
y +1/1/60+ y

Enseignant·e·s: L. Testa
Informatique et Calcul Scientifique - CMS
04 juillet 2024
Durée : 150 minutes

1
Abra Kadabra

SCIPER : 987654

Attendez le début de l’épreuve avant de tourner la page. Ce document est imprimé
recto-verso, il contient 13 questions sur 16 pages, les dernières pouvant être vides.
L’examen est sur 50 points. Ne pas dégrafer.

• Posez votre votre pièce d’identité sur la table.
• L’utilisation d’une calculatrice et de tout outil électronique est interdite pendant
l’épreuve.

• Pour les questions à choix unique, on comptera :
– les points indiqués si la réponse est correcte,
– 0 point s’il n’y a aucune ou plus d’une réponse inscrite,
– 0 point si la réponse est incorrecte.

• Lorsqu’on vous demande d’écrire du code, faites attention à bien respecter les inden-
tations.

• Vous n’avez pas besoin de commenter votre code mais vous pouvez le faire si vous
pensez que cela aide à sa compréhension.

• Si une question est erronée, les enseignant·e·s se réservent le droit de l’annuler.
• Utilisez un stylo à encre noire ou bleu foncé et effacez proprement avec du cor-
recteur blanc si nécessaire.

• Répondez dans l’espace prévu (aucune feuille supplémentaire ne sera fournie).
• Les brouillons sont à rendre, mais ils ne seront pas corrigés.

y y

y +1/2/59+ y
Première partie, questions à choix unique
Pour chaque énoncé proposé, une ou plusieurs questions sont posées. Pour chaque question,
marquez la case correspondante à la réponse correcte sans faire de ratures. Il n’y a qu’une
seule réponse correcte par question.

Question 1 (2 points)

Qu’affiche le code ci-dessous ?

L1 = [4, 3, 2, 1]

L2 = [10*i for i in L1]

L3 = L2 + 2*L1

print(L3)

[40, 30, 20, 10, 4, 3, 2, 1, 4, 3, 2, 1]

[10, 20, 30, 40, 8, 6, 4, 2]

[18, 26, 34, 42]

[48, 36, 24, 12]

[10, 20, 30, 40, 4, 3, 2, 1, 4, 3, 2, 1]

[40, 30, 20, 10, 8, 6, 4, 2]

Question 2 (2 points)

Qu’affiche le code ci-dessous ?

def casse_tete(a, b, mid = ’ ’, fin = ’OO’, *args):

out = a + mid + b + mid + fin

for i in args:

out += i

print(out , sep = ’-’)

casse_tete(’A’, ’B’, ’1’, ’2’)

A1B12

AB0012

A B 0012

A-B-00-1-2

A B 00 1 2

A-1-B-1-2

A-B-1-2

A 1 B 1 2

Question 3 (2 points)

Qu’affiche le code ci-dessous ?

def chiffre(nb):

if nb == 1:

return "Un"

elif nb == 2:

return "Deux"

elif nb > 3:

return "Beaucoup"

print(chiffre (3))

Beaucoup

None

Un

Deux

Rien ne s’affiche
Une erreur TypeError

y y

y +1/3/58+ y
Question 4 (2 points)

On considère les deux fonctions suivantes, définies sur R :

f(n) = 0.1n2 − 10n et g(n) = n(1 + 3
√
2n).

Laquelle des affirmations suivantes est vraie?

g(n) = O(f(n)) mais f(n) n’est pas O(g(n))

f(n) = O(g(n)) mais g(n) n’est pas O(f(n))

On peut peut pas comparer les ordres de croissance de f et de g

f(n) = Θ(g(n))

Question 5 (2 points)

Qu’affiche le code suivant?

import numpy as np

L1 = np.arange (6)

L2 = np.reshape(L1 ,(3,2))

L2 *= 2

print(L2)

[[0 2 4]

[6 8 10]]

[[0 2]

[4 6]

[8 10]]

[[0 1 0 1]

[2 3 2 3]

[4 5 4 5]]

[[0 1 2 0 1 2]

[3 4 5 3 4 5]]

Question 6 (3 points)

