
SCM 2025

Romain De Groote

June 5, 2025



2



Contents

1 Nombres et ensembles 5
1.1 Nombres naturels et ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Nombres entiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Nombres rationnels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Nombres réels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 Existence des bornes supérieures et inférieures et ses conséquences . . . . . . . . . . . . . . . . . . . . 27
1.6 Nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Outils d’analyse 35
2.1 Polynômes de Taylor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Introduction aux équations différentielles 43
3.1 Équation différentielle ordinaire linéaire de premier ordre . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Séparation des variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3



4 CONTENTS



Chapter 1

Nombres et ensembles

1.1 Nombres naturels et ensembles

On admet comme donnés les nombres naturels
0, 1, 2, 3, 4, ...

Ainsi que les opérations élémentaires
+,×

Ensemble des entiers naturels N La collection de ces nombres (naturels) est un ensemble que l’on dénotera par

N := {0, 1, 2, 3, 4, ...}

A

Notation
On écrit

n ∈ N

pour dire que n est élément de N ou encore n est un nombre naturel.

N

On peut créer d’autres ensembles à partir d’ensembles E ,F donnés.

1. On peut expliciter la collection finie d’objets connus:

A := {0} , {1} , {2} , ...
B := {0, 1} , {7, 15} , {2, 4, 8, ...}
∅ := {} ∅ ̸= {∅}

2. Choisir dans un ensemble donné les éléments qui satisfont certaines règles claires.

A :=
{
n ∈ N|∃m ∈ N|n = 2m

}
B :=

{
n ∈ N|∃m ∈ N|n = 3m

}
C :=

{
n ∈ N|n× n = 0

}
= {0}

D :=
{
n ∈ N|n ̸= n

}
=∅

3. Si E ,F sont deux ensembles définis, alors on peut construire E ∩ F , E ∪ F , E \ F en posant:

x ∈ E ∩ F⇐⇒x ∈ E∧x ∈ F
x ∈ E ∪ F⇐⇒x ∈ E∨x ∈ F
x ∈ E \ F ⇐⇒x ∈ E∧x /∈ F

5



6 CHAPTER 1. NOMBRES ET ENSEMBLES

4. On dit que E ⊂ F si et seulement si

∀x;x ∈ E =⇒ x ∈ F ⇐⇒ E ∩ F = E

La collection de tous les ensembles de E forme l’ensemble des parties de E , dénoté P (E). Autrement dit,

A ∈ P (E) ⇐⇒ A ⊂ E

P (∅) = {∅}
P
(
P (∅)

)
=
{
∅, {∅}

}
P
(
P
(
P (∅)

))
=
{
∅, {∅} ,

{
{∅}

}
,
{
∅, {∅}

}}
5. Si E ,F sont des ensembles données on définit l’ensemble

E × F :=
{
(x, y) |x ∈ E ∧ y ∈ F

}
où (x, y) est un couple ordonné

Rem {x, y} = {y, x} mais (x, y) ̸= (y, x)

Couple ordonné
(x, y) :=

{
x, {x, y}

}

A

On admettra les règles suivantes pour les opérations + et × sur N:

nm :=

 1 m = 0
n× n× ...× n︸ ︷︷ ︸

m fois

m ̸= 0

n! :=

{
1 n = 0

1× 2× 3× ...× n n ̸= 0

On définit sur N l’existence d’un ordre.

Plus petit que On écrit
n < m ⇐⇒ ∃d ∈ N \ {0} |m = n+ d

A

On admet que

1. Ordre total
∀n,m ∈ N, soit n < m, soit n = m, soit n > m

2. Bon ordre < est un bon ordre, i.e.,

∀E ⊂ N, E ̸= ∅ =⇒ ∃n ∈ E|∀x ∈ E \ {n} , x > n

3. Successeur de n
n ≤ l ≤ m =⇒ n = l ∨ l = n+ 1

m = n+ 1 est le successeur de n

4. Prédécesseur de n
∀n ∈ N∗,∃!m ∈ N|n = m+ 1
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5. La relation < est compatible avec × et +, i.e.

5.1 ∀n,m, p ∈ N, n < m =⇒ n+ p < p+m
Preuve
En effet, si n < m, alors

∃d ∈ N∗|n+ d = m

mais alors
m+ p = (n+ d) + p = d+ (n+ p) > n+ p

□

5.2 ∀n,m, p ∈ N∗, n < m =⇒ n× p < m× p
Preuve
Effet, si n < m, alors

∃d ∈ N∗|n+ d = m

mais alors
m× p = (n+ d)× p = n× p+ d× p︸ ︷︷ ︸

>0

> n× p

□

5.3 Si a, b, n ∈ N \ {0, 1} alors
a · b = n =⇒ a, b < n

Preuve
En effet, supposons que a ≥ n, alors

∃d ∈ N|a = n+ d

On sait aussi
∃c ∈ N∗|c+ 1 = b

Mais alors

a · b =a (c+ 1)

= ac︸︷︷︸
>0

+ a

>a

≥n

Il y a donc contradiction.

□

Théorème
+ et × possède la propriété de simplification.

1. ∀n,m, p ∈ N, n+m = n+ p =⇒ m = p

2. ∀n,m, p ∈ N∗, n×m = n× p =⇒ m = p

⋄

Preuve
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1. On suppose que m ̸= p, sans perte de généralité, on a alors m < p

∃d ∈ N∗|m+ d = p

mais alors

n+ p =n+ (m+ d)

= (n+m) + d

>n+m

On a donc une contradiction.

2. On suppose que m ̸= p, sans perte de généralité, on a alors m < p

∃d ∈ N∗|m+ d = p

mais alors

n× p =n× (m+ d)

=n×m+ n× d

>n×m

On a donc une contradiction.

□

Corollaire
Si n+m = p× q et si n = p× r alors

∃r′ ∈ N|m = p× r′

⋄

Preuve
p · r = n ≤ n+m = pq, par le théorème précédant r ≤ q, i.e.,

∃d ∈ N|r + d = q

mais alors

pq =p (r + d)

=pr + pd

=n+m

=pr +m

Par simplification,
m = pd

□

Nombre premier Un nombre p ∈ N est dit premier si et seulement si

∀a, b ∈ N, a · b = p =⇒ a = 1 ⊻ b = 1

A
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Ex
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, ...

