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Chapter 1

Nombres et ensembles

1.1 Nombres naturels et ensembles

On admet comme donnés les nombres naturels
0,1,2,3,4,...

Ainsi que les opérations élémentaires
=+, X

Ensemble des entiers naturels N La collection de ces nombres (naturels) est un ensemble que I'on dénotera par

N:={0,1,2,3,4,..}

)’
Notation
On écrit
n €N
pour dire que n est élément de N ou encore n est un nombre naturel.
Us

On peut créer d’autres ensembles & partir d’ensembles £, F donnés.
1. On peut expliciter la collection finie d’objets connus:
A:={0},{1},{2},...
B:={0,1},{7,15},{2,4,8,...}
o :={} o #{o}

2. Choisir dans un ensemble donné les éléments qui satisfont certaines régles claires.

A:={n e N|Im € N|n =2m}
B:={n € N|3m € N|n = 3m}
C:={neNnxn=0} ={0}
D:={neNln#n} =g

3. Si &, F sont deux ensembles définis, alors on peut construire ENF,E U F,E \ F en posant:

reENF<=recéNxeF
refUF<=recéVr e F
r€E\F<—=rcélrnc ¢ F

5



6 CHAPTER 1. NOMBRES ET ENSEMBLES

4. On dit que £ C F si et seulement si
Veiz el — ze F<=ENF=E
La collection de tous les ensembles de £ forme l’ensemble des parties de £, dénoté P (£). Autrement dit,

AeP(E)—= ACE

P (2) = {2}
P(B(@) ={o.(2}}
P(P(P(2)={2.12} {21} .{2.{2}} }
5. Si &£, F sont des ensembles données on définit 'ensemble
EXF={(z,y)|lreEnyeF}
ot (z,y) est un couple ordonné

Rem {z,y} = {y, 2} mais (z,y) # (y,2)

Couple ordonné

(z,y) = {x, {z,y}}

G
On admettra les régles suivantes pour les opérations + et x sur N:
1 m =20
nMi=dnXxnx..xnm#0
—_———
m fois
| 1 n=>0
nl =
1x2x3x..xnn#0
On définit sur N I'existence d’un ordre.
Plus petit que On écrit
n<m<=3Ide N\ {0} m=n+d
15

On admet que

1. Ordre total
Vn,m € N, soit n < m, soit n =m, soit n > m

2. Bon ordre < est un bon ordre, i.e.,

VECN,EAP — TIneéNeel\{n},z>n

3. Successeur de n
n<l<m — n=IVi=n+1

m = n + 1 est le successeur de n

4. Prédécesseur de n

YneN ImeNn=m+1
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5. La relation < est compatible avec x et +, i.e.

51 Vnm,peNn<m = n+p<p+m
Preuve
En effet, si n < m, alors
ddeNn+d=m

mais alors
m+p=(n+d+p=d+(n+p)>n+p

52 Vn,m,peN*n<m = nxp<mxp
Preuve
Effet, si n < m, alors
ddeNn+d=m

mais alors
mxp=Mm+d Xp=nxp+dxXp>nxp
——

>0

5.3 Sia,b,n € N\{0,1} alors
a-b=n = a,b<n

Preuve
En effet, supposons que a > n, alors
ddeNja=n+d

On sait aussi
JeeN'le+1=b

Mais alors

Il y a donc contradiction.

Théoréme
+ et x posséde la propriété de simplification.

l.VnmpeNn+m=n+p = m=p

2. Vnym,peN*  nxm=nxp = m=p

Preuve



8 CHAPTER 1.

1. On suppose que m # p, sans perte de généralité, on a alors m < p
IdeNm+d=p
mais alors

n+p=n-+(m+d)
=(n+m)+d
>n+m

On a donc une contradiction.
2. On suppose que m # p, sans perte de généralité, on a alors m < p
IdeN'm+d=p
mais alors

nXp=nx(m+d)
= xXm+nxd

>n X m

On a donc une contradiction.

Corollaire
Sin+m=pxgqgetsin=pxr alors
I’ eNm=pxr

Preuve
p-r=n<n+m = pq, par le théoréme précédant r < ¢, i.e.,

eNr+d=q

mais alors
pg =p (r +d)
=pr + pd
=N +m
=pr—+m
Par simplification,
m = pd

Nombre premier Un nombre p € N est dit premier si et seulement si

Va,beNja-b=p = a=1Yb=1

NOMBRES ET ENSEMBLES
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2,3,5,7,11,13,17,19,23, 29,31, 37, ...

Théoréme
Tout nombre n € N>o peut se factoriser
n=p1-pP3-pP3-... Pk

avec

Preuve
Supposons par 'absurde qu'il existe des n € N> sans factorisation en premiers. Formons la collection de ces nombres.

On obtient ainsi un ensemble
MCN

Par bon ordre sur N, cet ensemble M posséde un élément minimal, disons m. m n’est pas premier, car sinon il serait

sa propre factorisation. Donc
Ja,beNla£1#bAm=a-b

On a aussi que
a,b<m

Par minimalité de m, a et b possédent une factorisation en premiers. Mais alors, m aussi et donc m ¢ M. On a donc
une contradiction.

O

Théoréme fondamental de ’arithmétique
Sin€Nsy = Ap; €Nso, 1 <i<kyp;i <pig1,1<i<k—1
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Preuve
11 suffit de montrer 'unicité. Supposons ’existence de nombres n € N>9 avec plusieurs factorisation. Notons leur
collection par M. Par le bon ordre, M posséde un élément minimal, disons m. On a donc

m=p1-.. Pr=4q1" ... q1

avec
Py < .. <pp,q1 <. S

des nombres premiers. Sans perte de généralité, si p; = q1, alors par simplification, on aurait
P2-P3: .. Pk =¢q2°G3 " ... q1
contredisant alors la minimalité de m. On a donc
{p1, o} N{q,...,q} =
Comme p; # ¢1, on a soit p; < q1, soit g1 < p1. Sans perte de généralité, on suppose alors p; < g1. On a alors

g =p1+d,d>0

On a donc
m=p1-p2:...-=4dq1°q42" ... q
=p1+d)- @ .. q
=p1-qa-...-q+d-q-...-q
<
m

Par le corollaire précédent, dqs-...-q; est un multiple de p;. Par minimalité de m, le nombre d-qs-...-q; ne posséde qu'une
unique factorisation en premiers et donc p; doit étre un facteur de ce nombre. Mais comme {p1} N {q2,...,q1} = &,
p1 est facteur de d. Mais comme

@ =p1+d

on a que gq; comme multiple de p;, ce qui est une contradiction comme ¢; est premier. Donc M n’a pas d’élément
minimal, donc de par son bon ordre, pas d’élément tout court.

O

Principe de récurrence
Soit {A (n)|n € N} une famille d’affirmations telles que

1. 3ng € NJA(ng) est vraie
2. Vn > ng, si A(n) est vraie, alors A (n + 1) aussi

Alors ¥n > ng, A (n) est vraie.

Preuve
Supposons que A (n) est fausse pour certains n > ng. Formons alors ensemble:

M := {n € N5, |A(n) est fausse}

M C N et si M # &, il posséde un élément minimal, disons m. Puisque m > ng, alors m posséde un unique
prédécesseur, disons p'. Par minimalité de m, A (p) est vraie. Mais alors A (p + 1) est vraie aussi. Il y a donc une
contradiction.

