
Informatique et Calcul Scientifique

Cours 3 : Fonctions et modularité

12.03.2025

Luc Testa ICS - Cours 3 12.03.2025 1 / 30

La fois passée, on a vu..

Trois instructions de flux de contrôle qui permettent de contrôler le
déroulement d’un programme.
▶ L’instruction if qui crée une structure conditionnelle :

if condition_booleenne :
bloc d’instructions

elif autre_condition:
autre bloc d’instructions

else :
autre bloc d’instructions

fin de la structure de controle

▶ L’instruction while qui permet de répéter un bloc
d’instructions en fonction de la validité d’une condition :
while condition_booleenne :

bloc d’instructions
maj de la variable d’iteration

fin de la boucle while

▶ L’instruction for , pour parcourir une structure itérable :
for i in variable_iterable:

bloc d’instructions utilisant (ou non)
la variable i

fin de la boucle for

Luc Testa ICS - Cours 3 12.03.2025 2 / 30

But de la leçon

Aujourd’hui on...

▶ présentera la notion de fonction informatique, et son
utilisation pour simplifier notre code,

▶ étudiera les différentes sortes de paramètres que peut
prendre une fonction,

▶ comprendra la différence entre une variable globale et
locale,

▶ se familiarisera avec les différents modules en Python.

Luc Testa ICS - Cours 3 12.03.2025 3 / 30

Les fonctions mathématiques

Fonction mathématique :

Une fonction f est une transformation qui associe à chaque
élément x de l’ensemble de départ un élément y de l’ensemble
d’arrivée tel que y = f (x)

Luc Testa ICS - Cours 3 12.03.2025 4 / 30

Les fonctions en informatique

En informatique, une fonction est un ensemble d’instructions qui
accomplit une tâche spécifique.

Elle prend en entrée des données (ou non) et retourne (ou non) le
résultat du traitement de ces données.

Luc Testa ICS - Cours 3 12.03.2025 5 / 30

Les fonctions en informatique

On utilise une fonction pour :

▶ Effectuer plusieurs fois la même tâche au sein d’un programme
mais avec des valeurs différentes, et simplifier sa mise à jour.

▶ Rendre le code plus lisible et cacher certaines instructions
superflues à l’utilisateur et d’autres programmeurs.

▶ Partager du code entre plusieurs développeurs.

Dans ce cours, nous avons déjà vu quelques fonctions internes à
Python print() , input() , len() et range() , mais il en existe
bien d’autres.

De plus, il est possible de définir ses propres fonctions !

Luc Testa ICS - Cours 3 12.03.2025 6 / 30

Les fonctions en informatique

Voici un exemple de fonction personnalisée. On peut distinguer la
définition de la fonction de son appel.

================================= Debut de la definition de la fonction
def Fahrenheit_to_Celsius(T):

""" Cette fonction convertit une temperature de degre Fahrenheit
a degre Celsius et affiche un message si celle -ci est superieure
a 40C ou inferieure a -20C"""
T_C = (T-32)*5/9
if T_C < -20:

print(f"{T_C} C: Attention trop froid!")
return T_C , 1

elif T_C > 40:
print(f"{T_C} C: Attention surchauffe!")
return T_C , 2

else:
return T_C , 0

================================= Fin de la definition et code principal
liste_T1 = range(0,150 ,1)
for i in liste_T1:

T_C , flag = Fahrenheit_to_Celsius(i) # <=== Appel #1 de la fonction
if flag != 0:

break

liste_T2 = range(0,-100 ,-1)
for j in liste_T2:

T_C , flag = Fahrenheit_to_Celsius(j) # <=== Appel #2 de la fonction
if flag != 0:

break

Luc Testa ICS - Cours 3 12.03.2025 7 / 30

Définition d’une fonction

Avant de pouvoir appeler, ou utiliser, une fonction, il faut d’abord
la définir. La définition d’une fonction se fait toujours avant son
appel, dans les premières lignes du script.

