o2 , }

La commande print(measurements) aura donc comme output :

measurements = {’Heart rate’: {’time’: [0, 1, 2, 3, 4, 5],
’frequency’: [88, 90, 94, 82, 86, 85]}, ’Oxygen level’: {’time’: [0,
1, 2, 3, 4, 5], ’O2’: [96, 97, 96, 96, 97, 96]}}

Luc Testa ICS - Cours 5 26.03.2025 33 / 41

Dictionnaires imbriqués : exemple

Finalement, on peut inclure le dictionnaire measurements dans le
dictionnaire patient1. On a ainsi trois niveaux de dictionnaires
imbriqués les uns dans les autres.

p a t i e n t 1 [” t e s t s ”] = measurements

p r i n t (p a t i e n t 1)

patient1 = {’infos’: {’name’: ’Alice’, ’DOB’:
’27.06.1992’, ’weight’: 56, ’sex’: ’F’},’tests’: {’Heart
rate’: {’time’: [0, 1, 2, 3, 4, 5], ’frequency’: [88,
90, 94, 82, 86, 85]},’Oxygen level’: {’time’: [0, 1, 2,
3, 4, 5], ’O2’: [96, 97, 96, 96, 97, 96]}}}

Luc Testa ICS - Cours 5 26.03.2025 34 / 41

Dictionnaires imbriqués : exemple

Voici ce que donne la situation schématiquement :

patient1

measurements

O2HR

informations

Bien entendu, pour un nouveau patient on créera un dictionnaire
patient2 que l’on placera dans un nouveau dictionnaire hopital

qui se situera à un niveau hiérarchique supérieur.

Pour accéder aux informations du patient 1 :

print(patient1[’infos’][’name’])
print(patient1[’tests’][’Heart rate’])

Output :

Alice

{’time’:
[0, 1, 2, 3, 4, 5],
’frequency’:
[88, 90, 94, 82, 86,
85]}

Luc Testa ICS - Cours 5 26.03.2025 35 / 41

Opérateur splat *

On peut utiliser l’opérateur splat * pour décompacter (unpack)
des éléments d’un itérable et de les considérer individuellement.

L1 = [1,2,3]
L2 = [4,5,6]
print(L1, *L2)
print([L1, L2])
print([*L1, *L2])
debut , *milieu , fin = [*L1, *L2]
print(debut , milieu , fin)

Output :

[1, 2, 3] 4 5 6

[[1, 2, 3], [4, 5, 6]]

[1, 2, 3, 4, 5, 6]

1 [2, 3, 4, 5] 6

▶ On peut ainsi les passer en tant qu’arguments séparés à une
fonction

def addition(a,b,c):
return a+b+c

a = [1,2,3]
print(addition(*a))
print(addition(a))

Output :

6

TypeError: addition()
missing 2 required
positional arguments: ’b’
and ’c’

Luc Testa ICS - Cours 5 26.03.2025 36 / 41

Opérateur splat *

On peut utiliser l’opérateur splat * pour décompacter (unpack)
des éléments d’un itérable et de les considérer individuellement.

L1 = [1,2,3]
L2 = [4,5,6]
print(L1 , *L2)
print([L1 , L2])
print([*L1 , *L2])
debut , *milieu , fin = [*L1, *L2]
print(debut , milieu , fin)

Output :

[1, 2, 3] 4 5 6

[[1, 2, 3], [4, 5, 6]]

[1, 2, 3, 4, 5, 6]

1 [2, 3, 4, 5] 6

▶ On peut ainsi les passer en tant qu’arguments séparés à une
fonction

def addition(a,b,c):
return a+b+c

a = [1,2,3]
print(addition(*a))
print(addition(a))

Output :

6

TypeError: addition()
missing 2 required
positional arguments: ’b’
and ’c’

Luc Testa ICS - Cours 5 26.03.2025 36 / 41

Opérateur splat *

On peut utiliser l’opérateur splat * pour décompacter (unpack)
des éléments d’un itérable et de les considérer individuellement.

L1 = [1,2,3]
L2 = [4,5,6]
print(L1 , *L2)
print([L1 , L2])
print([*L1 , *L2])
debut , *milieu , fin = [*L1, *L2]
print(debut , milieu , fin)

Output :

[1, 2, 3] 4 5 6

[[1, 2, 3], [4, 5, 6]]

[1, 2, 3, 4, 5, 6]

1 [2, 3, 4, 5] 6

▶ On peut ainsi les passer en tant qu’arguments séparés à une
fonction

def addition(a,b,c):
return a+b+c

a = [1,2,3]
print(addition(*a))
print(addition(a))

Output :

6

TypeError: addition()
missing 2 required
positional arguments: ’b’
and ’c’

Luc Testa ICS - Cours 5 26.03.2025 36 / 41

De retour aux fonctions

On peut aussi utiliser l’opérateur * pour définir une fonction qui
prend un nombre variable d’arguments, comme la fonction print .

▶ La syntaxe pour définir une telle fonction est la suivante :

def somme(x, *args):
print(args , type(args))
s = x
for y in args:

s += y
return s

print(somme(3, 4, 5, 6))

Output :

(4, 5, 6) <class ’tuple’>

18

Luc Testa ICS - Cours 5 26.03.2025 37 / 41

Fonctions avec un nombre variable d’arguments

1. Dans la définition de la fonction, après les paramètres obligatoires,
on définit un paramètre précédé de l’opérateur splat *

2. Dans l’appel de la fonction, on fournit un argument pour chaque
paramètre obligatoire, puis encore autant d’arguments qu’on veut

3. Au moment de l’appel, l’interpréteur Python emballe (packing) les
arguments restants dans un tuple et c’est ce tuple qui est passé à la
fonction

4. Dans la fonction, on a donc accès à ce tuple args et on peut
parcourir ses éléments.
Remarque : args n’est au final qu’un nom de variable.

Luc Testa ICS - Cours 5 26.03.2025 38 / 41

Fonctions avec un nombre variable d’arguments nommés

On peut de même définir une fonction avec un nombre variable
d’arguments nommés avec la syntaxe suivante :

def somme(x, ** kwargs):
print(kwargs , type(kwargs))
s = x
for v in kwargs.values ():

s += v
return s

print(somme(3, y = 4, z = 5))

Output :

{’y’: 4, ’z’: 5} <class
’dict’>

12

Luc Testa ICS - Cours 5 26.03.2025 39 / 41

Fonctions avec un nombre variable d’arguments

▶ Dans la définition de la fonction, après les paramètres
obligatoires, on définit un paramètre précédé d’un symbole **

▶ Dans l’appel de la fonction, on fournit un argument pour
chaque paramètre obligatoire, puis encore autant d’arguments
nommés qu’on veut

▶ Au moment de l’appel, l’interpréteur Python emballe
(packing) les arguments restants dans un dictionnaire qui est
passé à la fonction

▶ Dans la fonction, on a donc accès à ce dictionnaire et on peut
itérer sur ses clés, ou sur les vues items() ou values() .

Luc Testa ICS - Cours 5 26.03.2025 40 / 41

Take Home Message

Nous avons vu deux nouvelles structures de données
hétérogènes :

▶ Les tuples qui se comportent comme les listes si ce
n’est qu’on ne peut pas les modifier

▶ Les dictionnaires, qui permettent d’associer une valeur
à un mot-clé

On peut utiliser ces objets ainsi que l’opérateur splat
pour créer des fonctions acceptant un nombre d’arguments
indéterminé.

Luc Testa ICS - Cours 5 26.03.2025 41 / 41