O

1p—|—1:m
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1.2 Nombres entiers
L’objectif est de construire qui permette de résoudre des équations bien définies dans N telles que
x+1=0

qui n’a pas de définition dans N. Donc on aimerait construire des nombres "négatifs". L’idée est de considérer un
nombre n € N comme étant la différence entre a et a +n. On va donc considérer des couples

(a,b) € N?
Equivalence ~ On dit que (a,b) est équivalent a (c,d), et on écrit

(a,b) ~ (¢,d) <= a+d=b+c

Théoréme
~ est une relation d’équivalence sur N2, i.e.,

1. elle est réflexive
V (a,b) € N2, (a,b) ~ (a,b)

2. elle est symétrique
v (av b) ) (Ca d) € Nza (av b) ~ (C> d) = (Ca d) ~ (a, b)

3. elle est transitive

Y (a,b),(c,d), (k1) € N* (a,b) ~ (c,d) A (¢,d) ~ (k,1) = (a,b) ~ (k,1)

Preuve
€x0

Classe d’équivalence pour ~ Soit {a,b) € N2, la classe d’équivalence de (a,b), pour ~, est donnée par

[(a,0)] = { (k1) € N2 (R, 1) ~ (a,D) }

Théoréme
Si (a,b), (c,d) € N? et
[(a,0)]

[(c7 d)] = (a,b) ~ (¢,d)

et réciproquement.
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Preuve
Supposons que (a,b) ~ (¢, d). Soit (k,1) € [(a,b)]. Par définition, on a

(k;1) ~ (a,b)
Puisque (a,b) ~ (¢,d) et que ~ est transitive, on a
(k1) ~ (¢,d)

Donc

(k,1) € [(c,d)]

Soit (k,1) € [(c,d)]. Par définition,
(k1) ~ (¢,d)

Par symétrie, (¢,d) ~ (a,b) et par transitivité, (k,l) ~ (a,b). Donc,
(k1) € [(a,b)]

Supposons que [(cub)] = [(c, d)] Par réflexivité,

(a,b) ~ (a,b)
et donc,

(a,b) € [(a,0)]
et donc

(a,b) € [(c, d)]
Donc

(a,b) ~ (c,d)

|
Ensemble des entiers Z L’ensemble des nombres entiers est défini par
7= {[(a,b)] | (a,b) € N2}
15

Rem L’ordre total sur N nous permet d’observer que (a,b) = (b4 d,b) V (a,a + d). On a donc
(a,b) ~ (d,0) V (a,b) ~ (0,d)
Donc,
(@8] = [@.0)]V [(@.8)] = [(0.)
. On pose alors
Zy = { [(a,)] | [(a,0)] = [(d,0)] ,d € N}
z_:={[(@b)]1[(a,b)] = [0,)] ,d N}

On voit alors que Z = Z7 U {0,0} UZ* ot cette union est disjointe. Par abus de notation, on écrit N C Z, en
identifiant N avec Z 2

%ie, n €N [(n,0)] € Z4



1.2. NOMBRES ENTIERS 13

Addition On pose une addition sur Z par

[(a, b)] + [(c7 d)] = [(a +c,b+ d)]

15
Vérification de la définition
Vérifions que cette définition est bien posée, si
(k1) ~ (a,b) A (K", 1) ~ (c,d)
Preuve
atc+l+l=b+c+k+1
=b+d+k+kK
= (a+c,b+d) ~(k+k,1+1)
O

Théoréme
L’opération + fait de Z un groupe abélien, i.e.,

1. elle est commutative

Vn,me€Z,n+m=m-+n
2. elle est associative
Vn,m,p € Z,n+ (m+p) = (n+m)+p
3. existence d’un élément neutre
Vn € Z,n+ [(0,0)] = ([0,0)] +n
4. existence d'un opposé
Vn € Z,3n' € Zin+n' = [(0,0)] =n'+n
o

Preuve

1. exo
2. exo
3. exo

4. exo
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Notation
Si

On notera

et on a

CHAPTER 1.

Soustraction On définit la soustraction comme la somme par la classe opposée

Multiplication Soient [(a,b)], [(c,d]) € Z. On pose
[(a,b)] x [(c,d)] := [(ac + bd, ad + bc)]

Vérifions la consistance de cette définition, si

(kv l) ~ (CL, b) ) (k/a l/) ~ (Cv d)

[(a,b)] — [(c, d)] = [(a, b)] + [(d7 c)]

NOMBRES ET ENSEMBLES

(kk"+ 1Kl + k') ~ (kK" + ' + ad + bc + al’ + bk, kl' + K'l + ad + bc + al’ + bk')
(kk' + Kl + ad + b + bl' + bk’ kI + k'l + ad + bc + al’ + bk')
(I + k' + ad + be + bl + ak’ k' + k'l + ad + bc + al’ + bk')
(

~

2

i

b

Ik + k' + ac+ be + bl' + al’, kl' + k'l + ad + be + al’ + bk')
Ik + kU + ac+ bd + bk" + al’, k' + k'l + ad + bc + al’ + bk')
~ (ac + bd, ad + be)

Rem Sin,m € Z. On a 4 choix possibles

0.1 n=[(d,0
0.2 n=[(d,
0.3 n= (0,
0.4 n = [(0,

- [

On observe donc que

Donc

Yn,m € Z,

—

L

nxmeZ;
nxme”Z_
nxmeZ_

nxmeZ;

= nXmely<=nmeZVnmeLy
= nxmel_ <= n€liAmeZ _)VNnecZ_,mecZy)

On dit que x sur Z est intégre.

VnmeZnxm=0 << n=0Vvm=0

°=[(0,0)]
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Théoréme
L’opération x fait de Z un anneau commutatif, i.e.,

1. elle est commutative
Vn,m e Z,nxm=mxn

2. elle est associative
VYn,m,p € Z,n X (m X p)=(nxm)xp

3. elle est distributive sur +
Yn,m,pE€Z,mx(n+p)=mxn+mxp

De plus, Z est unitaire, i.e.,
VYm € Z,m x [(1,0)] = [(1,0)] xm=m

De plus, Z est intégre.

Preuve

1. exo
2. exo
€xo

€X0

DA o

€X0

Corollaire
7Z posséde la propriété de simplification pour + et X, i.e.,

l.VnympeZm+n=m+p<=n=p
2. VmeZ*Vn,pEZL,mXn=mXxXp<=n=p

De plus,
mx (—n) = —(m x n)

Preuve
Si
n=p =— m+n=m-+p

est clair. Si

m-+n=m-+p
(=m) + (m +n) =(=m) + (m +p)
(—m+m)+n=(-m+m)+p

0+n=0+p

—
e
—
=S5 n=p
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Cela montre également 'unicité de 'opposé —m. Donc

(mxn)+ (—mxn)=0

Par unicité de 'opposé,

Sim#0AmXxp=mxn

= mxp+-—-mxn=0
= mXxp+mx (—n)=0
= mx (p+(-n)) =0

par intégrité
par unicité de I’opposé,

Si p = n, alors clairement

Ordre sur Z Vn.m € Z,n > m <= n—m € L,

Théoréme
> est total, et compatible avec x et +, i.e.,

l.VnmpeZ,n+m<n+p<=m<p

2. VmeZ,Vpne€Z,mxn<mxp<s=n<p

Preuve
Comme Z = Z* U ([(0, 0)] } UZ? et que cette union est disjointe, alors

Vn,m € Z,n —m € 7} ,
Yn—m = [(0,0)},
Yn—meZ*

NOMBRES ET ENSEMBLES
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Donc, soit n > m, soit n = m, soit n < m. Montrons la compatibilité

n+m<n+p<=(n+p —(n+m)el
= (n+p)+(—n—-—m) e}
< (n+p—n)+(—m) e}
=p-mell
=p>m

mxn<mxp<s=mxp—mxncZ
—=mxp+mx(—n) €L}
«mx (p+(-n)) € Z%.
<P+ (—n) e Z
—p>n

Rem Quand on passe de N a Z,

e on a gagné l'existence des opposés
e on a gardé le produit et I’addition
e on a gardé la relation d’ordre

e on a gardé la compatibilité du produit et 'intégrité

Mais, on a perdu le bon ordre.