▶ On déclare une fonction par le mot clé def suivi par le nom
de la fonction puis des paramètres entre parenthèses si
nécessaire, et finalement de deux points.

▶ Le corps de la fonction est ensuite défini après les deux
points. Comme pour les structures de contrôle (if , while),
ceux-ci indiquent que la suite est un bloc d’instruction.
Attention à l’indentation !

▶ Les valeurs renvoyées par une fonction sont déclarées dans le
corps de la fonction par le mot clé return .

Ajoutons qu’une fonction n’admet pas forcément de valeurs
d’entrée ni de sortie !

Luc Testa ICS - Cours 3 12.03.2025 8 / 30

Définition d’une fonction

Ces différents éléments sont illustrés sur le schéma ci-dessous :

Luc Testa ICS - Cours 3 12.03.2025 9 / 30

Appel d’une fonction

Pour exécuter le corps de la fonction, il suffit de l’appeler :

out1 , out2 , ... = nom_de_la_fonction(inp1 , inp2 , ...)

On peut décomposer l’appel d’une fonction en trois parties.

▶ Les arguments (input)

▶ Le nom de la fonction

▶ Les valeurs de sortie (output).

Les arguments sont alors passés dans le corps de la fonction qui est
exécuté, puis retourne des valeurs de sortie.

Luc Testa ICS - Cours 3 12.03.2025 10 / 30

Appel d’une fonction

Voici plusieurs exemples d’appels de fonctions :

▶ x = input()

▶ a, p = compute area triangle(base, hauteur)

▶ print()

▶ print("Ceci est une fonction")

▶ print("Ceci", "est, "une", "fonction")

▶ print("Ceci", "est, "une", "fonction", sep = "-")

▶ print("Ceci", "est", "une", "fonction", sep = "-", end = ".")

Remarquons déjà qu’une même fonction peut prendre 0, 1, 2 ou
même plus d’arguments.

Luc Testa ICS - Cours 3 12.03.2025 11 / 30

Paramètres

Les variables définies dans l’en-tête d’une fonction sont appelées
paramètres.

def calcul(x,y):
return 100*x + 10*y

Chaque paramètre défini implique la création d’une variable :

▶ portant le même nom,

▶ existant dans le corps de la fonction uniquement,

▶ à laquelle on peut affecter un objet de différentes manières.

Luc Testa ICS - Cours 3 12.03.2025 12 / 30

Arguments

Les valeurs transmises à la fonction lors de son appel sont appelées
arguments.

a,b = 5,4
s1 = calcul(a,b)
print(s1)
s2 = calcul(b,a)
print(s2)

Output :

540

450

La valeur de chaque paramètre est liée à l’argument correspondant
en fonction de l’ordre dans lequel ceux-ci sont transmis à la
fonction lors de son appel.

▶ Il faut donc généralement fournir autant d’arguments que de
paramètres.

Luc Testa ICS - Cours 3 12.03.2025 13 / 30

Paramètres obligatoires et optionnels

Il est possible d’assigner une valeur par défaut à un (ou plusieurs)
paramètre dans la définition de la fonction. On parle alors de
paramètres optionnels.
Ceux-ci doivent toujours être déclarés après les paramètres
obligatoires (sans valeur par défaut).

def calcul(x,y,z=3):
return 100*x + 10*y + z

Lors de l’appel, la valeur du paramètre n’a pas besoin d’être
précisée par un argument. Si elle l’est, la valeur de l’argument fait
foi, sinon il prend sa valeur par défaut.

s1 = calcul (1,2)
print(s1)
s2 = calcul (1,2,3)
print(s2)
s3 = calcul (1,2,5)
print(s3)

Output :

123
123
125

Luc Testa ICS - Cours 3 12.03.2025 14 / 30

Arguments positionnels et par mots-clés

Il faut toujours fournir un argument pour chaque paramètre ne
possédant pas de valeur par défaut.