Théorème
Tout nombre n ∈ N≥2 peut se factoriser

n = p1 · p3 · p3 · ... · pk
avec

p1 ≤ p2 ≤ p3 ≤ ... ≤ pk

⋄

Preuve
Supposons par l’absurde qu’il existe des n ∈ N≥2 sans factorisation en premiers. Formons la collection de ces nombres.
On obtient ainsi un ensemble

M ⊆ N

Par bon ordre sur N, cet ensemble M possède un élément minimal, disons m. m n’est pas premier, car sinon il serait
sa propre factorisation. Donc

∃a, b ∈ N∗|a ̸= 1 ̸= b ∧m = a · b

On a aussi que
a, b < m

Par minimalité de m, a et b possèdent une factorisation en premiers. Mais alors, m aussi et donc m /∈ M. On a donc
une contradiction.

□

Théorème fondamental de l’arithmétique
Si n ∈ N≥2 =⇒ ∃!pi ∈ N≥2, 1 ≤ i ≤ k, pi ≤ pi+1, 1 ≤ i ≤ k − 1

⋄



10 CHAPTER 1. NOMBRES ET ENSEMBLES

Preuve
Il suffit de montrer l’unicité. Supposons l’existence de nombres n ∈ N≥2 avec plusieurs factorisation. Notons leur
collection par M. Par le bon ordre, M possède un élément minimal, disons m. On a donc

m = p1 · ... · pk = q1 · ... · ql

avec
p+ ≤ ... ≤ pk, q1 ≤ ... ≤ ql

des nombres premiers. Sans perte de généralité, si p1 = q1, alors par simplification, on aurait

p2 · p3 · ... · pk = q2 · q3 · ... · ql

contredisant alors la minimalité de m. On a donc

{p1, ..., pk} ∩ {q1, ..., ql} = ∅

Comme p1 ̸= q1, on a soit p1 < q1, soit q1 < p1. Sans perte de généralité, on suppose alors p1 < q1. On a alors

q1 = p1 + d, d > 0

On a donc

m =p1 · p2 · ...· = q1 · q2 · ... · ql
=(p1 + d) · q2 · ... · ql
=p1 · q2 · ... · ql + d · q2 · ... · ql︸ ︷︷ ︸

<m

Par le corollaire précédent, dq2·...·ql est un multiple de p1. Par minimalité de m, le nombre d·q2·...·ql ne possède qu’une
unique factorisation en premiers et donc p1 doit être un facteur de ce nombre. Mais comme {p1} ∩ {q2, ..., ql} = ∅,
p1 est facteur de d. Mais comme

q1 = p1 + d

on a que q1 comme multiple de p1, ce qui est une contradiction comme q1 est premier. Donc M n’a pas d’élément
minimal, donc de par son bon ordre, pas d’élément tout court.

□

Principe de récurrence
Soit

{
A (n) |n ∈ N

}
une famille d’affirmations telles que

1. ∃n0 ∈ N|A (n0) est vraie

2. ∀n ≥ n0, si A (n) est vraie, alors A (n+ 1) aussi

Alors ∀n ≥ n0,A (n) est vraie.

Preuve
Supposons que A (n) est fausse pour certains n > n0. Formons alors l’ensemble:

M :=
{
n ∈ N>n0

|A (n) est fausse
}

M ⊂ N et si M ̸= ∅, il possède un élément minimal, disons m. Puisque m > n0, alors m possède un unique
prédécesseur, disons p1. Par minimalité de m, A (p) est vraie. Mais alors A (p+ 1) est vraie aussi. Il y a donc une
contradiction.

□

1p+ 1 = m
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1.2 Nombres entiers

L’objectif est de construire qui permette de résoudre des équations bien définies dans N telles que

x+ 1 = 0

qui n’a pas de définition dans N. Donc on aimerait construire des nombres "négatifs". L’idée est de considérer un
nombre n ∈ N comme étant la différence entre a et a+ n. On va donc considérer des couples

(a, b) ∈ N2

Équivalence ∼ On dit que (a, b) est équivalent à (c, d), et on écrit

(a, b) ∼ (c, d) ⇐⇒ a+ d = b+ c

A

Théorème
∼ est une relation d’équivalence sur N2, i.e.,

1. elle est réflexive
∀ (a, b) ∈ N2, (a, b) ∼ (a, b)

2. elle est symétrique
∀ (a, b) , (c, d) ∈ N2, (a, b) ∼ (c, d) =⇒ (c, d) ∼ (a, b)

3. elle est transitive

∀ (a, b) , (c, d) , (k, l) ∈ N2, (a, b) ∼ (c, d) ∧ (c, d) ∼ (k, l) =⇒ (a, b) ∼ (k, l)

⋄

Preuve
exo

□

Classe d’équivalence pour ∼ Soit {a, b) ∈ N2, la classe d’équivalence de (a, b), pour ∼, est donnée par[
(a, b)

]
:=
{
(k, l) ∈ N2| (k, l) ∼ (a, b)

}

A

Théorème
Si (a, b) , (c, d) ∈ N2 et [

(a, b)
]
=
[
(c, d)

]
=⇒ (a, b) ∼ (c, d)

et réciproquement.

