
Informatique et Calcul Scientifique

Cours 2 : Flux de contrôle

05.03.2025

Luc Testa ICS - Cours 2 05.03.2025 1 / 44

La fois passée on a vu

▶ Une introduction à l’informatique et au langage Python

▶ Les notions d’objets, d’identité et de variables

▶ Les types int , float , str et des opérations associées

▶ Les fonctions print() et input() pour interagir avec
l’utilisateur via l’entrée standard (le clavier) et la sortie
standard (l’écran)

Luc Testa ICS - Cours 2 05.03.2025 2 / 44

Aujourd’hui on verra

Les instructions de flux de contrôle, qui permettent de contrôler
le déroulement d’un programme :

▶ L’instruction if

▶ Les boucles while

▶ Les boucles for

Luc Testa ICS - Cours 2 05.03.2025 3 / 44

Comparaisons

Il est possible de comparer les valeurs de deux objets. On utilise
pour cela des opérateurs relationnels :

Syntaxe Signification
== Egal à
!= Différent de
< Inférieur à
> Supérieur à
<= Inférieur ou égal à
>= Supérieur ou égal à
is Même identité 1

is not Identité différente

Une comparaison consiste ainsi en une instruction qui sera évaluée,
et dont le résultat peut prendre deux valeurs : True (vrai) ou
False (faux).

1. cet opérateur compare si deux objets pointent vers le même espace
mémoire

Luc Testa ICS - Cours 2 05.03.2025 4 / 44

Comparaisons : remarques

Quelques remarques :

▶ On peut comparer deux nombres (int , float), mais
également des objets d’autres types (str , list , dict). 2

▶ Attention à ne pas confondre l’opérateur de comparaison
” == ” et l’opérateur d’affectation ” = ” !

2. Nous étudierons ces différents types lors des prochaines semaines.
Luc Testa ICS - Cours 2 05.03.2025 5 / 44

Comparaisons : exemples

Voici quelques exemples de comparaisons sur deux variables :

x = 3
y = 4
print(x < 0)
print(x <= y)
print(y > -2)
print(y >= 2 * x)
print(x == y)
print(x != 2)
print (0 <= x <= 10)

Output :

False
True
True
False
False
True
True

Note : vous êtes encouragé.e.s à créer vos propres exemples, et à les

tester dans un interpréteur Python !

Luc Testa ICS - Cours 2 05.03.2025 6 / 44

Comparaisons : exemples

x = "I love Python"
y = "I love Python"
print(x == y, x!= y)
print("== teste l’egalite des valeurs:")
print(x, y)
print(x is y, x is not y)
print("is teste l’identite des objets:")
print(id(x), id(y))

Output : True False

== teste l’egalite des valeurs:

I love Python I love Python

False True

is teste l’identite des objets:

4383263536 4383263472

Luc Testa ICS - Cours 2 05.03.2025 7 / 44

Le type bool

Le résultat d’une comparaison est une valeur de type booléen
(bool).

▶ True et False sont les deux seuls objets de type bool .

▶ False est assimilé à la valeur 0 et True à la valeur 1.

print(True == 1, True == 0)
print(False == 0, False == 1)

Output :

True False
True False

Il y a plusieurs manières d’affecter un booléen à une variable :

1. en affectant directement True ou False à une variable

x = True
print(x)

Output :

True

Luc Testa ICS - Cours 2 05.03.2025 8 / 44

Le type bool

Il y a plusieurs manières d’affecter un booléen à une variable :

2. en affectant le résultat d’une comparaison à une variable

y = 3 > 5
print(y)
z = x == False
print(z)

Output :

False
False

3. en castant un objet d’un autre type en un bool

s1 = ""
s2 = "non vide"
print(s1 , bool(s1), sep = ’ & ’)
print(s2 , bool(s2), sep = ’ & ’)

Output :

& False
non vide & True

Luc Testa ICS - Cours 2 05.03.2025 9 / 44

Structure conditionnelle

Jusqu’ici, on ne sait écrire qu’un programme linéaire : une suite
d’instructions qui est exécutée ligne après ligne, quelle que soit
l’entrée du programme.

instruction 1
instruction 2
groupe d’instructions a repeter
groupe d’instructions a repeter
groupe d’instructions a repeter

Pour écrire des programmes plus intéressants, on utilisera des
instructions qui permettent à un programme d’exécuter une
séquence différente d’instructions selon qu’une certaine condition
est vérifiée ou pas.