On donne l’algorithme ci-dessous :

def my_algo(L, x):

bas = 0

haut = len(L)-1

while haut >= bas:

milieu = (bas+haut)//2

print(milieu , end = " ")

if L[milieu] == x:

return None

if L[milieu] > x:

haut = milieu - 1

else:
bas = milieu + 1

On définit la liste L = [-8, -6, -4, -2, 0, 2, 4, 6, 8].
Quelle paire d’appels produit le même affichage?

my_algo(L, -1) et my_algo(L, -2)

my_algo(L, 4) et my_algo(L, 5)

my_algo(L, -3) et my_algo(L, -4)

my_algo(L, 3) et my_algo(L, 4)

y y

y +1/4/57+ y
Question 7 (2 points)

On cherche à calculer l’intégrale de la fonction f(x) = (x − 1)(x2 − 3x + 2) entre a = −2

et b = 4. Quelle méthode d’intégration numérique nous permet d’obtenir le résultat exact,
c’est-à-dire avec eabs = 0 ?

La méthode des trapèzes
La méthode du point milieu

Aucune des trois méthodes citées
La méthode de Simpson

Question 8 (3 points)

Parmi les cinq fonctions Python Newton définies ci-dessous, laquelle implémente la méthode
dite de Newton permettant de déterminer une approximation d’un zéro d’une fonction f ?

def Newton(f, x_0 , fprime , erreur , nmax):

x = x_0

for n in range(0, n_max):

if abs(f(x)) < erreur:

return x, n+1, True

x = x + f(x)/fprime(x)

return x, n+1, False

def Newton(f, x_0 , fprime , erreur , nmax):

x = x_0

for n in range(0, n_max):

if abs(f(x)) < erreur:

return x, n+1, True

x = x + fprime(x)/f(x)

return x, n+1, False

def Newton(f, x_0 , fprime , erreur , nmax):

x = x_0

for n in range(0, n_max):

if abs(f(x)) < erreur:

return x, n+1, True

x = x - fprime(x)/f(x)

return x, n+1, False

def Newton(f, x_0 , fprime , erreur , nmax):

x = x_0

for n in range(0, n_max):

if abs(f(x)) < erreur:

return x, n+1, True

x = x - f(x)*fprime(x)

return x, n+1, False

def Newton(f, x_0 , fprime , erreur , nmax):

x = x_0

for n in range(0, n_max):

if abs(f(x)) < erreur:

return x, n+1, True

x = x - f(x)/fprime(x)

return x, n+1, False

Question 9 (2 points)

Qu’affiche le code ci-dessous ?

L1 = [[’A’], [’B’]]

L2 = L1.copy()

L2.append([’D’])

L1[1].append(’C’)

print (L1 , L2 ,sep=’\n’)

[[’A’], [’B’], [’C’]]

[[’A’], [’B’], [’C’], [’D’]]

[[’A’], [’B’, ’C’]]

[[’A’], [’B’, ’C’], [’D’]]

[[’A’], [’B’, ’C’], [’D’]]

[[’A’], [’B’, ’C’], [’D’]]

[[’A’], [’B’], [’C’], [’D’]]

[[’A’], [’B’], [’C’], [’D’]]

y y

y +1/5/56+ y
Question 10 (3 points)

Parmi les huit fonctions Python my_plot proposées, laquelle produit la figure ci-dessous
lorsqu’elle est appelée dans le code suivant ?

plt.figure ()

###

my_plot ()

###

plt.grid()

plt.axis("equal")

plt.show()

def my_plot ():

plt.plot([0,4],[-4,0] ,’k’,label=’1’)

plt.plot([0,-4],[4,0],’k-’,label=’3’)

plt.plot([-4,0],[0,-4],’k--’,label=’4’)

def my_plot ():

plt.plot([0,4],[-4,0] ,’k’,label=’1’)

plt.plot([4,0],[0,4],’kd’,label=’2’)

plt.plot([0,-4],[4,0],’k-’,label=’3’)

plt.plot(x,-x-4,’k.’,label=’4’)

plt.legend ()

def my_plot ():

plt.plot([0,4],[-4,0] ,’k’,label=’1’)

plt.plot([0,-4],[4,0],’k-’,label=’3’)

plt.plot(x,-x-4,’k.’,label=’4’)

def my_plot ():

plt.plot([0,4],[-4,0] ,’k’,label=’1’)