⋄
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Preuve
Supposons que (a, b) ∼ (c, d). Soit (k, l) ∈

[
(a, b)

]
. Par définition, on a

(k, l) ∼ (a, b)

Puisque (a, b) ∼ (c, d) et que ∼ est transitive, on a

(k, l) ∼ (c, d)

Donc
(k, l) ∈

[
(c, d)

]
Soit (k, l) ∈

[
(c, d)

]
. Par définition,

(k, l) ∼ (c, d)

Par symétrie, (c, d) ∼ (a, b) et par transitivité, (k, l) ∼ (a, b). Donc,

(k, l) ∈
[
(a, b)

]
Supposons que

[
(a, b)

]
=
[
(c, d)

]
. Par réflexivité,

(a, b) ∼ (a, b)

et donc,
(a, b) ∈

[
(a, b)

]
et donc

(a, b) ∈
[
(c, d)

]
Donc

(a, b) ∼ (c, d)

□

Ensemble des entiers Z L’ensemble des nombres entiers est défini par

Z :=
{[

(a, b)
]
| (a, b) ∈ N2

}

A

Rem L’ordre total sur N nous permet d’observer que (a, b) = (b+ d, b) ∨ (a, a+ d). On a donc

(a, b) ∼ (d, 0) ∨ (a, b) ∼ (0, d)

Donc, [
(a, b)

]
=
[
(d, 0)

]
∨
[
(a, b)

]
=
[
(0, d)

]
. On pose alors

Z+ :=
{[

(a, b)
]
|
[
(a, b)

]
=
[
(d, 0)

]
, d ∈ N

}
Z− :=

{[
(a, b)

]
|
[
(a, b)

]
=
[
(0, d)

]
, d ∈ N

}
On voit alors que Z = Z∗

+ ∪ {0, 0} ∪ Z∗
− où cette union est disjointe. Par abus de notation, on écrit N ⊂ Z, en

identifiant N avec Z+
2

2i.e., n ∈ N ↔
[
(n, 0)

]
∈ Z+
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Addition On pose une addition sur Z par[
(a, b)

]
+
[
(c, d)

]
:=
[
(a+ c, b+ d)

]

A

Vérification de la définition
Vérifions que cette définition est bien posée, si

(k, l) ∼ (a, b) ∧
(
k′, l′

)
∼ (c, d)

Preuve

a+ c+ l + l′ =b+ c+ k + l′

=b+ d+ k + k′

=⇒ (a+ c, b+ d) ∼
(
k + k′, l + l′

)
□

Théorème
L’opération + fait de Z un groupe abélien, i.e.,

1. elle est commutative
∀n,m ∈ Z, n+m = m+ n

2. elle est associative
∀n,m, p ∈ Z, n+ (m+ p) = (n+m) + p

3. existence d’un élément neutre
∀n ∈ Z, n+

[
(0, 0)

]
=
(
[0, 0)

]
+ n

4. existence d’un opposé
∀n ∈ Z,∃!n′ ∈ Z|n+ n′ =

[
(0, 0)

]
= n′ + n

⋄

Preuve

1. exo

2. exo

3. exo

4. exo

□



14 CHAPTER 1. NOMBRES ET ENSEMBLES

Notation
Si

n+ n′ =
[
(0, 0)

]
On notera

n′ = −n

et on a
−
[
(a, b)

]
=
[
(b, a)

]

N

Soustraction On définit la soustraction comme la somme par la classe opposée[
(a, b)

]
−
[
(c, d)

]
:=
[
(a, b)

]
+
[
(d, c)

]

A

Multiplication Soient
[
(a, b)

]
,
[
(c, d]

)
∈ Z. On pose[
(a, b)

]
×
[
(c, d)

]
:=
[
(ac+ bd, ad+ bc)

]

A

Vérifions la consistance de cette définition, si

(k, l) ∼ (a, b) ,
(
k′, l′

)
∼ (c, d)

(
kk′ + ll′, kl′ + k′l

)
∼
(
kk′ + ll′ + ad+ bc+ al′ + bk′, kl′ + k′l + ad+ bc+ al′ + bk′

)
∼
(
kk′ + kl′ + ad+ bc+ bl′ + bk′, kl′ + k′l + ad+ bc+ al′ + bk′

)
∼
(
lk′ + kl′ + ad+ bc+ bl′ + ak′, kl′ + k′l + ad+ bc+ al′ + bk′

)
∼
(
lk′ + kl′ + ac+ bc+ bl′ + al′, kl′ + k′l + ad+ bc+ al′ + bk′

)
∼
(
lk′ + kl′ + ac+ bd+ bk′ + al′, kl′ + k′l + ad+ bc+ al′ + bk′

)
∼ (ac+ bd, ad+ bc)

Rem Si n,m ∈ Z. On a 4 choix possibles

0.1 n =
[
(d, 0)

]
,m =

[(
d′, 0

)]
=⇒ n×m ∈ Z+

0.2 n =
[
(d, 0)

]
,m =

[(
0, d′

)]
=⇒ n×m ∈ Z−

0.3 n =
[
(0, d)

]
,m =

[(
d′, 0

)]
=⇒ n×m ∈ Z−

0.4 n =
[
(0, d)

]
,m =

[(
0, d′

)]
=⇒ n×m ∈ Z+

On observe donc que

∀n,m ∈ Z,
=⇒ n×m ∈ Z+ ⇐⇒ n,m ∈ Z+ ∨ n,m ∈ Z+

=⇒ n×m ∈ Z− ⇐⇒ (n ∈ Z+ ∧m ∈ Z−) ∨ (n ∈ Z−,m ∈ Z+)

Donc
∀n,m ∈ Z, n×m = 03 ⇐⇒ n = 0 ∨m = 0

On dit que × sur Z est intègre.
3=

[
(0, 0)

]
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Théorème
L’opération × fait de Z un anneau commutatif, i.e.,

1. elle est commutative
∀n,m ∈ Z, n×m = m× n

2. elle est associative
∀n,m, p ∈ Z, n× (m× p) = (n×m)× p

3. elle est distributive sur +
∀n,m, p ∈ Z,m× (n+ p) = m× n+m× p

De plus, Z est unitaire, i.e.,
∀m ∈ Z,m×

[
(1, 0)

]
=
[
(1, 0)

]
×m = m

De plus, Z est intègre.