▶ On parle alors de structures conditionnelles.

Luc Testa ICS - Cours 2 05.03.2025 10 / 44

L’instruction if

L’instruction if. . . else permet de tester une condition, puis
d’effectuer un bloc d’instructions différent en fonction du résultat
du test.

▶ Le programme ci-dessous demande un nombre à l’utilisateur
et se comporte différemment si ce nombre est strictement
positif, ou s’il est négatif ou nul.

x = float(input("Entrez un nombre svp: "))

if x > 0:
print("Votre nombre est strictement positif.")

else:
print("Votre nombre est negatif ou nul.")

print("Merci et au revoir.")

Luc Testa ICS - Cours 2 05.03.2025 11 / 44

L’instruction if

Luc Testa ICS - Cours 2 05.03.2025 12 / 44

Structure d’une instruction if

▶ L’instruction if est toujours suivie d’une condition
booléenne

▶ Les deux points : après if et else indiquent le début
d’un bloc d’instructions

▶ Chaque bloc d’instructions est délimité par un tab (ou quatre
espaces), aussi appelé indentation

▶ La fin de l’indentation indique la fin de l’instruction if ...
else .

Luc Testa ICS - Cours 2 05.03.2025 13 / 44

Structure d’une instruction if

▶ La clause else est optionnelle :

x = int(input("x: "))
if x % 2 == 0:

print(f"{x} est pair")
print("au revoir")

Output :

x: 3
au revoir

▶ Par contre, un bloc else vide (ou un bloc if vide) génère
une erreur (testez-le !)

▶ Pour avoir un bloc if ou un bloc else qui “ne fait rien”, on
peut utiliser l’instruction pass :

ce code ne fait rien
if 1 > 0:

pass

Luc Testa ICS - Cours 2 05.03.2025 14 / 44

Différencier un plus grand nombre de cas

Que se passe-t-il si on aimerait choisir parmi plusieurs condi-
tions ?

▶ Exemple : demander un nombre x à l’utilisateur, et distinguer
les cas : x strictement positif, x strictement négatif, x nul.

Luc Testa ICS - Cours 2 05.03.2025 15 / 44

Différencier un plus grand nombre de cas

▶ On peut imbriquer un if... else dans le bloc else ...

x = float(input("Entrez un nombre: "))

if x > 0:
print("strictement positif!")

else:
if x == 0:

print("nul!")
else:

print("negatif!")

print("Merci et au revoir.")

Luc Testa ICS - Cours 2 05.03.2025 16 / 44

Différencier un plus grand nombre de cas

▶ ... ou on peut utiliser une clause elif (“ else if ”) !

x = float(input("Entrez un nombre: "))

if x > 0:
print("strictement positif!")

elif x == 0:
print("nul!")

else:
print("negatif!")

print("Merci et au revoir.")

On peut rajouter un nombre arbitraire de clauses elif , du
moment qu’on associe un bloc d’instructions à chacune.

Luc Testa ICS - Cours 2 05.03.2025 17 / 44

Combiner des expressions booléennes

Comment faire si on aimerait que plusieurs conditions soient
vérifiées simultanément ?

▶ Exemple : on veut tester si un nombre est à la fois pair et
strictement positif.

⇒ On peut imbriquer deux expressions if ... :

x = float(input("Entrez un nombre pair et positif: "))

if x % 2 == 0:
if x > 0:

print("OK")
else:

print("pas OK")
else:

print("pas OK")

Luc Testa ICS - Cours 2 05.03.2025 18 / 44

Combiner des expressions booléennes

... mais on peut aussi utiliser le mot-clé and pour tester la
conjonction de deux conditions booléennes !

