Informatique et Calcul Scientifique

Cours 2 : Flux de controle

05.03.2025

Luc Testa ICS - Cours 2 05.03.2025 1/44



La fois passée on a vu

Une introduction a l'informatique et au langage Python
Les notions d'objets, d'identité et de variables

Les types int, float, str et des opérations associées

vvyyypy

Les fonctions print() et input() pour interagir avec
I'utilisateur via I'entrée standard (le clavier) et la sortie
standard (I'écran)

Luc Testa ICS - Cours 2 05.03.2025 2 /44



Aujourd’hui on verra

Les instructions de flux de contréle, qui permettent de contrdler
le déroulement d'un programme :

» L’instruction if
> Les boucles while

» Les boucles for

Luc Testa ICS - Cours 2 05.03.2025 3 /44



Comparaisons

Il est possible de comparer les valeurs de deux objets. On utilise
pour cela des opérateurs relationnels :

Syntaxe Signification

== Egal a

I= Différent de

< Inférieur a

> Supérieur a
<= Inférieur ou égal a
>= Supérieur ou égal a
is Méme identité!

is not Identité différente

Une comparaison consiste ainsi en une instruction qui sera évaluée,
et dont le résultat peut prendre deux valeurs : True (vrai) ou
False (faux).

1. cet opérateur compare si deux objets pointent vers le méme espace
mémoire
Luc Testa ICS - Cours 2 05.03.2025 4 /44



Comparaisons : remarques

Quelques remarques :

» On peut comparer deux nombres ( int, float ), mais
également des objets d'autres types (str, list, dict).?

P Attention a ne pas confondre |'opérateur de comparaison
" ==" et |'opérateur d’'affectation ” ="

2. Nous étudierons ces différents types lors des prochaines semaines.
Luc Testa ICS - Cours 2 05.03.2025 5 /44



Comparaisons : exemples

Voici quelques exemples de comparaisons sur deux variables :

; - i Output :
print(x < @) False
print(x <= y) True
print(y > -2) True
print(y >= 2 * x) False
print(x == y) False
print(x != 2) True
print(@ <= x <= 10) True

Note : vous étes encouragé.e.s a créer vos propres exemples, et a les
tester dans un interpréteur Python !

Luc Testa ICS - Cours 2 05.03.2025 6 /44



Comparaisons : exemples

x = "I love Python”

y = "I love Python”

print(x ==y, x!=y)

print("== teste l’egalite des valeurs:")
print(x, y)

print(x is y, x is not y)

print("is teste 1’identite des objets:")
print(id(x), id(y))

Output : True False
== teste 1’egalite des valeurs:
I love Python I love Python
False True
is teste 1’identite des objets:
4383263536 4383263472

Luc Testa ICS - Cours 2 05.03.2025 7/ 44



Le type bool

Le résultat d'une comparaison est une valeur de type booléen
( bool ).

> True et False sont les deux seuls objets de type bool .

> False est assimilé a la valeur 0 et True a la valeur 1.

print(True == 1, True == 0) Quigpiz ¢
print(False == @, False == 1) True False
True False

Il'y a plusieurs manieres d'affecter un booléen a une variable :

1. en affectant directement True ou False a une variable

x = True Output :

print(x) TAE

Luc Testa ICS - Cours 2 05.03.2025 8 /44



Le type bool

Il'y a plusieurs manieres d'affecter un booléen a une variable :

2. en affectant le résultat d'une comparaison a une variable

y =3 >5 .
print (y) Output :
z = x == False False
print(z) False

3. en castant un objet d'un autre type en un bool

sl =
52 = e vide? Output :
print(sl, bool(s1), sep = ’ & ') & False
print(s2, bool(s2), sep = ’ & ) non vide & True

Luc Testa ICS - Cours 2 05.03.2025 9 /44



Structure conditionnelle

Jusqu'ici, on ne sait écrire qu'un programme linéaire : une suite
d'instructions qui est exécutée ligne apres ligne, quelle que soit
I'entrée du programme.

instruction 1
instruction 2
groupe d’instructions a repeter
groupe d’instructions a repeter
groupe d’instructions a repeter

HOH HE ¥

Pour écrire des programmes plus intéressants, on utilisera des
instructions qui permettent a un programme d’'exécuter une
séquence différente d’instructions selon qu'une certaine condition
est vérifiée ou pas.

» On parle alors de structures conditionnelles.

Luc Testa ICS - Cours 2 05.03.2025 10 / 44



L'instruction if

L'instruction if. .. else permet de tester une condition, puis
d’effectuer un bloc d'instructions différent en fonction du résultat
du test.