De plus, on peut lier un argument à un paramètre de manière plus
explicite en utilisant la syntaxe nom param = valeur arg dans
son appel.

▶ On parle alors d’argument par mot-clé, ou argument nommé.

def calcul(x,y,z=3):
return 100*x + 10*y + z

s1 = calcul (1,2,3)
s2 = calcul(1, y=2, z=3)
s3 = calcul(1, z=3, y=2)
s4 = calcul(z=3, x=1, y=2)
print(s1 , s2 , s3 , s4, sep=’\n’)

Output :

123
123
123
123

Lors de l’appel de la fonction, l’argument par mot-clé est associé
au paramètre correspondant à son nom.

Luc Testa ICS - Cours 3 12.03.2025 15 / 30

Exemples

Dans la fonction print() , les paramètres sep et end prennent

les valeurs par défaut sep = ’ ’ et end = ’\n’ et n’ont ainsi pas
besoin d’être appelées explicitement.

print("Param", "par", "defaut")
print("Param", "par", "defaut", sep=’ ’)

Output :

Param par defaut
Param par defaut

Afin de modifier leur valeur, il faut les nommer explicitement lors
de l’appel de la fonction :

print("Param", "par", "defaut", sep=’_’)
print("Param", "par", "defaut", sep=’_’,

end=’!!’)

Output :

Param par defaut
Param par defaut!!

Luc Testa ICS - Cours 3 12.03.2025 16 / 30

Remarques sur l’ordre des arguments

Si on utilise plusieurs arguments positionnels et plusieurs
arguments par mot-clés, ces derniers doivent obligatoirement être
appelés après les arguments positionnels.

out = calcul(2, y = 3)
print(f"Resultat : {out}")

out = calcul(x = 2, 3)
print(f"Resultat : {out}")

Output :

Resultat : 233

SyntaxError:
positional
argument follows
keyword argument

Si tous les arguments sont définis par mot-clés, on peut les passer
dans n’importe quel ordre

out = calcul(x = 2, y = 3, z = 4)
print(f"Resultat : {out}")

out = calcul(z = 4, x = 2, y = 3)
print(f"Resultat : {out}")

Output :

Resultat : 234
Resultat : 234

Luc Testa ICS - Cours 3 12.03.2025 17 / 30

Remarque sur le nombre d’arguments

La fonction print() fonctionne avec un nombre variable
d’arguments :

print("Un")
print("Un", "exemple")
print("Un", "joli", "exemple")
print("Un", "exemple", sep=’.’)
print("Un", "exemple", sep=’.’, end=’!’)

Output :

Un
Un exemple
Un joli exemple
Un.exemple
Un.exemple!

Nous verrons au cours 5 qu’il est possible de définir une fonction
prenant un nombre indéfini d’arguments positionnels ou nommés
en les groupant dans un tuple ou dans un dictionnaire.

Luc Testa ICS - Cours 3 12.03.2025 18 / 30

Valeur de sortie

En Python, une fonction peut avoir zéro, une ou plusieurs valeurs
de sortie définies après le mot-clé return . Il est donc pratique de
combiner l’appel d’une fonction à une affectation multiple :

def aire_perim_rectangle(x,y):
area = x*y
perimeter = 2*x + 2*y
return area , perimeter

a,p = aire_perim_rectangle (2,3)
print(f"aire : {a}, perim : {p}")

Output :

aire : 6, perim : 10

La valeur de sortie est alors de type tuple , comme nous allons
voir dans deux semaines.

Luc Testa ICS - Cours 3 12.03.2025 19 / 30

Valeur de sortie

Après l’exécution de la ligne commençant par return , le corps de
la fonction est immédiatement quitté et le programme retourne à
la ligne suivant l’appel de la fonction.