1.3 Nombres rationnels

L’équation
20 4+1=0

n’a pas de solution dans Z.

Equivalence ~’ On définit une relation d’équivalence ~' sur (a,b) € Z x Z* par

(a,b) ~' (c,d) < ad = bc

Théoréme
~' est une relation d’équivalence sur Z x Z’

Preuve
€x0s

17
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Classe d’équivalence pour ~' On pose

[(a,b)] = (k,l) € ZXZ|(k,l) ~ (a,b)

Théoréme

On a

[(a,b)] = [(c,d)] <> (a,b) ~' (c,d)

Preuve
€xo0

Ensemble des rationnels Q L’ensemble des nombres rationnels est défini par

Q= {[(a,b)] | (a, ) erz*}

Addition
[(a,b)] + [(c,d)] := [(ad + bc, bd)]

Vérifions la consistance de la définition. Soit (k,1) ~' (a,b) et (K',I') ~' (c,d)
Preuve

On a
(kl’ + K, ll’) ~" (ad + be, bd)
car
(kl’ + k’l) bd =kl'bd + K'lbd
=ll'ad +1'lbc
=1’ (ad + bc)
Multiplication

[(a,b)] x [(c,d)] :

[(ac, bd)]

NOMBRES ET ENSEMBLES
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Vérifions la consistance de la définition. Soit (k,1) ~' (a,b) et (K',I') ~' (c,d)
Preuve

On a
(kk’,ll') ~" (ac, bd)
car
kk' =lk'ad
=ll'ac
Théoréme

+ et x font de Q un corps commutatif
1. + fait de Q un groupe abélien
2. x fait de Q* un groupe abélien

3. Vrys,teQrx (sxt)=rxs+rxt

Preuve
exo

Ordre On définit un ordre < sur Q par

Vr,s € Q,r<s<=s—recQ}

Q. ::{[(a,b)] c€Qlaxbe z+}
Q_ ::{[(a,b)] € Qla x bez,}

On observe que

e=q-u{fo V] }ue;

Théoréme
< est totale sur QQ, et compatible avec 4 et x

1. Vrs,t,e Qr+s<r+t<=s<t

2. VreQi,Vs,t€eQrxs<rxt<=ss<t
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Rem Quand on passe de Z & Q

e on a gagné 3 solution a4 2z +1 =10
e on a conservé +, X, le notion de corps, > total, compatible avec +, x

e il n’y a plus de successeur & r € Q

Convention
On peut écrire Z C Q si on identifie a € Z a [(a, 1)] € Q. Dumeéme, sia € Zetn <0,

o (a—l)” = [(1,0)]" = [(1,a™)]

Hl’k:].

ke keo

Finalement, par convention

8
o
|
=]
>

Théoréme fondamental de ’arithmétique, version Q
VT € Qj—v El' ({pla -~-,p7n} ’ {qla ] qn}) c P A El' ({alv ] aﬂl} ’ {blv 7b’n}) C N*|

o {p1,pm}t M {qr,an} =2

° = {(p‘lll ... -pfnm,qll’" - qfﬁ)]

Preuve

e Existence si r € Q7%, on a que r = [(a,b)] ,a,b € Z* = N*, par le 1.1, on a

a=pi{'- ... phm
b by,
b=q¢"-...-q,

par la propriété de simplification pour x dans Z7 , on peut supposer que a et b n’ont pas de facteurs commun
et donc que
{p17 "'7p7n} n {Q17 ceey Qn} =0

e Unicité Supposons que

/ ’ ’ ’
a A b b, / 791 1%m 01 10
- (pllm..opm,ql”o..uqn)w <p1 et P s q1 e Gy, >
a a 1 Pn b b /21 rer *
1 n n m
= pitper g Gy MG eGP e D EN

Par le 1.1, on doit retrouver les mémes facteurs a gauche et a droite, i.e.,

{p17 "'7pm7ql17 76141} = {p/17 "'7p;n7q17 7Qn}

On a
{p1,om} = {PLs Wl A @l ={a1, a0}

Par le 1.1, a nouveau, on doit avoir

{a1, ., am} = {a'l, ...,a;n} A{b1,...,bn} = {b’l, ...,b;l}
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1.4 Nombres réels

Théoréme
reqQr?=2

Preuve

Supposons que 7 € Q|r? = 2, sans perte de généralité, r € Q1, par le 1.3,

par unicité d’une telle factorisation,

r= {(p’fl . -pf,;",qll’l e qf{‘)]

[ st o)

=[@D)]

{qla tey Qn} =g

{p1, .-, pm} ={2}

donc 2a; = 1 qui n’a pas de solution dans N*, il y a donc contradiction.

On peut par contre trouver des approximations a un r € Q*+|r2 =2

L’idée est de poser

Calculons

On peut montrer par récurrence que

r? =2
— r2—1=1
— (r-1)(r+1)=1
1
— r—1=
1+7r
1
<= r=1+
1+7r
<= 1+ !
T
1+1+1_1H
1
<= r=1+ 1
2+2+ T
2*#;
=17y =1 n>1
70 y Tn+1 +1+Tnn

To —1
3

1 —5
7
—
275
17
T

21
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o 7y < Ty < Tptl > Tm41
o (r2n)? < (Fani2)? <2< (ranys)” < (rany1)’

On observe en que

VnEN,lgrnSg
1 1
7ﬂn+1_rn‘:1+l—rn_ _1+Tn_1
1 1
- 1+rn71+rn,1
- T'n—1—Tn
B (L+7) (L +7rn-1)

‘Tn—l - Tn|

Sin>m

n—1
= rker — il
k=m
SHO)
- 2\ 4
k=m
m oo k
1/1 1
< (= -
(1) 20)
k=0
71 <1)mJr 1
9 \4 1
2\ 4 1—1
_2(1\"
- 3\4

On peut alors montrer que
lim 72 =2

n =
k—o0

avec

Convergence Soit (z,,),cy € Q, on dit que (,,), o converge vers r € Q si et seulement si
Ve € Q1 ,3N|Vn > N, |z, — 7| < ¢

et on écrit lim z,, =r
n—oo

Cauchy On dit que (z,,),, oy est de Cauchy si et seulement si

Ve € Q) ,IN.n,m > N, = |z, —op| <€
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Soient (#),,c > (Un)pen € QY de Cauchy,
L. (zn + Yn) ey est de Cauchy
2. (Tn - Yn)pen st de Cauchy

Preuve

1. exo

2. exo

Si on considére,

n—oo 1
2070 oA [+ ——
n+1

n>0 = (r,)

(

Equivalence ~" Soient (), ey (Yn)ney € QY deux suites de Cauchy, on dit que

ro=1,rp41 = 1+ 1

Tn

(xn)neN ~ (yn)neN <= lim (xn - yn) =0

n— oo

Théoréme
~'" est une relation d’équivalence sur les suites de Cauchy dans Q.