P> Le programme ci-dessous demande un nombre a |'utilisateur
et se comporte différemment si ce nombre est strictement
positif, ou s'il est négatif ou nul.

x = float(input("Entrez un nombre svp: "))
if x > 0:

print("Votre nombre est strictement positif.")
else:

print("Votre nombre est negatif ou nul.")

print("Merci et au revoir.")

Luc Testa ICS - Cours 2 05.03.2025 11 / 44



L'instruction if

x = float(input(“Entrez un nombre: “))

True False

print(“negatif”)

i et PP
print(“strictement positif!”) print(“ou peut-etre nul.”)

print(“Merci et au revoir.”)

Luc Testa ICS - Cours 2

03.2025 12 / 44



ructure d'une instruction if

x = float(input("Entrez un nombre: "))
condition booléenne

] x> qi]

f —_ pr1nt( strictement p051t1F'“)]

bloc if: ¢xécuté si la
conditign est vraie

|ndentat|on| )
prlnt("negatlf-~~") bloc else: exécuté si la
print("ou peut-etre nul.") conditign est fausse

print(”"Merci et au revoir.")
P> L'instruction if est toujours suivie d'une condition
booléenne

> Les deux points : aprés if et else indiquent le début
d'un bloc d'instructions

» Chaque bloc d'instructions est délimité par un tab (ou quatre
espaces), aussi appelé indentation

» La fin de I'indentation indique la fin de l'instruction if ...
else .

Luc Testa ICS - Cours 2 05.03.2025 13 / 44



ructure d'une instruction if

» La clause else est optionnelle :

x = int(input("x: "))

if x % 2 == Output :
print(f"{x} est pair") x: 3
print("au revoir") au revoir

» Par contre, un bloc else vide (ou un bloc if vide) génere
une erreur (testez-le!)

» Pour avoir un bloc if ou un bloc else qui “ne fait rien”, on
peut utiliser I'instruction pass

# ce code ne fait rien
if 1 > 0:
pass

Luc Testa ICS - Cours 2 05.03.2025 14 / 44



Différencier un plus grand nombre de cas

Que se passe-t-il si on aimerait choisir parmi plusieurs condi-
tions ?

» Exemple : demander un nombre x a l'utilisateur, et distinguer
les cas : x strictement positif, x strictement négatif, x nul.

x = float(input(“Entrez un nombre: “)) ‘

True False

True False
X ?

n
i
©

print(“strictement positif!”) ‘

print(“negatif!”)

print(“nul!”)

print(“Merci et au revoir.”)

Luc Testa ICS - Cours 2 05.03.2025



cier un plus grand nombre de cas

» On peut imbriquer un if... else dans le bloc else

x = float(input("Entrez un nombre: "))

if x > 0:
print(”"strictement positif!")
else:
if x ==
print("nul!")
else:

print("negatif!")

print(”"Merci et au revoir.")

Luc Testa ICS - Cours 2 05.03.2025 16 / 44



cier un plus grand nombre de cas

» ... ou on peut utiliser une clause elif (“else if")!

x = float(input("Entrez un nombre: "))
if x > 0:
print("strictement positif!")
elif x ==
print("nul!")
else:

print("negatif!")

print("Merci et au revoir.")

On peut rajouter un nombre arbitraire de clauses elif , du
moment qu’'on associe un bloc d'instructions a chacune.

Luc Testa ICS - Cours 2 05.03.2025 17 / 44



Combiner des expressions booléennes

Comment faire si on aimerait que plusieurs conditions soient
vérifiées simultanément ?

> Exemple : on veut tester si un nombre est a la fois pair et
strictement positif.

= On peut imbriquer deux expressions if
x = float(input("Entrez un nombre pair et positif: "))

if x % 2 == 0:
if x > 0:
print ("0K")
else:
print(”"pas 0K")
else:
print("pas OK")

Luc Testa ICS - Cours 2 05.03.2025



Combiner des expressions booléennes

. mais on peut aussi utiliser le mot-clé and pour tester la
conjonction de deux conditions booléennes!