plt.plot([4,0],[0,4],’kd’,label=’2’)

plt.plot([0,-4],[4,0],’k-’,label=’3’)

plt.plot([-4,0],[0,-4],’k--’,label=’4’)

plt.legend ()

def my_plot ():

plt.plot([0,4],[-4,0] ,’k’,label=’1’)

plt.plot([4,0],[0,4],’kd’,label=’2’)

plt.plot([0,-4],[4,0],’k-’,label=’3’)

plt.plot(x,-x-4,’k.’,label=’4’)

def my_plot ():

plt.plot([0,4],[-4,0] ,’k’,label=’1’)

plt.plot([4,0],[0,4],’kd’,label=’2’)

plt.plot([0,-4],[4,0],’k-’,label=’3’)

plt.plot([-4,0],[0,-4],’k--’,label=’4’)

def my_plot ():

plt.plot([0,4],[-4,0] ,’k’,label=’1’)

plt.plot([0,-4],[4,0],’k-’,label=’3’)

plt.plot([-4,0],[0,-4],’k--’,label=’4’)

plt.legend ()

def my_plot ():

plt.plot([0,4],[-4,0] ,’k’,label=’1’)

plt.plot([0,-4],[4,0],’k-’,label=’3’)

plt.plot(x,-x-4,’k.’,label=’4’)

plt.legend ()

y y

y +1/6/55+ y
Deuxième partie, questions de type ouvert
Répondez dans l’espace dédié. Laissez libres les cases à cocher : elles sont réservées à la
correction.

Question 11: Cette question est notée sur 6 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

.5

6

On considère une liste L ne contenant que des éléments de type str. Par exemple,
L = ["Ceci", "est", "un", "exemple", "de", "liste"].

On aimerait classer ces éléments en fonction de leur longueur dans un dictionnaire au travers
de plusieurs étapes.

(a) Ecrivez un programme permettant d’extraire la longueur lmax de la chaîne de charactères
la plus longue de cette liste.

(b) Initialisez un dictionnaire d dont les différentes clés sont des entiers allant de 1 à lmax et
les valeurs associées sont des listes vides.

(c) Remplissez le dictionnaire d selon la logique suivante : la valeur associée à la clé N doit
contenir tous les mots de la liste initiale L qui contiennent N lettres. En reprenant l’exemple
précédent,
d = {1: [], 2: [’un’, ’de’], 3: [’est’], 4: [’Ceci’], 5: [’liste’], 6: [], 7: [’exemple’]}.

y y

y +1/7/54+ y
Solution

(a) En partant d’un maximum temporaire, lmax = 0, on parcourt tous les éléments de la liste
L, et on mesure sa longueur s que l’on compare avec lmax. On ne garde que la plus grande
valeur, jusqu’à avoir comparé tous les éléments de la liste.

#1. Trouver mot de longueur maximale

lmax = 0

for i in L:

s = len(i) [1 point pour l’’itÃ©ration et la longueur]

if s > lmax: [1 point pour la comparaison avec lmax et la MAJ]

lmax = s

On initialise un dictionnaire vide en utilisant une compréhension de dictionnaire. Les clés
sont des nombres alant de 1 à lmax et les valeurs associées sont des listes vides.
On aurait également pu utiliser une boucle for ou while. Attention à commencer par ini-
tialiser un dictionnaire vide dans ce cas, et à mettre à jour la variable d’itération !!

#2. Creer dictionnaire

d = {i+1:[] for i in range(lmax)} [1 point pour la comprÃ©hension/boucle]

[1 point pour l’’initialisation]

#2. Variante 0 (attention indices)

d0 = {i:[] for i in range(1,lmax+1)}

#2. Variante 1

d1 = {}

for i in range(lmax):

d1[i+1] = []

#2. Variante 2

d2 = {}

i = 1

while i <= lmax:

d2[i] = []

i += 1

(b) Pour chaque élément de la liste L, on mesure sa longueur N. On rajoute ensuite le mot
correspondant L[i] à la liste associée à la valeur N dans le dictionnaire d à l’aide de la
méthode append.