Preuve
exo

Classe d’équivalence sur R 4 Un nombre réel est une classe d’équivalence

(@a)nen] = {Wnner | W) e~ @a)nen }

ol (Zn) e » (Un)nen € QY. La collection de ces classes est R

Rem 1. On identifie r € Q a la suite [(r)neN}. Dans ce sens, on peut dire que Q C R

1

Rem 2. Sirg=1,rp11 =14 17—,

n >0, on a vu que

lim 72 =2
n—00

2
n

On a donc [(r [(2)7161\1] =2

)nEN}

4Nombre Réel

23
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n— oo
) LRE

)4
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O
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Addition Soient [(m")nEN} , [(yn)neN} € R. On pose

{(mn)neN} + [(yn)neN} = [(xn +yn)neN

Vérifions que si (wn),en ~" (Zn)pen s (Vn)pen ~ (Tn)pen
= (wn + Un)neN ~' (zn + yn)neN

Preuve
exo0

Multiplication Soient [(mn)neN] , [(yn)neN] € R. On pose

{(xn)neN} : [(yn)neN} = {(xn'yn)neN]

Vérifions que si (wn),en ~" (Zn)pen s (Vn)pen ~ (Tn)pen
= (wn "Un)neN ~ (x" : y”)neN

Preuve
exo0

Théoréme
R, muni de + et de x forme un corps commutatif, i.e.,

1. R, muni de + est un groupe commutatif
2. R*, muni de X est un groupe commutatif

3. Vr,y,zeRz- (y+2)=x-y+az-z

Preuve
€xo0

NOMBRES ET ENSEMBLES



1.4.

Rem 1.

Rem 2.

NOMBRES REELS

Considérons la suite

To =0
I
T)
]
27100
S 999
71000
10 -1
RCRTIT
On observe que
. . -1
L ST
Donc
(xn)neN ~ (1)n€N
Donc B
[(0'9)neN] = [(1)7LEN] =1r
Similairement

1 _
- =0.5=0.49
2

il nous faut encore une relation d’ordre < sur R.
ler essai

[(wn)neN} < {(yn)neN} — VneN,z, >y,

Mais ce n’est pas une bonne définition, car

(D] = [(mm_l)J

10" -1
10m

mais

1>

2e essai

[(wn)neN} > [(yn)neN}, on veut aussi que

@) nen] # | @0 nen]

<= (xn)neN 7" (yn)neN

< lim (x, —y,) = 0 faux
n—oQ

= - (Ve€Q},INn > N; = |an — ya| <¢)
=3 eQi~(ANn > N. = |zn —ynl <)
= JecQVNeN,In>NA|r, —yn| <€

Ordre sur R Soient [(xn)neN} ) [(yn)neN} € R, alors on pose

[(mn)neN} > [(yn)neN} e JdeQ,INENn>N = z, >y, +d

25
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Il faut vérifier que > est bien posée sur les classes, i.e., il faut montrer que cette relation d’équivalence est indépendante
du représentant.

Preuve
€xo
a
Théoréme
> ordonne R totalement.
o
Preuve
Soient [(xn)neN} ) [(yn)neN} € R distinctes. Montrons alors que
|(@a)nerr] > [@)nen] ¥ [@)nen] < (@) nen]
Puisque ces deux classe sont distinctes,
(xn)neN 7“// (yn)neN Aand nh_{go (yn —Tn) #0
3Q1|VN e N,3n > Nl |yn - xn| >e
Puisque (25),,cn > (Un),en sont de Cauchy,
€ €
ANg, IN:,n,m > Ne An,m 2 Ne = [zn — T < 3/ [Yn — Ym| < 3
Posons
N, := max {N% , Ng}
On sait
In' > Nsl |xn’ - yn’| =€
Donc, on a
€ €
Tt = Yt FEN Ty — Tpr| < 3 AYn — Ynr| < §
Donc,
€
soit
€ €
Yn’ an’+5A|xn_$n'| < §A|yn_yn" < g
Donc,
€
yn Z xn+ g,Vn Z NE
O
Théoréme

> est transitive sur R. De plus, on a comptabilité avec I’addition et la multiplication, i.e.,
lL.Ve,yeRax>y <= z+2>y+z

2. Ve,yeRyz,y >0 = z-y >0
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Preuve
€xo0

Rem Tout corps est intégre. On peut d’ailleurs montrer que dans un corps K,
Oxx=0,VrekK
En effet,

Oxzr=x<
=0Xxz+ (x—2x)
=(0xz4+2)+(—z)=0xz+1xz)+ (—x)
=0+1)xx+(—x)
=l xz+ (—x)

De maniére similaire, on a (—z) x y = — (x X y)

z-y=0<= 2 =0vy =0

z-y>0 = z,y>0vVz,y<0

1.5 Existence des bornes supérieures et inférieures et ses conséquences

Majorant Soit £ C R, £ # @. Un majorant de £ est un

zeRVyel x>y

Minorant Soit £ C R, £ # @. Un minorant de £ est un

reRNVye z<y

» . s . =
Borne supérieure La borne supérieure de £°, est

sup (€) := min {y € R|y majore £}

58i elle existe.
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16

Borne inférieure La borne inférieure de £6, est
inf (€) := max {y € R|y minore £}

é
Théoréme de la borne supérieure
Soit £ C R, & # @ et majoré. Alors

ds € Rls =sup (&)
o

Preuve
On peut, sans perte de généralité, que £ C R,7. Puisque £ est majorée, on peut poser
My := {n € N|n majore £}
et My # @. On pose sg = min (My), pour n > 1, on pose
Eni={2"a|x € &}
&, est majoré, puisque &,. On pose
M, = {n € N|n majore En}
On a
@# M, CN
Donc Im € R|s = min (M,,) et on pose
Sp 1= 27" min (M,)
On obtient ainsi une suite décroissante (s,),, oy € QY. De plus,
2571 =Cn+1
= min(2M,) >min (M,11)
= 27" min (M,) >27"" ' min (M, 41)
1

= Sp 28p41 > Sn — o

ne majore plus €.

car2™ (s, — 5 ) = 2"s, — 1 =min (M,) — 1 qui ne majore plus &,. Donc s, — 5

(8n),en est de Cauchy, car, si n > m,

Donc, [(S”)neN} €R

6Si elle existe.
7Ceci est dii a la comptabilité de > avec +.
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L. (8n),cy majore tout x € €. Clair, puisque par construction,

Sp > x,Vo € E,¥Yn €N

2. Si |:(yn)n€N:| < [(Sn)neN} = {(yn)neN] ne majore plus £. Car si
JdeQ.ANeNn>N = y, +d<s,
Il doit exister k € N|d > 27F

= n >max {N, K}
=y, +27% <s,

= yn +27" <sp

= Yn <Sp — 27"

Donc y,, ne majore plus du tout = € £. Donc

[(5n)nex] = sup ()