» On peut combiner les valeurs de plusieurs expressions
booléennes avec les opérateurs and, or et not.

x = float(input("Entrez un nombre pair et positif: "))

if x % 2 == @ and x > 0:
print ("0K")

else:
print("pas OK")

Luc Testa ICS - Cours 2 05.03.2025



Combiner des expressions booléennes

» Conjonction :

and True | False
True True | False
False | False | False

» Disjonction :

or True | False
True True True
False | True | False

> Négation :

X \notx‘

True | False
False | True

Luc Testa ICS - Cours 2 05.03.2025 20 / 44



Combiner des expressions booléennes

Quelques exemples :

; _ ;0 Output :
print(x < y and type(y) == float) True
print(x < y or type(y) == str) True
print(not x < y) False

Luc Testa ICS - Cours 2 05.03.2025 21 /44



Boucles et itération

En programmation, il est fréquent qu'on veuille répéter un bloc
d’instructions un certain nombre de fois. On utilise pour ceci des
boucles. |l existe deux types de boucles différentes selon
I'utilisation désirée :

» Pour répéter une portion de code tant qu’une certaine
condition est vraie, on utilisera une boucle while . On ne sait
pas d'avance combien d'itérations la boucle fera!

» Pour répéter une portion de code un nombre prédéfini de fois,
on utilisera en général une boucle for .

Luc Testa ICS - Cours 2 05.03.2025 22 /44



Boucles while

Une boucle while permet a un programme de continuer a exécuter
la méme portion de code tant qu'une condition booléenne est vraie.
Exemple : On veut écrire un programme qui continue a

P prendre une chaine de caractéres de |'entrée standard

> afficher cette chaine de caracteres

jusqu'a ce que I'utilisateur entre "STOP" .

print("”"Je suis le programme perroquet.")
print("Entrez STOP pour m’arreter."”)
prompt = input()

while prompt != "STOP":
print(prompt, ":D")
prompt = input()

print(”"ciao")

Luc Testa ICS - Cours 2 05.03.2025



Structure d'une boucle while

Luc Testa

print("Je suis le programme perroquet.")
print("Entrez STOP pour m'arreter.")
prompt = input()

False
prompt != "STOP” ?

print(prompt, ":D")

prompt = input()

print("ciao")

ICS - Cours 2

03.2025

24 / 44



ructure d’'une boucle while

Pour fonctionner, une boucle while doit é&tre composée de trois
parties distinctes :

print("Je suis le programme perroquet.”)
print("Entrez STOP pour m’arreter.")

1 prompt = input()
condition booléenne
[while][prompt = "STOP"[] 2
——— print(prompt, ":D") exécuté tant que la
indentation! 3 prompt = input() condition est vraie

print("ciao”)

1. L’initialisation de la variable d’itération

2. L'évaluation de la condition booléenne testée par la boucle
while

3. La mise a jour de la variable d'itération

Luc Testa ICS - Cours 2 05.03.2025



Boucle while : exemples

Ecrire un programme qui demande a I'utilisateur un entier n et
qui affiche les nombres de 1 a n inclus.

n = int(input ("Entrez un entier: "))
i =1
while i <= n:

print (i)

i+= 1

print(”"c’est fini!")

> Testez ce programme en entrant différentes valeurs (essayez
aussi des valeurs plus petites que 1).

» Ce programme aurait aussi pu étre implémenté avec une
boucle for (plus tard...)

Luc Testa ICS - Cours 2 05.03.2025 26 / 44



Boucle while : exemples

Ecrire un programme qui affiche toutes les puissances de 2 entre 1

et 10°.
x =1
while x < 1_000_000:
print(x)
X *= 2
Ou encore
i=o0

while 2*xi <= 1_000_000:
print (2*xi)
i +=1

Luc Testa ICS - Cours 2 05.03.2025 27 / 44



Boucles infinies

Attention ! Si la condition booléenne de la boucle while s'évalue
toujours a True, la boucle va itérer a I'infini.

> En général, ce n'est pas le comportement attendu d'une
boucle while !

Exemple : Le code suivant va afficher Hello world! jusqu'a ce
qu'on interrompe |'exécution du programme :

while True:
print("Hello world!")

Luc Testa ICS - Cours 2 05.03.2025



Boucles infinies

Une boucle infinie peut se produire si la condition booléenne de la
boucle while est mal définie.

» Reprenons |'exemple du programme qui prend un entier n et
affiche les nombres de 1 a n inclus:

n = int(input("Entrez un entier: "))
i=1
while i >= 1:

print (i)

i+=1

print("c’est fini!")

» La condition booléenne vaudra toujours True , donc le bloc
d'instructions sera toujours exécuté

Luc Testa ICS - Cours 2 05.03.2025



Boucles infinies

Une boucle infinie peut également se produire si on ne modifie pas
le corps de la boucle, et ne met donc pas a jour la variable
d'itération.

» Dans le cas du code ci-dessous, on ne met pas le compteur i
a jour et par conséquent la condition i <= n restera vraie
(pour tout n > 1).

n = int(input("Entrez un entier: "))
i =1
while i <= n:

print (i)

print("c’est fini!")