#3. Parcourir la liste et remplir

for i in range(len(L)):

N = len(L[i]) [1 point pour d[N]]

d[N].append(L[i]) [1 point pour append(L[i])]

y y

y +1/8/53+ y
Question 12: Cette question est notée sur 11 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

.5 .5 .5 .5 .5

6 7 8 9 10

.5

11

On considère la fonction f(x) représentée graphiquement ci-dessous sur l’intervalle [−2, 2].

(a) En utilisant la base de Lagrange appropriée, trouvez l’expression analytique de f(x), en
sachant qu’il s’agit d’un polynôme de degré 2 qui en x0 = −2 vaut 3, en x1 = 0 vaut 0 et
en x2 = 2 vaut 2.

(b) Calculez "à la main", c’est-à-dire sans écrire de code, l’intégrale de f(x) entre −2 et 2

en utilisant la méthode de quadrature composite basée sur la formule des trapèzes et
en considérant une partition régulière du domaine d’intégration [−2, 2] en deux sous-
intervalles. Le résultat doit être sous forme de valeur numérique.

y y

y +1/9/52+ y
(c) Complétez le code Python ci-dessous définissant une fonction Python integration_Simpson

permettant d’approcher l’intégrale d’une fonction f sur le domaine [a,b] en utilisant la
méthode de quadrature composite avec n sous-intervalles basée sur la formule de Simp-
son.

CALCUL NUMERIQUE DE L’INTEGRALE DEFINIE

EN UTILISANT LA METHODE DE SIMPSON

def integration_Simpson(f,a,b,n):

’’’

PARAMETRES

f : Fonction a integrer

a, b : Bornes du domaine d’integration

n : Nombre de sous -intervalles

VARIABLES

I : Approximation de l’integrale

dx : Finesse de la partition

xmin , xmax : bornes du sous -intervalle

’’’

1. INITIALISATION DES VARIABLES

I = _______________

dx = _______________

xmax = _______________

2. CALCUL DES INTEGRALES

for i in range(1,n+1):

xmin = _______________

xmax = _______________

I += _______________

return _______________

(d) Sur la base des informations à votre disposition, est-il possible de déterminer la valeur
exacte de l’erreur absolue obtenue eabs en appliquant la méthode de Simpson à la fonction
f(x) définie à la page précédente, et en considérant une partition régulière du domaine
d’intégration [−2, 2] en trois sous-intervalles?
Si oui, que vaut-elle? Justifiez en une phrase.

y y

y +1/10/51+ y
Solution

(a) On commence par chercher la base de Lagrange associée aux points x0 = −2, x1 =

0, x2 = 2 à l’aide de la définition ϕk(x) =
∏

j,j ̸=k

x − xj

xk − xj

. Ainsi,

ϕ0(x) =
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
=

x(x − 2)

8
=

1

8
x2 −

1

4
x (1)

ϕ1(x) =
(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
=

(x + 2)(x − 2)

−4
=

1

4
(4 − x2) (2)

ϕ2(x) =
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
=

(x + 2)x

8
=

1

8
x2 +

1

4
x (3)

On construit donc la fonction f(x) dans la base {ϕk(t)} donnée par ces trois fonctions de
Lagrange de la manière suivante : f(x) =

∑
j fjϕj(x) , où fj est la valeur de f au point

xj donnée dans l’énoncé. Ainsi,

f(x) = 3ϕ0(x) + 0ϕ1(x) + 2ϕ2(x) (4)

=
3

8
x2 −

3

4
x +

2

8
x2 +

2

4
x (5)

=
5

8
x2 −

1

4
x. (6)

(b) On considère deux sous-intervalles, I1 = [−2, 0] et I2 = [0, 2]. En utilisant la formule
composite des trapèzes, on obtient

JT (f) =
∑
i

JT
i (f) =

1∑
0

(xi+1 − xi)
f(xi) + f(xi+1)

2
(7)

= 2 ·
[
f(−2) + f(0)

2
+

f(0) + f(2)

2

]
(8)

= 2

(
3

2
+ 1

)
(9)

= 5. (10)

(c) Voici le code complété :
CALCUL NUMERIQUE DE L’INTEGRALE DEFINIE

EN UTILISANT LA METHODE DE SIMPSON

def integration_Simpson(f,a,b,n):

1. INITIALISATION DES VARIABLES

I = 0.0 [0.5 point]

dx = (b-a)/n [0.5 point]

xmax = a [0.5 point]