Rem De fagon analogue, si £ est minorée, alors inf (£) € R

Suite réelle Une suite réelle (z,,), .y est une fonction z: N — R. On dit que (z,), . converge vers | € R si et
seulement si
Ve > 0,IN n >N, = [l —z,| <e

Théoréme de la convergence monotone

Soit (xy,),,cy € RY croissante et majorée®, alors

nlgngoxn = sup {mn|n € N}

Preuve
Puisque (z,,), ¢y est majorée, {xn|n € N} est majoré aussi et posséde donc une borne supérieure. Soit € > 0, on a
que

sup {z,|n € N} —¢

ne majore plus {xn|n € N}, donc
AN, € Njzn, > sup {xn|n € N} —€

Puisque (wn)neN est croissante, on a que
Vn > N. = sup {xn|n € N} > x, > sup {mn|n € N} —&

Donc,
£> Ty, —sup{xn\n € N} > —¢

On a donc bien
Ve > 0,3IN|n > N, =

Ty fsup{xn|n € N}‘ <e

8Le raisonnement est également valable pour des suites décroissantes et minorées
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O
Lemme
Va,b € ]R+,Vn S NzQ,
a<b <= 0<(b—a)na" ' <b™—a" < (b—a)nb"?
o
Preuve
On a que
" —a" = (b—a) (b"_1 +ab" % 4 .+ a" b+ a"_l)
= si0<a<b alors 0<a®<abeta” ! <dpn17F < pn!
0<(b—a)na" t<b™—a" < (b—a)nb" !
<— on a, en particulier,
(b—a)nb" 1 >0
on a par intégrité,
(b—a),nd" "t >0
Donc
b>a
|
Théoréme de la méthode Newton
Soient y > 0,y # 1,n € N>5. On pose
xo :=max{1,y}
T Y
xk+1 =T — =1
nT,
Alors
limz,=reRr=y
k—o0
o
Preuve

On observe que 0 < zg et (9)" > y. On peut observer que si x; > 0 et (zx)" >y, alors

O<17k+1 < Tp

De plus,
Tt —
y— (zpa1)" =y —a} + 2 — (zp +1)" Tyl — Tp = — kniy
nry —1
=—h

=y — ) + (zf +h)" — (Tpe1 +R)"
<y -} +nhap!
=0
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On peut donc conclure par récurrence que (xy),cy est décroissante et minorée®. Donc

limzr,=reR
k—o0

par le théoréme de la convergence monotone. On peut montrer que

limap =r" =y
n— oo

Théoréme de la complétude de R
Toute suite de Cauchy converge dans R.

Preuve
Soit (2y,),, <y une suite de Cauchy a valeurs réelles. (z,,),cy est donc bornée. Posons pour un n € N,

U,, = sup {xm|m > n}

(Un) pen est décroissante et minorée!”. donc

limU, =L R
n— 00
Soit
5>0,3N%|n,m2N% — xn7$m|<§
INL|n > Nt = Uy —L| < <
3 3 3
Pour

€
nzmaX{Ng,N%},frnSUn §$n+§

Done, si N = max {N%,N’%} et sin > N,
|xn - L| = |.’I:n - st +‘,I:Ns _Z/{Ns +UN5 - L|
<len —an | +lzn. —Un. |+ [Un. — L
€
<3-
3
=

Un intervalle Un intervalle Z est un sous-ensemble de R|Vz,y € Rz, y € T = [z,y] CZ
e Un intervalle est dit bornée s’il est du type
[a,b],[a,b), (a,b], (a,d)
e Un ensemble £ C R est dit ouvert si et seulement si
Vee&,30 >0|(z—d,z+0d) C&

e Un ensemble £ C R est dit fermé si et seulement si R\ £ est ouvert.

9Par exemple par 0
10Car z,, est minorée

31
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1.6 Nombres complexes

On remarque que dans R,
Pr e Rj2® = —1

Dans M, (R),
Im € M, (R) ‘TTLZ =—15

=(17)

Complexe On définit C, soit I’ensemble des nombres complexes, comme

C:= {(5 ;?1) |x,y€R}

avec + et x données par les opérations sur les matrices. Si z € C, on a

Par exemple, on prend

On pose alors la définition suivante:

z=1lsz + iy

On dit que = R (z) est la partie réelle et y = I (2) est la partie imaginaire.

NOMBRES ET ENSEMBLES

Puisque M5 (R) est un groupe abélien pour x, C, muni de + l'est aussi. Si z = laz + iy et 2/ = 1o2’ + iy, alors

22" = (lox +iy) (122’ + iy')
=1, (z2’ —yy') +i(y2’ +ay’) €C

On vérifie donc que X est une opération interne a C, est associative et distributive. Si z € C*, 2z = (; _xy) , T,y € R*.

Calculons son det
det (z) =22 492

Donc
2# 0y < det(2) #0 < 327" € My (R)

— o1 (x y>
det (z) -y
1
Tt (z) (1yz —iy) € C

Module Si z = 13z + iy, on pose le module de z

(NI

|z == (det (z))

Conjugué Si z = lx + iy, on pose le conjugué de z

w|
I
S
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Rem 1. Stricto senso, R ¢ C, mais si on identifie z € R 4 1oz € C, alors R C C
Rem 2. Puisque 15 = 1¢, on a que
z=1sx+iy=1cx+1iy

et on écrit
z=z+iy

Soit o € R, posons

CIS (a) := cos (a) + isin (@) = ( () —sin <a>>

sin () cos (a)

CIS () CIS (B) =
=CIS (o + p)
CIS (na) =CIS ()"
210 =1

=cos (0) + isin (0)

27 107 127 147 167
= Z_CIS<1O) CIS<10> CIS(10> CIS<10> CIS(I()) CIS(IO) CIS(lO) CIS( ) CIS
Ex Calcul de 2|22 = —8 — 6i. Posons z = a +ib,a,b € R. On veut

(a+ib)* = —8—6i

=a’® — b* +1i2ab
— a’? - b = -8
-3 = ab
a?—2% = -8
= ab:_%
— {a4+8a2 = 0=(*+9) (o* - 1)
b=—3
— a = %1
b¥3
= z=(1-3i),(-1+3i)

Dans notre construction, z € M, (R). On a donc une action de C sur R?: si z = (a + ib) et (z,y) € R?, alors
()=62)0) e
y boa)\y

dimg R? = 2

On sait que

mais
dimcR? =1
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Par exemple, (1,0) = e; est une base pour R?, vu comme un espace vectoriel complexe. Si z = abi,

(a+1b) 1= <Z _ab) <(1)> = ae; + bes

ol e5 = (0,1) c’est la représentation de Gauss de C.
Théoréme fondamental de 1’algébre

Si P(2) =ap+ a1z + azz? + ... + a,z™ est un polynéme & coefficients ag, ay, ..., a, € C complexes, et si n > 1, alors
P (z) = 0 posséde au moins une solution dans C. On dit que C est algébriquement clos.

Rem Dans C, il n’existe pas de relation d’ordre total et compatible avec 4+ et x. En effet, supposons que < est une
telle relation d’ordre. On a alors soit i > Oc ¥ —i > O¢c. Mais alors, on aurait (i)2 > Oc, donc

—1 > O¢

on aurait alors
i>0c = —-1>0c = i1>0c = 0O¢ > O¢x



Chapter 2

Outils d’analyse

On va utiliser tous les résultats de Analyse B (pour lesquels les notes ne sont pas fournies).