⋄

Preuve

1. exo

2. exo

3. exo

4. exo

5. exo

□

Corollaire
Z possède la propriété de simplification pour + et ×, i.e.,

1. ∀n,m, p ∈ Z,m+ n = m+ p ⇐⇒ n = p

2. ∀m ∈ Z∗,∀n, p ∈ Z,m× n = m× p ⇐⇒ n = p

De plus,
m× (−n) = − (m× n)

⋄

Preuve
Si

n = p =⇒ m+ n = m+ p

est clair. Si

m+ n =m+ p

=⇒ (−m) + (m+ n) = (−m) + (m+ p)

=⇒ (−m+m) + n =(−m+m) + p

=⇒ 0 + n =0 + p

=⇒ n =p
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Cela montre également l’unicité de l’opposé −m. Donc

(m× n) + (−m× n) =0

=
(
m+ (−m)

)
× n

=0× n

=0

(m× n) +
(
(−m)× n

)
=
(
m+ (−m)

)
× n

=0× n

=0

Par unicité de l’opposé,
− (m× n) = (−m)× n

Si m ̸= 0 ∧m× p = m× n

=⇒ m× p+−m× n =0

=⇒ m× p+m× (−n) =0

=⇒ m×
(
p+ (−n)

)
=0

par intégrité
P = (−n) = 0

par unicité de l’opposé,
p = n

Si p = n, alors clairement
m× p = m× n

□

Ordre sur Z ∀n.m ∈ Z, n > m ⇐⇒ n−m ∈ Z∗
+

A

Théorème
> est total, et compatible avec × et +, i.e.,

1. ∀n,m, p ∈ Z, n+m < n+ p ⇐⇒ m < p

2. ∀m ∈ Z∗
+,∀p, n ∈ Z,m× n < m× p ⇐⇒ n < p

⋄

Preuve
Comme Z = Z∗

− ∪
([

(0, 0)
]}

∪ Z∗
+ et que cette union est disjointe, alors

∀n,m ∈ Z, n−m ∈ Z∗
+,

⊻n−m =
[
(0, 0)

]
,

⊻n−m ∈ Z∗
−
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Donc, soit n > m, soit n = m, soit n < m. Montrons la compatibilité

n+m < n+ p ⇐⇒ (n+ p)− (n+m) ∈ Z∗
+

⇐⇒ (n+ p) + (−n−m) ∈ Z∗
+

⇐⇒ (n+ p− n) + (−m) ∈ Z∗
+

⇐⇒p−m ∈ Z∗
+

⇐⇒p > m

m× n < m× p ⇐⇒m× p−m× n ∈ Z∗
+

⇐⇒m× p+m× (−n) ∈ Z∗
+

⇐⇒m×
(
p+ (−n)

)
∈ Z∗

+

⇐⇒P + (−n) ∈ Z∗
+

⇐⇒p > n

□

Rem Quand on passe de N à Z,

• on a gagné l’existence des opposés

• on a gardé le produit et l’addition

• on a gardé la relation d’ordre

• on a gardé la compatibilité du produit et l’intégrité

Mais, on a perdu le bon ordre.

1.3 Nombres rationnels

L’équation
2x+ 1 = 0

n’a pas de solution dans Z.

Équivalence ∼′ On définit une relation d’équivalence ∼′ sur (a, b) ∈ Z× Z∗ par

(a, b) ∼′ (c, d) ⇐⇒ ad = bc

A

Théorème
∼′ est une relation d’équivalence sur Z× Z′

⋄

Preuve
exos

□
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Classe d’équivalence pour ∼′ On pose[
(a, b)

]
:= (k, l) ∈ Z× Z′| (k, l) ∼′ (a, b)

A

Théorème
On a [

(a, b)
]
=
[
(c, d)

]
⇐⇒ (a, b) ∼′ (c, d)

⋄

Preuve
exo

□

Ensemble des rationnels Q L’ensemble des nombres rationnels est défini par

Q :=
{[

(a, b)
]
| (a, b) ∈ Z× Z∗

}

A

Addition [
(a, b)

]
+
[
(c, d)

]
:=
[
(ad+ bc, bd)

]

A

Vérifions la consistance de la définition. Soit (k, l) ∼′ (a, b) et
(
k′, l′

)
∼′ (c, d)

Preuve
On a (

kl′ + k′l, ll′
)
∼′ (ad+ bc, bd)

car (
kl′ + k′l

)
bd =kl′bd+ k′lbd

=ll′ad+ l′lbc

= ll′ (ad+ bc)

□

Multiplication [
(a, b)

]
×
[
(c, d)

]
:=
[
(ac, bd)

]

A
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Vérifions la consistance de la définition. Soit (k, l) ∼′ (a, b) et
(
k′, l′

)
∼′ (c, d)

Preuve
On a (

kk′, ll′
)
∼′ (ac, bd)

car

kk′ =lk′ad

=ll′ac

□

Théorème
+ et × font de Q un corps commutatif

1. + fait de Q un groupe abélien

2. × fait de Q∗ un groupe abélien

3. ∀r, s, t ∈ Q, r × (s× t) = r × s+ r × t

⋄

Preuve
exo

□

Ordre On définit un ordre < sur Q par

∀r, s ∈ Q, r < s ⇐⇒ s− r ∈ Q∗
+

où

Q+ :=
{[

(a, b)
]
∈ Q|a× b ∈ Z+

}
Q− :=

{[
(a, b)

]
∈ Q|a× b ∈ Z−

}

A

On observe que
Q = Q∗

− ∪
{[

(0, 1)
]}

∪Q∗
+

Théorème
< est totale sur Q, et compatible avec + et ×

1. ∀r, s, t,∈ Q, r + s < r + t ⇐⇒ s < t

2. ∀r ∈ Q∗
+,∀s, t ∈ Q, r × s < r × t ⇐⇒ s < t

⋄
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Rem Quand on passe de Z à Q

• on a gagné ∃ solution à 2x+ 1 = 0

• on a conservé +,×, le notion de corps, > total, compatible avec +,×
• il n’y a plus de successeur à r ∈ Q

Convention
On peut écrire Z ⊂ Q si on identifie a ∈ Z à

[
(a, 1)

]
∈ Q. Du même, si a ∈ Z et n < 0,

an :=
(
a−1

)n
=
[
(1, a)

]n
=
[
(1, an)

]
Finalement, par convention ∑

k∈∅
xk = 0 ∧

∏
k∈∅

xk = 1

Théorème fondamental de l’arithmétique, version Q
∀r ∈ Q∗

+,∃!
(
{p1, ..., pm} , {q1, ..., qn}

)
⊂ P ∧ ∃!