▶ L’appel de la fonction est alors remplacé par sa valeur de
sortie

def addition(a, b):
print("On me voit")
return a + 2*b
print("On me voit plus")

somme = addition (1,2)
print(somme)

Output :

On me voit
5

Luc Testa ICS - Cours 3 12.03.2025 20 / 30

Valeur de sortie

En particulier :

▶ Si le mot-clé return n’est suivi d’aucune expression, la
fonction retourne la valeur None .

▶ Le corps d’une fonction peut ne pas contenir de mot-clé
return . Dans ce cas, la fonction est exécutée dans son
intégralité et retourne la valeur None .

▶ Le corps d’une fonction peut contenir plusieurs mots-clé
return en fonction. C’est notamment le cas si on utilise des
structures de contrôle.
Dans ce cas, le corps de la fonction est quitté lorsque le
programme atteint le premier return , et retourne la ou les
valeurs correspondantes.

Luc Testa ICS - Cours 3 12.03.2025 21 / 30

Exemple

def operations(x,method):
if method == 1:

for i in range(x):
print(i+1)

elif method == 2:
s = 0
for i in range(x+1):

s += i
return s

elif method == 3:
p = 1
i = 1
while i < x+1:

p *= i
i += 1

return p, not p%27
else:

print("Mauvais choix de methode")

print(operations (5,1), end=’\n ***\n’)
print(operations (5,2), end=’\n ***\n’)
print(operations (5,3), end=’\n ***\n’)

Output :

1
2
3
4
5
None

15

(120, False)

Luc Testa ICS - Cours 3 12.03.2025 22 / 30

Documentation

Au début du corps de la fonction, il est courant d’introduire un
commentaire spécial, appelé Docstring .

▶ Celui-ci est délimité par des triples quotes : """doc"""

def do c s t r i n g e x amp l e () :
””” Cec i e s t un exemple de Doc s t r i n g
d e c r i v a n t l a f o n c t i o n do c s t r i n g e x amp l e ”””
p r i n t (” L i r e l a documentat ion ”)

d o c s t r i n g e x amp l e ()
p r i n t (d o c s t r i n g e x amp l e . d o c)

▶ Il sert de documentation à la fonction et doit donc être rendu
aussi clair et descriptif que possible

▶ Généralement, on y décrit le rôle de la fonction ainsi que les
différentes variables y apparaissant.

▶ Il est possible de consulter la Docstring en tapant
nom de la fonction. doc

Luc Testa ICS - Cours 3 12.03.2025 23 / 30

Variable locale et globale

En programmation, il faut distinguer la notion de variable globale
et locale.

▶ Une variable globale est définie dans le module principal et
sera visible partout dans le programme

▶ Une variable locale est créée dans le corps d’une fonction. Elle
n’existe que dans celui-ci.

Dans l’exemple suivant 1, les variables area et perimeter sont
locales, alors que les variables a et p sont globales.

def aire_perim_rectangle(x,y):
area = x*y
perimeter = 2*x + 2*y
return area , perimeter

a,p = aire_perim_rectangle (2,3)
print(f"aire : {a}, perim : {p}")
print(area)

Output :

aire : 6, perim : 10

NameError: name ’area’
is not defined

1. Pour une version interactive, voir PythonTutor
Luc Testa ICS - Cours 3 12.03.2025 24 / 30

https://go.epfl.ch/local_global_function

Variable locale et globale

Si une variable est définie localement dans une fonction, Python
ne va jamais chercher de version globale.

▶ Une variable locale remplace une variable globale du même
nom dans le corps d’une fonction.