2.1 Polynémes de Taylor

Essayons de calculer la valeur de w. Géométriquement, w est le demi-périmétre d’un cercle de rayon 1:

Parameétrisons un point P sur le I' (0, 1).
t € [0,1]. On sait que'!

Aussi y
2 —¢
T
Donc
2
¥ =2
22
et
y2 — 4242
Ainsi

Puisque P (x,y) est dans le premier cadran, x > 0 et ainsi

1 t

\/1+t’y: V142

1 Ppythagore

35
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La longueur de (#(t),5(t)) est égale a

21
(1+12)°% (1412 1+
Un accroissement d’arc de P (z(t),y(t)) est donc
dt
1+1t2

On obtient alors que

bode
01+ﬁ
1
/0

0

[ ()

n=0
o0 1
:Z/M
z:OO
PR S B B
4 3 5 79

T-(—2)
1
/‘@ TR SR

1

— + ...

11

“)&

OUTILS D’ANALYSE

Mais a-t-on le droit d’échanger une 3 infinie et I'intégrale ? Etudions un peu 1, |r| < 1. Si

T+r4+r2 4+ 4+ 4+ 8 T8 09 410 = Zr



2.1. POLYNOMES DE TAYLOR

On a
10 10 10
DM W
k=0 k=0 k=0

=1—rt!
10

b 71 — il

—t E rv =

1—1r
k=0

1—r
k=0

1 prtl
1l—-r 1-—r7
et ainsi
1 n k rn-&-l
ERNEE
-r -
k=0
—0,|r|<1

Si on remplace r par (—t2)

k=0
n 1 k 1 7t2 n+1
:Z/ (—t2) dt+/ %dt
k n+1
- (=1 n /1 (%)
2
0<2k+1<2n+1 2k +1 o 1+t
Mais
1 (42 n+1 1 y2n+2
/ % dt| < / S dt
o L4t o 1+t
1
S/ t2n+2 dt
0
1 n— o0
= 0
2n+3
On a écrit o
L no(e)"
- —t2) N7
1+¢2 Z ( + 1+ ¢2

k=0

On lappelle le développement limité de f (t) = ﬁ, oy ;g (—t2) est le polynéme de Taylor et ou (

terme de correction.

1+¢2

37

2\ n41
est le

S oit f: Z — R un fonction n fois dérivable en o € Ds. Le polynéme de Taylor de f (z), autour de zg, & I'ordre n

est donné par

n k)
Pragn(@) =3 4™ (2 o)t
k=0 ’
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Théoréme
Soit f:Z — R, une fonction n fois dérivable en z¢ € Dy, alors

_P'an
/(@) f”éu):&Vk:QL

lim e n
T—x( (iE _ 300)
o
Preuve
Fixons k = {0,n} NN. Si k = 0, par convention, (z — z¢)* =1. On a
. — ) (o) k
Jm 0= Praunle) = | 1) = 30 ™ (o =)
(0)
T—xT0 O'
=f (w0) — f (o)
=0
Sik#0
n O (g l n O (g —
po 1) = S T @) (1) () = S T (e — o)
im - = lim y—
T—To (l‘ _ IO) BHxz—xq l (I _ IO)
]3:1_1..
o _
o ® (@) = S I (1) (k4 1) (=)
BH k! (z — 0)°
) () — L (= 1) (1) (2 — )
N k!
S8 (@) = f®) (o)
N k!
=0
([l
On pose pour une fonction f suffisamment dérivable en x(
£ (2) = Ppagn(@) + (& = 20)"e(a), lim e() =
Théoréme
Si f est une fonction n fois contintiment dérivable en z( et si
f (@) =P(z) + (x — x0)"e(x)
avec P(z) un polynome de degré n et
lim e(z) =0
Tr—xo
alors
P(z) = P agn(2)
o
Preuve
Calculer

o L @) = P() = (2 = w0)"e(a) _

Tz (x — zp)"
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On peut en conclure que

o 1 @) = P@)

=0
a—zo (T — )"

En appliquant la s (pour lesquels les notes ne sont pas fournies)uffisamment de fois, on conclut que

P(.I‘) = Pf@o,n(x)

Ex 1 f(z)=1,20=0

N N+1
n T
flo)=) a"+7—
n=0 N——
N 2o
En posant
T
= 1' = O
e(x) T Jme x)
Donc
N
P on(@) =) a"
n=0

Ex 2. f(x):ln(x),f’(x):%—ﬁ. On prend zy =1, si z € (0,2)

N n+1 T N+1
_ (1) N1 (t—1)
S S L Gl S Y /

de¢
= n+1 t
Mais Vet Nt
(—1)N“/ U=V </ =17
1 3 1 |t]
esirx>1

r 1
< t— )Nt =
<[ ¢-v N

+2

T i yao
< —dt < —— (1 —
_/1 T _(N+2)x( z)

($ . 1)N+2

esi0<ax<1

Donc

N

(z —
Pi(z)1,n+1() = E (=1 ]
n=0

1)n+1
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On constate que si z € (0, 2]

> n (z—1)"
| = -1
n(@) = ()"
n=0
Donc si z = 2
1 1 1
— In2)=1—-=-4+-—-+-—
n(2) +3 :
1

Corollaire
Si f,g: R — R n fois continiment dérivables en o € Dy 4, alors

1' Pf+g7w07n(m) = ]P)fyx())n(x) + Pg)$0;n(x)
2. Pf+g,x0,n($) = [Pfyro,n(x) : Pg,mo,n(x)}n

ol [...],, signifie que I’on retient que les termes (x — z0)*, k < n

Preuve
1.
f (@) =Pfaon(z) + (x—20)" £4(2),
9 () =Pga0n(®) + (z — 20)" £4(2),
lim (2, 2,(z) =0
= (&) +9(2) =Pragn(@) + Pyagn(2) (x = 20)" (£(2) +4(2))
Pfig,eq.n ertg(e)
2. Exo
Théoréme
Soit f: R — R, n + 1 fois dérivable sur un intervalle Z, et g,z € Z. Alors
(1‘ - $0)n+1 (n+1)
- P xo,n =——f\"
@) = Praynle) = S5 14 (©

avec £ € (min (2o, ) , max (z9,z))

Preuve
Posons [z, 2] 2 y — F(y), on

ou
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et F(y) est dérivable en (zg,x). Par le , (pour lesquels les notes ne sont pas fournies)

¢ € (zg,2) |F'(€) =0

y=¢
n_ (k) (k)
k=0 =
(n+1)
0=— f —;' (O(m—g)"—i-(n—i—l)c(sc—f)"
LS
(n+1)!

:m (f (z) - Pf,zo,n(ff))
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Chapter 3

Introduction aux équations différentielles

Equation différentielle ordinaire Une équation différentielle est une équation dont Iinconnue est une fonction.

Par exemple:

GMm

mX = ———=X,t > X(t)
]l

Ou encore:
mx = —kx

Ce sont des équations différentielles ordinaires, abrégées EDO, car la fonction ne dépend que d’une variable.

15

Rem 1l existe d’autres équations différentielles, comme celle de Navier-Stokes, ou encore celle de Yang-Mills, qui
dépendent de plusieurs variables.