(
{a1, ..., am} , {b1, ..., bn}

)
⊂ N∗|

• {p1, ..., pm} ∩ {q1, ..., qn} = ∅

• r =

[(
pa1
1 · ... · pam

m , qbn1 · ... · qbnn
)]

⋄

Preuve

• Existence si r ∈ Q∗
+, on a que r =

[
(a, b)

]
, a, b ∈ Z∗ = N∗, par le 1.1, on a

a =pa1
1 · ... · pam

m

b =qb11 · ... · qbnn

par la propriété de simplification pour x dans Z∗
+, on peut supposer que a et b n’ont pas de facteurs commun

et donc que
{p1, ..., pm} ∩ {q1, ..., qn} = ∅

• Unicité Supposons que

r =

[(
p′

a′
1

1 · ... · p′
a′
m

m , q′
b′1
1 · ... · q′

b′n
n

)]

=⇒
(
pa1
1 · ... · pam

m , qbn1 · ... · qbnn
)
∼′
(
p′

a′
1

1 · ... · p′
a′
m

m , q′
b′1
1 · ... · q′

b′n
n

)
⇐⇒ pa1

1 · ... · pam
m · q′

b′1
1 · ... · q′

b′n
n ∼′qbn1 · ... · qbnn · p′

a′
1

1 · ... · p′
a′
m

m ∈ N∗

Par le 1.1, on doit retrouver les mêmes facteurs à gauche et à droite, i.e.,{
p1, ..., pm, q′1, ..., q

′
n

}
=
{
p′1, ..., p

′
m, q1, ..., qn

}
On a

{p1, ..., pm} =
{
p′1, ..., p

′
m

}
∧
{
q′1, ..., q

′
n

}
= {q1, ..., qn}

Par le 1.1, à nouveau, on doit avoir

{a1, ..., am} =
{
a′1, ..., a

′
m

}
∧ {b1, ..., bn} =

{
b′1, ..., b

′
n

}
□
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1.4 Nombres réels

Théorème
∄r ∈ Q|r2 = 2

⋄

Preuve
Supposons que r ∈ Q|r2 = 2, sans perte de généralité, r ∈ Q∗

+, par le 1.3,

r =

[(
pa1
1 · ... · pam

m , qb11 · ... · qbnn
)]

r2 =

[(
p2a1
1 · ... · p2am

m , q2b11 · ... · q2bnn

)]
=
[
(2, 1)

]
par unicité d’une telle factorisation,

{q1, ..., qn} =∅
{p1, ..., pm} = {2}

donc 2a1 = 1 qui n’a pas de solution dans N∗, il y a donc contradiction.

□

On peut par contre trouver des approximations à un r ∈ Q∗
+|r2 = 2:

r2 =2

⇐⇒ r2 − 1 =1

⇐⇒ (r − 1) (r + 1) =1

⇐⇒ r − 1 =
1

1 + r

⇐⇒ r =1 +
1

1 + r

⇐⇒ r =1 +
1

1 + 1 + 1
1+r

⇐⇒ r =1 +
1

2 + 1
2+ 1

2+ 1
2+ 1

...

L’idée est de poser

r0 = 1, rn+1 := 1 +
1

1 + rn
, n ≥ 1

Calculons

r0 =1

r1 =
3

2

r2 =
7

5

r3 =
17

12
...

On peut montrer par récurrence que
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• rn < rm ⇐⇒ rn+1 > rm+1

• (r2n)
2
< (r2n+2)

2
< 2 < (r2n+3)

2
< (r2n+1)

2

On observe en que

∀n ∈ N, 1 ≤ rn ≤ 3

2

|rn+1 − rn| =
∣∣∣∣1 + 1

1− rn
− 1− 1

1 + rn−1

∣∣∣∣
=

∣∣∣∣ 1

1 + rn
− 1

1 + rn−1

∣∣∣∣
=

∣∣∣∣ rn−1 − rn
(1 + rn) (1 + rn−1)

∣∣∣∣
≤1

4
|rn−1 − rn|

≤
(
1

4

)2

|rn−2 − rn−1|

≤
(
1

4

)n

|r1 − r0|

=
1

2

(
1

4

)n

Si n > m

|rn − rm| ≤ |rn − rn−1|+ |rn−1 − rn−2|+ ...+ |rm+1 − rm|

=

n−1∑
k=m

|rk+1 − rk|

≤
n−1∑
k=m

1

2

(
1

4

)2

≤1

2

(
1

4

)m ∞∑
k=0

(
1

4

)k

=
1

2

(
1

4

)m

+
1

1− 1
4

=
2

3

(
1

4

)m

On peut alors montrer que
lim
k→∞

r2n = 2

avec

Convergence Soit (xn)n∈N ∈ QN, on dit que (xn)n∈N converge vers r ∈ Q si et seulement si

∀ϵ ∈ Q∗
+,∃Nε|∀n ≥ Nε, |xn − r| < ε

et on écrit lim
n→∞

xn = r

A

Cauchy On dit que (xn)n∈N est de Cauchy si et seulement si

∀ε ∈ Q∗
+,∃Nε|n,m ≥ Nε =⇒ |xn − xm| < ε

A



1.4. NOMBRES RÉELS 23

Soient (xn)n∈N , (yn)n∈N ∈ QN de Cauchy,

1. (xn + yn)n∈N est de Cauchy

2. (xn · yn)n∈N est de Cauchy

Preuve

1. exo

2. exo

□

Si on considère,

r0 = 1, rn+1 = 1 +
1

1 + rn
, n ≥ 0 =⇒ (rn)

2 n−→∞−−−−→ 2 ∧
(
rn +

1

n+ 1

)2
n−→∞−−−−→ 2

Équivalence ∼′′ Soient (xn)n∈N , (yn)n∈N ∈ QN deux suites de Cauchy, on dit que

(xn)n∈N ∼′′ (yn)n∈N ⇐⇒ lim
n→∞

(xn − yn) = 0

A

Théorème
∼′′ est une relation d’équivalence sur les suites de Cauchy dans QN.