▶ On peut combiner les valeurs de plusieurs expressions
booléennes avec les opérateurs and , or et not .

x = float(input("Entrez un nombre pair et positif: "))

if x % 2 == 0 and x > 0:
print("OK")

else:
print("pas OK")

Luc Testa ICS - Cours 2 05.03.2025 19 / 44

Combiner des expressions booléennes

▶ Conjonction :

and True False

True True False

False False False

▶ Disjonction :

or True False

True True True

False True False

▶ Négation :

x not x

True False

False True

Luc Testa ICS - Cours 2 05.03.2025 20 / 44

Combiner des expressions booléennes

Quelques exemples :

x = 2
y = 3.0
print(x < y and type(y) == float)
print(x < y or type(y) == str)
print(not x < y)

Output :

True
True
False

Luc Testa ICS - Cours 2 05.03.2025 21 / 44

Boucles et itération

En programmation, il est fréquent qu’on veuille répéter un bloc
d’instructions un certain nombre de fois. On utilise pour ceci des
boucles. Il existe deux types de boucles différentes selon
l’utilisation désirée :

▶ Pour répéter une portion de code tant qu’une certaine
condition est vraie, on utilisera une boucle while . On ne sait
pas d’avance combien d’itérations la boucle fera !

▶ Pour répéter une portion de code un nombre prédéfini de fois,
on utilisera en général une boucle for .

Luc Testa ICS - Cours 2 05.03.2025 22 / 44

Boucles while

Une boucle while permet à un programme de continuer à exécuter
la même portion de code tant qu’une condition booléenne est vraie.

Exemple : On veut écrire un programme qui continue à

▶ prendre une châıne de caractères de l’entrée standard

▶ afficher cette châıne de caractères

jusqu’à ce que l’utilisateur entre ”STOP”.

print("Je suis le programme perroquet.")
print("Entrez STOP pour m’arreter.")
prompt = input ()

while prompt != "STOP":
print(prompt , ":D")
prompt = input ()

print("ciao")

Luc Testa ICS - Cours 2 05.03.2025 23 / 44

Structure d’une boucle while

Luc Testa ICS - Cours 2 05.03.2025 24 / 44

Structure d’une boucle while

Pour fonctionner, une boucle while doit être composée de trois
parties distinctes :

1. L’initialisation de la variable d’itération

2. L’évaluation de la condition booléenne testée par la boucle
while

3. La mise à jour de la variable d’itération

Luc Testa ICS - Cours 2 05.03.2025 25 / 44

Boucle while : exemples

Ecrire un programme qui demande à l’utilisateur un entier n et
qui affiche les nombres de 1 à n inclus.

n = int(input("Entrez un entier: "))

i = 1
while i <= n:

print(i)
i += 1

print("c’est fini!")

▶ Testez ce programme en entrant différentes valeurs (essayez
aussi des valeurs plus petites que 1).

▶ Ce programme aurait aussi pu être implémenté avec une
boucle for (plus tard...)

Luc Testa ICS - Cours 2 05.03.2025 26 / 44

Boucle while : exemples

Ecrire un programme qui affiche toutes les puissances de 2 entre 1
et 106.

x = 1
while x < 1_000_000:

print(x)
x *= 2

Ou encore

i = 0
while 2**i <= 1_000_000:

print (2 **i)
i += 1

Luc Testa ICS - Cours 2 05.03.2025 27 / 44

Boucles infinies

Attention ! Si la condition booléenne de la boucle while s’évalue
toujours à True , la boucle va itérer à l’infini.

▶ En général, ce n’est pas le comportement attendu d’une
boucle while !

Exemple : Le code suivant va afficher Hello world! jusqu’à ce
qu’on interrompe l’exécution du programme :

while True:
print("Hello world!")

Luc Testa ICS - Cours 2 05.03.2025 28 / 44

Boucles infinies

Une boucle infinie peut se produire si la condition booléenne de la
boucle while est mal définie.

▶ Reprenons l’exemple du programme qui prend un entier n et
affiche les nombres de 1 à n inclus :

n = int(input("Entrez un entier: "))

i = 1
while i >= 1:

print(i)
i += 1

print("c’est fini!")

▶ La condition booléenne vaudra toujours True , donc le bloc
d’instructions sera toujours exécuté

Luc Testa ICS - Cours 2 05.03.2025 29 / 44

Boucles infinies

Une boucle infinie peut également se produire si on ne modifie pas
le corps de la boucle, et ne met donc pas à jour la variable
d’itération.

▶ Dans le cas du code ci-dessous, on ne met pas le compteur i

à jour et par conséquent la condition i <= n restera vraie
(pour tout n > 1).

n = int(input("Entrez un entier: "))

i = 1
while i <= n:

print(i)

print("c’est fini!")