3.1 Equation différentielle ordinaire linéaire de premier ordre

Equation différentielle ordinaire linéaire de premier ordre Une équation différentielle ordinaire linéaire de
premier ordre, abrégée EDOL1, est du type
Yy +py=4q
ou

e p,qg: D — R, continue sur D C R.
e Une EDOLLI est dite homogéne si ¢ = 0. Si on abrége parfois EDOL1 homogéne par EDOL1h.

1

Solution Une solution & ’TEDOL1 vy’ + py = ¢ est une fonction f: Z — R, ou Z C D est un intervalle ouvert, tel que

f"+pf=q

43



44 CHAPTER 3. INTRODUCTION AUX EQUATIONS DIFFERENTIELLES

Condition initiale Une condition initiale pour une EDOL1 est la donnée d’un point
(z0,%0) € Dp xR

xo,x € I,y(x0) = yo et tel que f (x9) =yo. On a

y(x) = yo exp (— /xpdt>

G
Ex 1. y = const. est une EDOLI, de plus elle est homogéne si const. = 0, on voit que dans ce cas p = 0,q =
const. .
Ex 2. mx= —Cﬁf“’gnx n’est clairement pas une EDOL1

Ex 3. yy' + y? = 22 n’est pas une EDOL1. Par contre, si on pose u = 32, alors on a
u = 2yy

et on obtient )
!

—u =u==z

2

qui est une EDOLL, avec p = 2, ¢ = 222

? —= U+ 2u =222

Ex 4. y' 4 cos (x)y = sin (2x) + cos (z), on a p = cos (z), ¢ = sin (2z) + cos (z) et p,q: R — R sont continues sur R.
Cette équation est donc une EDOLI.

Essayons maintenant de résoudre une EDOL1 homogéne

y +py=0
y +py =0
= Y =py
!/
= LA—
y

d
—1 —
= n (y) p

= ln(y):/ (—p)dt+ XA eR

0

— yzexp(—/ pdt)u,,ueR
o

Si en plus on a la condition initiale que y(zp) = yo, on doit choisir g = yo et la solution devient

y(z) = yo exp (— /xpdt>

Rem On part du principe que y # 0

Théoréme
Soit y’ +py = 0 une EDOL1h. Soit en Z ouvert, tel que Z C D,,. Soit zg € Z et yo € R. Alors PEDOIl1h posséde une

unique solution, donnée par
x
Y = Yo exp (—/ pdt)
Zo

sur 7
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Preuve
Le fait que y soit une solution & 'EDOL1h tel que y(zp) = yo est clair. Soit f: Z — R|f (xg) = yo et f' +pf = 0.

Posons ¢ := fexp (ffo pdt), pour x € I.

On a que
g =f"exp (—/ pdt) + fexp (/ pdt) D
=exp (/ pdt) (f/ +pf)

=0
= ¢ = const.

x
= f = const. exp <—/ pdt)
xo

f(%0) = vo

Comme de plus

On a
Y = Yo exp (/ pdt> =y
zo

([
Lemme
Si f,g: T — R sont solutions de ¥’ + py = ¢q. Alors f — g est solution de y' + py =0

o
Preuve
(f-=9)'=f-d=a—pf—alpg)=-p(f—9)

(Il

Ex 1. Résoudre
y' +cot (z)y =0

avec y(g) =1, onap=cot(z),D =R\ {k7r|k € Z},xo = %,% = 1,Z = (0,m). D’aprés le théoréme

précédent.
y =1-exp (— /; cot (t) dt)
o (- [t a)
=exp (— In (sin (m)))

1
~ sin ()
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Ex 2. Trouver f € C! (R"jr) |f (x¥) =yf (x),Vy € R,Va € R% . Dérivons par rapport a y.

f'(z¥) () =f (x)
= f'(2")a? In () =f (v)

Posons y =1
f'(@) x In(z) =f (x)
Sixz#1,

=  Yoexp

Ex 3. v/ + py = q,q # 0, Une solution particuliére peut étre donné par I’équation suivante:

i) =) [ A0

avec Tg € [xg, z]. De plus, on a

Corollaire
Si vy’ + py = ¢ est une EDOLIL, et si Z C D est un intervalle ouvert,

Y=1Yp AeR

Yp est une solution particuliére a Yy +py=qet

Yn = €Xp <—/ pdt)
o

est solution a 'EDOL1.

e On peut trouver y, en devinant:
v 4oy =a>+1

Apreés comparaison des degrés, on cherche
y=axr—+b

Y=a = at+a(az+b)=2"+1 = a=1,b=0 = y,=z

Cherchons maintenant une solution de I’homogéne:

T 22
y}t + 2y = 0,y = exp <—/ tdt> = le 2
To
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2
Yy =1+ Aexp <—$2>

On cherche la solution avec la condition initiale y(0) =1

Soit

22
y(0)=0+dexp(0)=A=1 = y(z) =x +exp <_2>

Théoréme de variation des constantes
Soient EDOL1 4 4+ py = ¢,p,q: D — R, continues, soit xg € Z C D,Z un intervalle ouvert. Alors I'unique solution

Y +py =qy(zo) =0 est
T x t
Yp = €Xp (/ pdt) / q(t) exp (/ pds) dt
o o o

Ex y' +cos(xz)y = 0 est une EDOL1 homogéne, avec p = cos(z),q = 0. On a aussi p,¢: R — R continues sur
R. Cette équation est donc une EDOL1 homogéne. Une solution y: & — R, U C R ouvert. Toute solution &
Yy + py = 0 est de la forme

y(z) = Aexp <—/ pdt) JAER, [z,2] C D,

0

y(z) =Xexp (- /7, " cos (1 dt)

=Xexp (—sin (z))

=) exp (— /£ ’ cos (t) dt)

)+1)
)) exp (1)
=XNeexp (—sin (z))

On aurait donc

=\ exp (—sin (z

=\ exp (—sin (z

On a la méme solution si A = Xe. En mettant maintenant la condition initiale suivante: y(7) = 2, on a
y(z) =2exp (—sin (z))

:2 exp (—sin (z) + 1)

On a donc
xT

Yp(2) =exp (—sin () / (sin (2t) + cos (t)) exp (sin (t)) d¢

s

I
x

I =exp (sin(z)) — 1+ / sin (2¢) exp (sin (t)) d¢
=exp (sin(z)) —1+2 ’ sin (t)cos (t) exp (sin (¢)) dt

v u

/

- /: cos (t) exp (sin (¢)) dt}

=exp (sin(z)) —1+2 {exp (sin (x)) sin (z) — exp (sin (z)) + 1}

=exp (sin (z)) — 1+ 2 {exp (sin (t)) sin (¢)

=1 — exp (sin (z)) + 2exp (sin (x)) sin (z)
= yp(z) =exp (—sin(z)) — 1 + 2sin (z)
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On peut maintenant vérifier notre solution:

y,, = — cos (x) exp (—sin (z)) 4 2 cos (x)
cos () y, = cos (z) exp (—sin (z)) — cos (z) + cos () sin (z)
Yy, + cos () yp = cos () + sin (2z)
On peut également tester avec le fait que 'unique Tg € Z|y,(ZTg) = 0 est m. En effet, on a
Yp(m) = exp (—sin (7)) — 1+ 2sin (1) =exp (0) —1+0=0
Essayons maintenant de deviner une solution particuliére. Pour cela, on suppose que
yp(x) = a + beos (x) + csin ()

Si on dérive, on a

cos () y, =acos (z) + beos?(z) + esin () cos ()
sin (2z) + cos (z) = — bsin (z) + ccos (z) + acos (x) 4+ beos? (z) + csin () cos (z)
= — bsin (z) + ccos () + acos (z) + beos? (z) + g sin (2x)

=G yp(x) = — 1+ 2sin (z)

On remarque que la différence entre les deux solutions particuliéres est une solution de 'homogéne. Pour finir,
on a

S= {QSin(x)flJr)\exp (fsin(sc)),)\ER}

Si on veut y(7) =2, on a
—-14+A=2 = A=3

Notre solution est donc
y(z) = 2sin (z) — 1+ 3exp (—sin (z))

Cependant, on peut aussi écrire
S= {exp (—sin(z)) — 1 + 2sin () + X exp (—sin (z)) [\ € R}

Ce qui nous donnerait ' = 2.