2. CALCUL DES INTEGRALES

for i in range(1,n+1):

xmin = xmax [0.5 point]

xmax = xmin + dx [0.5 point]

I += (f(xmin) + 4*f((xmin + xmax)/2)+ f(xmax))*dx/6 [1 point]

return I [0.5 point]

(d) Comme le poynôme est de degré 2, nous savons que la valeur calculée par la méthode de
Simpson donnera le résultat exact, peu importe le nombre de sous-intervalles considérés.
Ainsi, eabs = 0.

y y

y +1/11/50+ y
Question 13: Cette question est notée sur 10 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

.5 .5 .5 .5 .5

6 7 8 9 10

On considère la fonction f : R → R à variable réelle définie par

f(x) =
4

3
x +

2 − 1
2
x2

4
,

et représentée graphiquement ci-dessous sur l’intervalle [−3, 12].
On aimerait obtenir une approximation des racines α1 et α2 à l’aide de la méthode numérique
de la bissection, en partant de l’intervalle I0 = [a0, b0] = [−3, 9] représenté sur la même image.

(a) En partant de I0, définissez l’intervalle considéré lors des quatre itérations suivantes de
la méthode, c’est-à-dire Ik = [ak, bk] avec k = 1, 2, 3, 4.

(b) Que vaut x3, l’approximation de la racine obtenue si on termine l’algorithme après la
troisième itération de la méthode de la bissection, c’est-à-dire après k = 3.
Que vaut l’erreur absolue maximale eabs,3 correspondante?

(c) Quel est le nombre minimal d’itérations à effectuer pour que l’erreur sur l’approximation
de la racine satisfasse une tolérance de ε =

3

16
, donc soit telle que eabs,k = ε?

(d) On considère maintenant un nouvel intervalle de départ, I0 = [−1, 12]. Est-ce que la
méthode de la bissection simple peut nous permettre de trouver une bonne approximation
de α2? Justifiez mathématiquement.

(e) Afin de trouver une valeur approchant α2, pourrait-on utiliser la méthode de Newton en
partant de x0 =

16

3
? Justifiez mathématiquement.

y y

y +1/12/49+ y
Solution

(a) A chaque itération, on coupe l’intervalle Ik en deux et considère l’intervalle dans lequel
la fonction change de signe (visuellement). Ainsi,

I0 = [−3, 9]

I1 = [−3, 3]

I2 = [−3, 0]

I3 = [−1.5, 0]

I4 = [−0.75, 0].

(b) Pour k = 3, I3 = [−1.5, 0]. Ainsi, x3 est au milieu de cet intervalle donc x3 = −0.75.
La racine α se trouvant forcément dans cet intervalle, l’erreur sur l’approximation x3 de
cette racine vaut au maximum eabs,3 =

1.5

2
= 0.75. Cette valeur est obtenue si la racine

se trouve à une borne de cet intervalle.

(c) Dans le cours, nous avons prouvé que le nombre minimal d’itérations à effectuer pour
obtenir une tolérance ε vaut

kmin = log2

(
b0 − a0

ε

)
− 1

= log2

(
12
3
16

)
− 1

= log2(64) − 1

= 6 − 1

= 5.

(d) Non, cet intervalle ne nous permet pas de trouver une bonne approximation de x2.
En effet, f(a0) · f(b0) > 0 ce qui implique que la fonction change deux fois de signe sur
cet intervalle..
Ainsi, la condition de départ n’est pas satisfaite et l’algorithme ne peut pas être appliqué
sur cet intervalle.

(e) Non, on ne peut pas appliquer la méthode de Newton en x0.

Pour le prouver, calculons la dérivée de f(x) =
4

3
x +

2 −
1

2
x2

4
en x0 =

16

3
.

f ′(x) =
4

3
−

1

4
x.

Ainsi,

f ′(x0) =
4

3
−

1

4
·
16

3

=
4

3
−

4

3

= 0.

Comme f ′(x0) = 0, la pente de la fonction f est nulle en x0 ce qui contredit les hypothèses
nécessaires au bon fonctionnement de la méthode de Newton. En effet, la droite passant
par le point (x0.f(x0)) et de pente m = 0 ne coupera jamais l’axe horizontal.

y y