Luc Testa ICS - Cours 2 05.03.2025 30 / 44

Cas pratique : le calcul d’une moyenne

On veut écrire un programme qui prend des nombres entrés par
l’utilisateur et calcule la moyenne de ces nombres.

▶ On ne sait pas d’avance combien de nombres l’utilisateur
désirera entrer : c’est typiquement un cas où il nous faudra
une boucle while .

▶ Problème : Comment sortir de la boucle ? On utilise une
valeur sentinelle !

▶ Voir le Jupyter notebook ”Moyenne - boucle while” sur
Moodle.

Luc Testa ICS - Cours 2 05.03.2025 31 / 44

Boucle for

On utilisera une boucle for lorsqu’on veut exécuter une portion
de code un nombre connu de fois. Plus particulièrement, lorsqu’on
veut parcourir tous les éléments d’un objet itérable 3.

▶ Exemple : on veut écrire un code qui affiche un par un tous les
caractères d’un str :

text = ’salut ’
for i in text:

print(i)

Output :

s
a
l
u
t

3. On dit qu’un objet est itérable s’il contient une séquence d’éléments qu’on
peut étudier indépendamment

Luc Testa ICS - Cours 2 05.03.2025 32 / 44

Boucle for : remarques

text = ’salut’
for i in text:

print(i)

▶ text est une variable de type str qui est itérable.
▶ On verra par la suite qu’il existe d’autres structures de données

qui sont itérables (listes, dictionnaires)
▶ Il n’est pas possible d’itérer sur une structure de données qui

n’est pas itérable (int , float , ...)

▶ Ici, i est une variable dite d’itération, qu’on définit
directement dans la boucle for (et qui aurait pu avoir
n’importe quel autre nom). Elle prendra à chaque itération
successive la valeur de chaque élément contenu dans la
variable text .

▶ Tout comme la boucle while , le début du bloc d’instruction
est indiqué par les deux points et par l’indentation

Luc Testa ICS - Cours 2 05.03.2025 33 / 44

range(n)

Comment fait-on si on ne veut pas parcourir un objet itérable,
mais plutôt répéter un bloc d’instructions n fois ?

=⇒ On utilise la fonction range(n) !

Pour n un entier arbitraire, range(n) crée une structure de

données itérable qui contient les valeurs 0, 1 , . . . , n - 1 .

▶ range(5) contient les valeurs 0, 1, 2, 3, 4

▶ range(1) contient uniquement la valeur 0

▶ range(0) , range(-1) , range(-2) ... sont vides.

for i in range (5):
print(f"iteration {i}.")

Output :

iteration 0.
iteration 1.
iteration 2.
iteration 3.
iteration 4.

Luc Testa ICS - Cours 2 05.03.2025 34 / 44

range(i, j)

Si on ne veut pas commencer à 0 , on peut utiliser range(i, j)

qui contient les valeurs i, i + 1 , . . . , j - 1 .

▶ range(10, 15) contient les valeurs 10, 11, 12, 13, 14

▶ range(-5, -4) contient la valeur -5

▶ range(10, 10) , range(10, 8) , range(0, -3) ... sont vides.

Luc Testa ICS - Cours 2 05.03.2025 35 / 44

range(i, j) : exemple

range(i, j) contient les valeurs i, i + 1 , . . . , j - 1 .

for i in range (10, 15):
print(i, end = " ")

print("\n******************")

for i in range(-5, -4):
print(i, end = " ")

print("\n******************")

for i in range (10, 10):
print(i, end = " ")

print("******************")

for i in range (10, 8):
print(i, end = " ")

print("******************")

Output :

10 11 12 13 14

-5

Luc Testa ICS - Cours 2 05.03.2025 36 / 44

range(i, j, k)

Un range peut également contenir des valeurs non consécutives
mais qui diffèrent par un pas constant. On utilise pour cela
range(i, j, k) qui contient les valeurs i , i + k , i + 2k , ...

jusqu’à j non inclus :

▶ range(10, 20, 2) contient les valeurs 10, 12, 14, 16, 18

▶ range(-5, 17, 5) contient les valeurs -5, 0, 5, 10, 15

▶ range(10, 15, 6) contient uniquement la valeur 10

▶ range(10, 8, 2) est vide.