Corollaire

Toute solution a 3’ + py = ¢ s’écrit comme
Y= Yp+ Ayn
avec A € R et y, solutions de ’homogene y' + py = 0
0 — Yp(To
— o = 9(a) — yplan) + Mpn(ao) —> A= B 2o(0)
Yn(zo)

Ex Soit

exp (z)
sin ()

y' +cot (z)y =
On a p = cot(z),q = (:i(f((:)). On voit que p: D, — R, D, = R\ {kn|k € Z} est continue sur D, qui est un
ouvert, cependant ce n’est pas un intervalle mais une réunion d’une infinité d’intervalles, on voit que ¢: Dy — R

est continue sur D, = R\ {lmr\k € Z} qui est aussi un ouvert, cependant ce n’est pas un intervalle mais une
réunion d’une infinité d’intervalles.
Posons maintenant 1’équation homogéne:

y +cot(z)y=0
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On a

On peut faire ¢a car:

| sin (%)
_sgn (sin (1))
[sin ()|

L rxeD,NR
y(x) — {sm(a:) p +

- cos (t)

zreD,NR_

sin(x)

On a donc, pour une solution particuliére,

= 1 " exp (t) sin x T
@) =g )L S 1@t 0.

I

b /w exp (t) dt

" sin (x) J=

_exp () —exp (%)

sin (x)
On a alors:
B exp (z) — exp (g) 1
8_{ sin () +)\Sin(1')‘)\€R ,x € (0,m)
Siy(g) =2,ona
exp () —ew(5) 1,
sin (g) sin (g)
B _exp(z) —exp (%) 2
- A=2y(@) = sin () + sin ()
Siy(%) =4,0na
exp () —ew(5) 1,
sin (%) sin (%)

— 2exp <W> — 2exp (W) + 2\ =4
6 2
= A =2+ exp (76r> — exp (;r)

exp(z)
sin(z)

x q xT
yh(fﬂ)/ — dt + yoyn, yn = €xp —/ pdt
o Yn Zo

est donc

L’unique solution a 3’ + cot (z) y =
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3.2 Séparation des variables

Equation différentielle ordinaire a variables séparables Une équation différentielle ordinaire & variables sé-
parables, abrégée EDOVS, est une équation de la forme

ouh: & =R, g: D— R sont continues sur leurs domaines respectifs, £,D C R.

Solution Une solution est une fonction y : Z — R, dérivable sur un intervalle ouvert Z C D et Im (y) C £ qui vérifie

Condition initiale Une condition initiale pour y est (zg,yo) € D x & telle que y(zo) = yo.

Discussion
Si
Y = h(y)g(z)

Si h(yo) # 0, alors h(y) # 0,Vy € Ts, un intervalle ouvert qui contient yo. On a alors sur Z,

Si H(y) est une primitive de ﬁ, ie., d—‘;H(y) = ﬁ, alors

S H) = gl0)

On aura alors .

H@—H@@zfgwwzem

Zo

ot G(z) est une primitive de g(x), définie sur 77, un intervalle ouvert qui contient zg, 2. Donc
H(y) = G(z) + H(yo)

Puisque ﬁ ne s’annule pas sur Zs, H(y) est une bijective sur Z5. Donc

y=H ' (G(x)+ H(yo))

Théoréme
Soit TEDOVS ' = h(y)g(z) et la condition initiale y(z¢) = yo,zo X yo € D x €. Supposons que

e g: 71 — R est continue, avec Z, 3 zo un intervallee ouvert.

e h: 7y — R est continue, et bornée sur 'intervalle ouvert Zo > yq. Il existe alors un intervalle ouvert J C
Th|zo € J et il existe une solution unique y: 7 — R |y’ = h(y)g(z) et y(xo) = yo-
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Preuve
Puisque h: Zo — R est non-mulle et continue, %: T, — R le sera aussi. Comme y € Zy, on peut poser Vy € T

H(y) := /yjy(lt)dt

On a h(yp) =0 et H: o — R estinjective, H'(y) = ﬁ Pour x € 7;, on pose

G(x) == /xg(t) dt,G(z) = 0,G'(x)

Zo

On a donc

G H{Im (H)} # &

Comme H eat continue sur I, alors H(Zy) est un intervalle ouvert. Donc G~!{In(H)} est un ouvert qui contient
xo. 11 exsite fonc un intervalle ouvert 7 C G~'{Im (g)} et tel que Xo € J. Pour z € J on pose y(z) = H 1 (G(x)).
On a y;, =yo et

r_ i -1
Y = H ' (G(@)
a4 71(:6): 1

Y WH T (G)g(w)
= h(y(z))g(x)
Soit f: J — R telle que f' = h(f)g et f (z0) = yo. On a alors
fl@) 4
H = —d
v@n=[
s = [(s)

ds=f'(t)dt v 1 ,
=7 [y o

~—

Comme H est injective, on a

Marche a suivre
Y' =h(y)g(x), g: Iy — R, h: Iy — R* continues, avec (g, yo) € Z; X I une condition initiale.

L G(z) = [, g(t)dt

2. H(y) = f;‘i) h(ls) ds
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3. Trouver J C G~ Y(Im (H)) | z0 € J
4. Calcul de y = H"1(G(z)) < H(y) = G(x)

Ex y =< (20,90) = (1,7),g = LRy - R*, h=cos(y): (5,%) — [-1,0) est continue sur R.

1%
Yo
H(y) = d
) /7T cos ($) s
y
_ / cos (s) ds
= Cos2(s)
y
- [
x 1 —sin®(s)
u = sin (s)
du = cos (s)ds sin(¥)
0.2 _du=co (s)ds / du
0 1—wu?
1 sin(y) 1 1
= — d
21; <1—u+1+u> “
sin(y)
1 ( (1 + u))
=—-|In
2 1—u
0
1 1+ sin(y)
2 1 —sin (y)
1 1 i
lim H(y) = lim -1 +sin (y) = +00
y— I+ y—Iz+2 )

y— 32 y—35~ 2 1 —sin(y)
= J =R}
1 1+ sin (y)
| ~1
2 (lﬁn@) n ()
1
+S?n (y) _ 62 In(z) _ .’£2
1 —sin (y)
<= 1+sin(y) = 2%(1 —sin (y))
0-4 = sin(y) (1 +2?) =2 -1
> sin(y) vl
in .
Y x2+1

2 +1

(3.5 2-1
! 32:>2 )y = 7 — arcsin (:c )
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