Luc Testa ICS - Cours 2 05.03.2025 30 /44



Cas pratique : le calcul d'une moyenne

On veut écrire un programme qui prend des nombres entrés par
I'utilisateur et calcule la moyenne de ces nombres.
» On ne sait pas d'avance combien de nombres |'utilisateur
désirera entrer : c'est typiquement un cas ou il nous faudra
une boucle while .
» Probleme : Comment sortir de la boucle ? On utilise une
valeur sentinelle!
> Voir le Jupyter notebook " Moyenne - boucle while” sur
Moodle.

Luc Testa ICS - Cours 2 05.03.2025 31 /44



Boucle for

On utilisera une boucle for lorsqu'on veut exécuter une portion
de code un nombre connu de fois. Plus particulierement, lorsqu’'on
veut parcourir tous les éléments d’un objet itérable 3.

> Exemple : on veut écrire un code qui affiche un par un tous les
caracteres d'un str

Output :
text = ’salut’ S
for i in text: &
print(i) 1
u
t

3. On dit qu'un objet est itérable s'il contient une séquence d’'éléments qu’'on
peut étudier indépendamment
Luc Testa ICS - Cours 2 05.03.2025 32 /44



Boucle for : remarques

text = ’salut’
for 1 in text:
print (i)

> text est une variable de type str qui est itérable.
» On verra par la suite qu'il existe d’autres structures de données

qui sont itérables (listes, dictionnaires)
» |l n'est pas possible d'itérer sur une structure de données qui

n'est pas itérable ( int, float, ...)

P> lIci, i est une variable dite d’'itération, qu’on définit
directement dans la boucle for (et qui aurait pu avoir
n'importe quel autre nom). Elle prendra a chaque itération
successive la valeur de chaque élément contenu dans la
variable text .

» Tout comme la boucle while , le début du bloc d’instruction
est indiqué par les deux points et par |'indentation

Luc Testa ICS - Cours 2 05.03.2025 33 /44



Comment fait-on si on ne veut pas parcourir un objet itérable,
mais plutdt répéter un bloc d’instructions n fois ?

= On utilise la fonction range(n) !

Pour n un entier arbitraire, range(n) crée une structure de
données itérable qui contient les valeurs @, 1, ..., n - 1.
> range(5) contient les valeurs o, 1, 2, 3, 4

» range(1) contient uniquement la valeur @

» range(@), range(-1), range(-2) ... sont vides.

Output :

iteration
iteration
iteration
iteration
iteration

for i in range(5):
print(f"iteration {i}.")

A wWN =

Luc Testa ICS - Cours 2 05.03.2025 34 /44



range(i, j)

Si on ne veut pas commencer a @, on peut utiliser range(i, j)
qui contient les valeurs i, i +1,..., j - 1.

» range(10, 15) contient les valeurs 10, 11, 12, 13, 14
» range(-5, -4) contient la valeur -5

» range(10, 10) , range(10, 8), range(®, -3) ... sont vides.

Luc Testa ICS - Cours 2 05.03.2025 35 /44



range(i, j) : exemple

range(i, j) contient les valeurs i, i + 1, ...

for i in range(10, 15):
print(i, end = " ")
print ("\nkxkxkkkkxkkkkxkxkx")

for i in range(-5, -4): OQutput :
print(i, end = " ") 10 11 12 13 14
print ("\n#xxxxkkxkxkkxkkxkx") e

-5
KARKKKKA AR AKKAXNK KKK

for i in range(l0, 10):
print(i, end = " ")
print ("xxxxkxkkkkkkxkkkKkx"

KARRKRXRKARARRAXKkkk

KAk KkAkAKkAAkkhkkkhkhkkkk

for i in range(10, 8):
print(i, end = " ")
print ("kkxkkkkkkkkkkkkkxkx "

Luc Testa ICS - Cours 2 05.03.2025 36 /44



range(i, j, k)

Un range peut également contenir des valeurs non consécutives
mais qui different par un pas constant. On utilise pour cela
range(i, j, k) qui contient les valeurs i, i + k, i + 2k, ...
jusqu'a j non inclus :

» range(10, 20, 2) contient les valeurs 10, 12, 14, 16, 18
» range(-5, 17, 5) contient les valeurs -5, @, 5, 10, 15
> range(10, 15, 6) contient uniquement la valeur 10
>

range(10, 8, 2) est vide.