De plus, le pas k peut être négatif !

▶ range(5, 0, -1) contient les valeurs 5 , 4 , 3 , 2 , 1

▶ range(5, 0, -2) contient les valeurs 5 , 3 , 1

▶ range(0, 5, -1) et range(0, 5, -2) sont vides.

Luc Testa ICS - Cours 2 05.03.2025 37 / 44

range(i, j, k) : exemple

range(i, j, k) contient les valeurs i , i + k , i + 2k , ...

jusqu’à j non inclus.

for i in range(-2, 11, 3):
print(i, end = " ")

print("\n******************")

for i in range (11, -2, -3):
print(i, end = " ")

print("\n******************")

for i in range (10, 5, 2):
print(i, end = " ")

print("******************")

for i in range(5, 10, -2):
print(i, end = " ")

print("******************")

Output :

-2 1 4 7 10

11 8 5 2 -1

Luc Testa ICS - Cours 2 05.03.2025 38 / 44

range(i, j, k)

Dans range(i, j, k) :

▶ i est la valeur de départ, incluse. Si on ne spécifie pas ce
paramètre, il est pris à 0 par défaut.

▶ j est la valeur d’arrivée, non incluse. Ce paramètre est
obligatoire.

▶ k est le pas. Si on ne spécifie pas ce paramètre, il est pris à
1 par défaut.

▶ Si on spécifie deux paramètres dans range(i, j, k) , ils

correspondent aux valeurs de i et de j (dans cet ordre).

▶ Si on spécifie un seul paramètre, il correspond à la valeur de
j .

▶ Donc range(0, n, 1) , range(0, n) et range(n)

correspondent à la même suite de valeurs 0 , 1 ,... n-1 .

Luc Testa ICS - Cours 2 05.03.2025 39 / 44

Boucle while vs boucle for

On aimerait écrire un programme qui demande à l’utilisateur un
entier n et qui affiche les nombres de 1 à n inclus.

Il existe deux manières équivalentes de le faire, en utilisant une
boucle while ou une boucle for :

Question : Peut-on toujours utiliser de manière
interchangeable une boucle while ou une boucle for ?

Luc Testa ICS - Cours 2 05.03.2025 40 / 44

Boucle while vs boucle for

On peut toujours simuler une boucle for par une boucle while ,
en utilisant un compteur.

▶ Ainsi, les deux codes ci-dessous sont équivalents (quel
affichage produisent-ils ?)

for i in range(3, 12, 2):
print(i)

k = 3
while k < 12 :

print(k)
k += 2

Par contre, on ne peut pas toujours simuler une boucle while par
une boucle for : si on ne sait pas d’avance combien de fois la
boucle doit tourner, on utilisera une boucle while . 4

4. Revoyez les exemples de boucles while de ce cours et voyez lesquelles vous
pouvez remplacer par des boucles for.

Luc Testa ICS - Cours 2 05.03.2025 41 / 44

Exemple : afficher tous les multiples de 19 entre 0 et 1000

▶ Avec une boucle for :

for i in range (1001):
if i % 19 == 0:

print(i, end = " ")

▶ Peut-on le faire sans instruction if ?

for i in range(0, 1001, 19):
print(i, end = " ")

Luc Testa ICS - Cours 2 05.03.2025 42 / 44

Exemple : afficher tous les multiples de 19 entre 0 et 1000

▶ Avec une boucle while :

i = 0
while i <= 1000:

if i % 19 == 0:
print(i, end = " ")

i += 1

▶ Ou encore :

i = 0
while i <= 1000:

print(i, end = " ")
i += 19

▶ Ou encore :

i = 0
while 19 * i <= 1000:

print (19 * i, end = " ")
i += 1

Luc Testa ICS - Cours 2 05.03.2025 43 / 44

Take Home Message

Pour écrire des programmes plus intéressants, on utilise des
structures de contrôle :

▶ L’instruction if: ... else: permet d’exécuter une
portion de code différente en fonction du résultat d’un
test

▶ L’instruction while permet de répéter une instruction
un nombre indéfini de fois
=⇒ Attention aux boucles infinies !

▶ L’instruction for permet de parcourir chaque élément
d’un objet itérable

Luc Testa ICS - Cours 2 05.03.2025 44 / 44