⋄

Preuve
exo

□

Classe d’équivalence sur R 4 Un nombre réel est une classe d’équivalence[
(xn)n∈N

]
∼′′

:=
{
(yn)n∈N | (yn)n∈N ∼′′ (xn)n∈N

}
où (xn)n∈N , (yn)n∈N ∈ QN. La collection de ces classes est R

A

Rem 1. On identifie r ∈ Q à la suite
[
(r)n∈N

]
. Dans ce sens, on peut dire que Q ⊂ R

Rem 2. Si r0 = 1, rn+1 = 1 + 1
1+rn

, n ≥ 0, on a vu que

lim
n→∞

r2n = 2

On a donc
[(
r2n
)
n∈N

]
=
[
(2)n∈N

]
= 2R

4Nombre Réel
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Addition Soient
[
(xn)n∈N

]
,
[
(yn)n∈N

]
∈ R. On pose[
(xn)n∈N

]
+
[
(yn)n∈N

]
:=
[
(xn + yn)n∈N

]

A

Vérifions que si (wn)n∈N ∼′′ (xn)n∈N , (vn)n∈N ∼′′ (xn)n∈N

=⇒ (wn + vn)n∈N ∼′ (xn + yn)n∈N

Preuve
exo

□

Multiplication Soient
[
(xn)n∈N

]
,
[
(yn)n∈N

]
∈ R. On pose[

(xn)n∈N

]
·
[
(yn)n∈N

]
:=
[
(xn · yn)n∈N

]

A

Vérifions que si (wn)n∈N ∼′′ (xn)n∈N , (vn)n∈N ∼′′ (xn)n∈N

=⇒ (wn · vn)n∈N ∼′′ (xn · yn)n∈N

Preuve
exo

□

Théorème
R, muni de + et de × forme un corps commutatif, i.e.,

1. R, muni de + est un groupe commutatif

2. R∗, muni de × est un groupe commutatif

3. ∀x, y, z ∈ R, x · (y + z) = x · y + x · z

⋄

Preuve
exo

□



1.4. NOMBRES RÉELS 25

Rem 1. Considérons la suite

x0 =0

x1 =
9

10

x2 =
99

100

x3 =
999

1000
...

xn =
10n − 1

10n

On observe que

lim
n→∞

(xn − 1) = lim
n→∞

−1

10n
= 0

Donc
(xn)n∈N ∼′′ (1)n∈N

Donc [(
0.9
)
n∈N

]
=
[
(1)n∈N

]
= 1R

Similairement
1

2
= 0.5 = 0.49

Rem 2. il nous faut encore une relation d’ordre < sur R.
1er essai [

(xn)n∈N

]
<
[
(yn)n∈N

]
⇐⇒ ∀n ∈ N, xn > yn

Mais ce n’est pas une bonne définition, car

[
(1)n∈N

]
=

[(
10n − 1

10n

)
n∈N

]

mais
1 >

10n − 1

10n

2e essai[
(xn)n∈N

]
>
[
(yn)n∈N

]
, on veut aussi que[

(xn)n∈N

]
̸=
[
(yn)n∈N

]
⇐⇒ (xn)n∈N ̸∼′′ (yn)n∈N
⇐⇒ lim

n→∞
(xn − yn) = 0 faux

⇐⇒ ¬
(
∀ε ∈ Q∗

+,∃Nε|n ≥ Nε =⇒ |xn − yn| < ε
)

⇐⇒ ∃ε ∈ Q∗
+|¬

(
∃Nε|n ≥ Nε =⇒ |xn − yn| < ε

)
⇐⇒ ∃ε ∈ Q∗

+|∀N ∈ N,∃n ≥ N ∧ |xn − yn| < ε

Ordre sur R Soient
[
(xn)n∈N

]
,
[
(yn)n∈N

]
∈ R, alors on pose[

(xn)n∈N

]
>
[
(yn)n∈N

]
⇐⇒ ∃d ∈ Q∗

+,∃N ∈ N|n ≥ N =⇒ xn ≥ yn + d
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A

Il faut vérifier que > est bien posée sur les classes, i.e., il faut montrer que cette relation d’équivalence est indépendante
du représentant.
Preuve
exo

□

Théorème
> ordonne R totalement.

⋄

Preuve
Soient

[
(xn)n∈N

]
,
[
(yn)n∈N

]
∈ R distinctes. Montrons alors que[

(xn)n∈N

]
>
[
(yn)n∈N

]
⊻
[
(xn)n∈N

]
<
[
(yn)n∈N

]
Puisque ces deux classe sont distinctes,

(xn)n∈N ̸∼′′ (yn)n∈N ⇐⇒ lim
n→∞

(yn − xn) ̸= 0

∃Q∗
+|∀N ∈ N,∃n ≥ N | |yn − xn| ≥ ε

Puisque (xn)n∈N , (yn)n∈N sont de Cauchy,

∃N ε
3
,∃N ′

ε
3
, n,m ≥ N ε

3
∧ n,m ≥ N ′

ε
3

=⇒ |xn − xm| ≤ ε

3
∧ |yn − ym| ≤ ε

3

Posons
Nε := max

{
N ε

3
, N ε

3

}
On sait

∃n′ ≥ Nε| |xn′ − yn′ | ≥ ε

Donc, on a
xn′ ≥ yn′ + ε ∧ |xn − xn′ | < ε

3
∧ |yn − yn′ | < ε

3

Donc,
xn ≥ yn +

ε

3

soit
yn′ ≥ xn′ + ε ∧ |xn − xn′ | < ε

3
∧ |yn − yn′ | < ε

3

Donc,
yn ≥ xn +

ε

3
,∀n ≥ Nε

□

Théorème
> est transitive sur R. De plus, on a comptabilité avec l’addition et la multiplication, i.e.,

1. ∀x, y ∈ R, x > y ⇐⇒ x+ z > y + z

2. ∀x, y ∈ R, x, y > 0 =⇒ x · y > 0
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⋄

Preuve
exo

□

Rem Tout corps est intègre. On peut d’ailleurs montrer que dans un corps K,

0× x = 0,∀x ∈ K

En effet,

0× x =x <

=0× x+ (x− x)

= (0× x+ x) + (−x) =(0× x+ 1× x) + (−x)

= (0 + 1)× x+ (−x)

=1× x+ (−x)

=x+ (−x)