De plus, le pas k peut étre négatif!
» range(5, 0, -1) contient les valeurs 5, 4, 3, 2, 1
» range(5, 0, -2) contient les valeurs 5, 3, 1

» range(@, 5, -1) et range(@, 5, -2) sont vides.

Luc Testa ICS - Cours 2 05.03.2025 37 /44



range(i, j, k) : exemple

range(i, j, k) contient les valeurs i, i + k, i + 2k, ...
jusqu'a j non inclus.

for i in range(-2, 11, 3):
print(i, end = " ")
print ("\nkxxkxkkkkxkkkkxkxkx")

for i in range(11, -2, -3): Output :

print(i, end = " ") 214710

. 2 o
pPrint ("\nxkkxkkkkxkkkxxkkxx") Feok gk dk KKk F kKK kKKK

11 8 52 -1

for i in range(l0, 5, 2): Kk AKKKKKKA KKK KKK K

print(i, end = " ")
print ("xxxxkxkkkkkkxkkkkx "

KEAKKAKRKAKR KA hAKRk*)

B e S T S e e T

for i in range(5, 10, -2):
print(i, end = " ")
print ("xxxxkxkkkkkkxkkkKkx "

Luc Testa ICS - Cours 2 05.03.2025



range(i, j, k)

Dans range(i, j, k)
> i est la valeur de départ, incluse. Si on ne spécifie pas ce
parameétre, il est pris a @ par défaut.

> j est la valeur d'arrivée, non incluse. Ce paramétre est
obligatoire.

> k est le pas. Si on ne spécifie pas ce paramétre, il est pris a
1 par défaut.

» Si on spécifie deux parametres dans range(i, j, k), ils
correspondent aux valeurs de i et de j (dans cet ordre).

» Si on spécifie un seul paramétre, il correspond a la valeur de
J.

» Donc range(@, n, 1), range(@, n) et range(n)
correspondent a la méme suite de valeurs 0, 1,... n-1.

Luc Testa ICS - Cours 2 05.03.2025



Boucle while vs boucle for

On aimerait écrire un programme qui demande a I'utilisateur un
entier n et qui affiche les nombres de 1 a n inclus.

Il existe deux manieéres équivalentes de le faire, en utilisant une
boucle while ou une boucle for

n int(input("Entrez un entier: "))

n = int(input("Entrez un entier: "))

i =1

while i <= n: for i in range(n):
print(i) print(i+1)
i +=1

print("c’est fini!")

print("c’est fini!")

Question : Peut-on toujours utiliser de maniere
interchangeable une boucle while ou une boucle for?

Luc Testa ICS - Cours 2 05.03.2025 40 / 44



Boucle while vs boucle for

On peut toujours simuler une boucle for par une boucle while ,
en utilisant un compteur.

» Ainsi, les deux codes ci-dessous sont équivalents (quel
affichage produisent-ils ?7)

k =3
for i in range(3, 12, 2): while k < 12
print (i) print (k)
k += 2

Par contre, on ne peut pas toujours simuler une boucle while par
une boucle for : si on ne sait pas d'avance combien de fois la
boucle doit tourner, on utilisera une boucle while .#

4. Revoyez les exemples de boucles while de ce cours et voyez lesquelles vous
pouvez remplacer par des boucles for.
Luc Testa ICS - Cours 2 05.03.2025 41 / 44



Exemple : afficher tous les multiples de 19 entre 0 et 1000

» Avec une boucle for :

[

| for i in range(1001):

\ if i % 19 == 0:

\ print(i, end = " ")
L

» Peut-on le faire sans instruction if ?

for i in range(@, 1001, 19):
print(i, end = " ")

Luc Testa ICS - Cours 2

05.03.2025

42 / 44



Exemple : afficher tous les multiples de 19 entre 0 et 1000

» Avec une boucle while :

i =20
while 1 <= 1000:
if i % 19 == 0:
print(i, end = " ")
i +=1

» QOu encore :

i=0

while i <= 1000:
print(i, end = " ")
i += 19

» QOu encore :

i=0

while 19 *x i <= 1000:
print(19 = i, end = " ")
i +=1

Luc Testa ICS - Cours 2 05.03.2025 43 / 44



Take Home Message

Pour écrire des programmes plus intéressants, on utilise des
structures de controle :

» L'instruction if: ... else: permet d’exécuter une
portion de code différente en fonction du résultat d'un
test

» |'instruction while permet de répéter une instruction
un nombre indéfini de fois
= Attention aux boucles infinies !

» L'instruction for permet de parcourir chaque élément
d'un objet itérable

Luc Testa ICS - Cours 2 05.03.2025

44 / 44