▶ Si on crée une variable (globale) avant l’appel d’une fonction,
alors celle-ci sera accessible dans la fonction en lecture seule.

x = 3
def moyenne(a,b,c):

return (a+b+c+x)/4
def moyenne2(a,b,c):

x = 5
return (a+b+c+x)/4

z = moyenne (4,4,5)
print(f"Moyenne de {z}")

z = moyenne2 (4,4,5)
print(f"Moyenne de {z}")

Output :

Moyenne de 4.0

Moyenne de 4.5

Luc Testa ICS - Cours 3 12.03.2025 25 / 30

Modularité

Toute fonction doit être définie à un endroit de l’ordinateur
accessible par Python. Elles peuvent être :

▶ définies par l’utilisateur dans le fichier .py exécuté

▶ built-in, c’est-à-dire définies dans la distribution Python et
accessibles en tout temps (print() , len() , input())

▶ définies par l’utilisateur dans un autre fichier accessible (par
exemple all functions.py). Pour les utiliser, il doit tout
d’abord les importer dans le programme

▶ définies dans la bibliothèque standard Python, mais à importer
(random.randint() , statistics.mean() , math.sqrt())

▶ créées par d’autres utilisateurs et définies dans des modules
accessibles en ligne, et à installer avant de pouvoir les importer

Luc Testa ICS - Cours 3 12.03.2025 26 / 30

Import de modules

Il existe plus de 200 modules dans la librairie standard de Python,
et près de 200’000 au total ! Il est donc probable que ce que vous
cherchiez à faire existe déjà.

Il existe différentes manières d’importer une fonction d’un module :

Méthode d’import Appel

from module name import fonction fonction()

from module name import * fonction()

import module name module name.fonction()

import module name as alias alias.fonction()

La deuxième méthode est la moins couramment utilisée car elle
risque d’effacer (ou d’être effacée par) une fonction locale
possédant le même nom.

On efface un module de la mémoire en tapant del module name .

Luc Testa ICS - Cours 3 12.03.2025 27 / 30

Modules courants

Voici quelques modules que vous serez susceptibles d’utiliser dans
la suite de vos études 2.

math
Les principales fonctions mathématiques et
nombres remarquables tels que sin, sqrt, pi

sys Pour interagir avec l’interpréteur Python

os
Pour exploiter les fonctionnalités dépendantes
du système d’exploitation

time
Pour accéder aux fonction liées au temps
ainsi qu’à l’heure de l’ordinateur

random Pour générer des nombres aléatoires

Tkinter Pour créer un interface graphique

2. La liste complète des modules standards de Python se trouve ici :
https://docs.python.org/3/py-modindex.html

Luc Testa ICS - Cours 3 12.03.2025 28 / 30

https://docs.python.org/3/py-modindex.html

Exemples

Un module que vous utiliserez souvent est le module math . La
plupart des fonctions et opérations mathématiques y sont définies.

from math import s q r t
x = 9
p r i n t (f ”La r a c i n e c a r r e e de {x} vaut { s q r t (x)}”)

de l r a n d i n t
from random import *
p r i n t (f ” Vo i c i un nombre a l e a t o i r e : { r a n d i n t (0 , 10)}”)

de l cos , p i , s i n
import math
p r i n t (f ” cos (p i) = {math . cos (math . p i)}”)

de l math
import math as m
p r i n t (f ” cos (p i) = {m. cos (m. p i)}”)

import u s e r d e f as ud
ud . f i n d u c o u r s ()

Output :

La racine carree
de 9 vaut 3.0

Voici un nombre
aleatoire : 7

cos(pi) = -1.0

cos(pi) = -1.0

Merci d’avoir
suivi ce cours !!

Luc Testa ICS - Cours 3 12.03.2025 29 / 30

Take Home Message

Pour écrire des programmes plus intéressants, on utilise des
structures de contrôle :

▶ L’instruction if: ... else: permet d’exécuter une
portion de code différente en fonction du résultat d’un
test

▶ L’instruction while permet de répéter une instruction
un nombre indéfini de fois
=⇒ Attention aux boucles infinies !

▶ L’instruction for permet de parcourir chaque élément
d’un objet itérable

Luc Testa ICS - Cours 3 12.03.2025 30 / 30