=0

De manière similaire, on a (−x)× y = − (x× y)

x · y=0 ⇐⇒ x =0∨y =0

x · y>0 ⇐⇒ x, y>0∨x, y<0

1.5 Existence des bornes supérieures et inférieures et ses conséquences

Majorant Soit E ⊂ R, E ̸= ∅. Un majorant de E est un

x ∈ R|∀y ∈ E , x ≥ y

A

Minorant Soit E ⊂ R, E ̸= ∅. Un minorant de E est un

x ∈ R|∀y ∈ E , x ≤ y

A

Borne supérieure La borne supérieure de E5, est

sup (E) := min
{
y ∈ R|y majore E

}
5Si elle existe.
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A

Borne inférieure La borne inférieure de E6, est

inf (E) := max
{
y ∈ R|y minore E

}

A

Théorème de la borne supérieure
Soit E ⊂ R, E ̸= ∅ et majoré. Alors

∃s ∈ R|s = sup (E)
⋄

Preuve
On peut, sans perte de généralité, que E ⊂ R+

7. Puisque E est majorée, on peut poser

M0 :=
{
n ∈ N|n majore E

}
et M0 ̸= ∅. On pose s0 = min (M0), pour n ≥ 1, on pose

En :=
{
2nx|x ∈ E

}
En est majoré, puisque En. On pose

Mn :=
{
n ∈ N|n majore En

}
On a

∅ ̸= Mn ⊂ N
Donc ∃m ∈ R|s = min (Mn) et on pose

sn := 2−n min (Mn)

On obtient ainsi une suite décroissante (sn)n∈N ∈ QN. De plus,

2En =En+1

=⇒ 2Mn ⊂Mn+1

=⇒ min (2Mn) ≥min (Mn+1)

=⇒ 2−n min (Mn) ≥2−n−1 min (Mn+1)

=⇒ sn ≥sn+1 > sn − 1

2n

car2n
(
sn − 1

2n

)
= 2nsn − 1 = min (Mn)− 1 qui ne majore plus En. Donc sn − 1

2n ne majore plus E .
(sn)n∈N est de Cauchy, car, si n > m,

|sn − sm| ≤
n−1∑
k=m

|sk+1 − sk|

≤
∞∑

k=m

|sk+1 − sk|

≤
∞∑

k=m

1

2k

≤ 1

2m

∞∑
k≥0

1

2k

=21−m

Donc,
[
(sn)n∈N

]
∈ R

6Si elle existe.
7Ceci est dû à la comptabilité de > avec +.
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1. (sn)n∈N majore tout x ∈ E . Clair, puisque par construction,

sn ≥ x,∀x ∈ E ,∀n ∈ N

2. Si
[
(yn)n∈N

]
<
[
(sn)n∈N

]
=⇒

[
(yn)n∈N

]
ne majore plus E . Car si

∃d ∈ Q∗
+ ∧N ∈ N|n ≥ N =⇒ yn + d ≤ sn

Il doit exister k ∈ N|d > 2−k

=⇒ n ≥max {N,K}
=⇒ yn + 2−k ≤sn

=⇒ yn + 2−n ≤sn

=⇒ yn ≤sn − 2−n

Donc yn ne majore plus du tout x ∈ E . Donc[
(sn)n∈N

]
= sup (E)

□

Rem De façon analogue, si E est minorée, alors inf (E) ∈ R

Suite réelle Une suite réelle (xn)n∈N est une fonction x : N → R. On dit que (xn)n∈R converge vers l ∈ R si et
seulement si

∀ε > 0,∃Nε|n ≥ Nε =⇒ |l − xn| < ε

A

Théorème de la convergence monotone
Soit (xn)n∈N ∈ RN croissante et majorée8, alors

lim
n→∞

xn = sup
{
xn|n ∈ N

}
⋄

Preuve
Puisque (xn)n∈N est majorée,

{
xn|n ∈ N

}
est majoré aussi et possède donc une borne supérieure. Soit ε > 0, on a

que
sup

{
xn|n ∈ N

}
− ε

ne majore plus
{
xn|n ∈ N

}
, donc

∃Nε ∈ N|xNε
> sup

{
xn|n ∈ N

}
− ε

Puisque (xn)n∈N est croissante, on a que

∀n ≥ Nε =⇒ sup
{
xn|n ∈ N

}
≥ xn > sup

{
xn|n ∈ N

}
− ε

Donc,
ε > xn − sup

{
xn|n ∈ N

}
> −ε

On a donc bien
∀ε > 0,∃Nε|n ≥ Nε =⇒

∣∣∣xn − sup
{
xn|n ∈ N

}∣∣∣ < ε

8Le raisonnement est également valable pour des suites décroissantes et minorées
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□

Lemme
∀a, b ∈ R+,∀n ∈ N≥2,

a < b ⇐⇒ 0 ≤ (b− a)nan−1 < bn − an < (b− a)nbn−1

⋄

Preuve
On a que

bn − an = (b− a)
(
bn−1 + abn−2 + ...+ an−2b+ an−1

)
=⇒ si 0 ≤ a < b, alors 0 ≤ a2 ≤ ab et an−1 ≤ akbn−1−k < bn−1

0 ≤ (b− a)nan−1 < bn − an < (b− a)nbn−1

⇐= on a, en particulier,
(b− a)nbn−1 > 0

on a par intégrité,
(b− a) , nbn−1 > 0

Donc
b > a

□

Théorème de la méthode Newton
Soient y ≥ 0, y ̸= 1, n ∈ N≥2. On pose

x0 :=max {1, y}

xk+1 :=xk − xn
k − y

nxn−1
k

Alors
lim
k→∞

xk = r ∈ R, rn = y

⋄

Preuve
On observe que 0 < x0 et (x0)

n
> y. On peut observer que si xk > 0 et (xk)

n
> y, alors

0 < xk+1 < xk

De plus,

y − (xk+1)
n
=y − xn

k + xn
k − (xk + 1)

n
xk+1 − xk =− xn

k − y

nxn
k − 1

=− h

=y − xn
k +

(
xn
k+1 + h

)n − (xk+1 + h)
n

<y − xn
k + nhxn−1

k

=0
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On peut donc conclure par récurrence que (xk)k∈N est décroissante et minorée9. Donc

lim
k→∞

xk = r ∈ R

par le théorème de la convergence monotone. On peut montrer que

lim
n→∞

xn
k = rn = y

□

Théorème de la complétude de R
Toute suite de Cauchy converge dans R.

⋄

Preuve
Soit (xn)n∈N une suite de Cauchy à valeurs réelles. (xn)n∈N est donc bornée. Posons pour un n ∈ N,

Un = sup
{
xm|m ≥ n

}
(Un)n∈N est décroissante et minorée10. donc

lim
n→∞

Un = L ∈ R

Soit

ε > 0,∃N ε
3
|n,m ≥ N ε

3
=⇒ |xn − xm| < ε

3

∃N ′
ε
3
|n ≥ N ′

ε
3

=⇒ |Un − L| < ε

3

Pour
n ≥ max

{
N ε

3
, N ′

ε
3

}
, xn ≤ Un ≤ xn +

ε

3

Donc, si Nε = max
{
N ε

3
, N ′

ε
3

}
et si n ≥ Nε

|xn − L| = |xn − xNε
+ xNε

− UNε
+ UNε

− L|
≤ |xn − xNε

|+ |xNε
− UNε

|+ |UNε
− L|

<3
ε

3
=ε

□

Un intervalle Un intervalle I est un sous-ensemble de R|∀x, y ∈ R, x, y ∈ I =⇒ [x, y] ⊂ I

• Un intervalle est dit bornée s’il est du type

[a, b] , [a, b) , (a, b] , (a, b)

• Un ensemble E ⊂ R est dit ouvert si et seulement si

∀x ∈ E ,∃δ > 0| (x− δ, x+ δ) ⊂ E

• Un ensemble E ⊂ R est dit fermé si et seulement si R \ E est ouvert.

A

9Par exemple par 0
10Car xn est minorée



32 CHAPTER 1. NOMBRES ET ENSEMBLES

1.6 Nombres complexes

On remarque que dans R,
∄x ∈ R|x2 = −1

Dans M2 (R),
∃m ∈ M2 (R) |m2 = −12

Par exemple, on prend

i =

(
0 −1
1 0

)
On pose alors la définition suivante:

Complexe On définit C, soit l’ensemble des nombres complexes, comme

C :=

{(
x −y
y x

)
|x, y ∈ R

}

avec + et × données par les opérations sur les matrices. Si z ∈ C, on a

z = 12x+ iy

On dit que x = ℜ (z) est la partie réelle et y = ℑ (z) est la partie imaginaire.

A

Puisque M2 (R) est un groupe abélien pour ×, C, muni de + l’est aussi. Si z = 12x+ iy et z′ = 12x
′ + iy′, alors

zz′ =(12x+ iy)
(
12x

′ + iy′
)

=12

(
xx′ − yy′

)
+ i
(
yx′ + xy′

)
∈ C

On vérifie donc que × est une opération interne à C, est associative et distributive. Si z ∈ C∗, z =

(
x −y
y x

)
, x, y ∈ R∗.

Calculons son det
det
(
z
)
= x2 + y2

Donc
z ̸= 02 ⇐⇒ det

(
z
)
̸= 0 ⇐⇒ ∃z−1 ∈ M2 (R)

⇐⇒ z−1 =
1

det
(
z
) ( x y

−y x

)
=

1

det
(
z
) (12x− iy) ∈ C

Module Si z = 12x+ iy, on pose le module de z

|z| :=
(
det
(
z
)) 1

2

A

Conjugué Si z = 12x+ iy, on pose le conjugué de z

z := zt

A
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Rem 1. Stricto senso, R ̸⊂ C, mais si on identifie x ∈ R à 12x ∈ C, alors R ⊂ C

Rem 2. Puisque 12 = 1C, on a que
z = 12x+ iy = 1Cx+ iy

et on écrit
z = x+ iy

Soit α ∈ R, posons

CIS (α) := cos (α) + i sin (α) =

(
cos (α) − sin (α)
sin (α) cos (α)

)

CIS (α) CIS (β) =...

=CIS (α+ β)

CIS (nα) =CIS (α)
n

z10 =1

=cos (0) + i sin (0)

=CIS (0)

=CIS (2π)

=CIS (4π)

=CIS (6π)

=⇒ z =CIS

(
2π

10

)
,CIS

(
4π

10

)
,CIS

(
6π

10

)
,CIS

(
8π

10

)
,CIS

(
10π

10

)
,CIS

(
12π

10

)
,CIS

(
14π

10

)
,CIS

(
16π

10

)
,CIS

(
18π

10

)
, 0

Ex Calcul de z|z2 = −8− 6i. Posons z = a+ ib, a, b ∈ R. On veut

(a+ ib)
2
=− 8− 6i

=a2 − b2 + i2ab

⇐⇒
{
a2 − b2 = −8

−3 = ab

⇐⇒

{
a2 − 9

a2 = −8
b = − 9

a

⇐⇒

{
a4 + 8a2 − 0= 0=

(
a2 + 9

) (
a2 − 1

)
b=− 3

a

⇐⇒
{

a = ±1
b∓ 3

=⇒ z =(1− 3i) , (−1 + 3i)

Dans notre construction, z ∈ M2 (R). On a donc une action de C sur R2: si z = (a+ ib) et (x, y) ∈ R2, alors

z

(
x
y

)
=

(
a −b
b a

)(
x
y

)
∈ R2

On sait que
dimR R2 = 2

mais
dimC R2 = 1
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Par exemple, (1, 0) = e1 est une base pour R2, vu comme un espace vectoriel complexe. Si z = abi,

(a+ ib)−→e 1 =

(
a −b
b a

)(
1
0

)
= ae1 + be2

où e2 = (0, 1) c’est la représentation de Gauss de C.
Théorème fondamental de l’algèbre
Si P (z) = a0 + a1z + a2z

2 + ...+ anz
n est un polynôme à coefficients a0, a1, ..., an ∈ C complexes, et si n ≥ 1, alors

P (z) = 0 possède au moins une solution dans C. On dit que C est algébriquement clos.

⋄

Rem Dans C, il n’existe pas de relation d’ordre total et compatible avec + et ×. En effet, supposons que < est une
telle relation d’ordre. On a alors soit i > 0C ⊻−i > 0C. Mais alors, on aurait (i)

2
> 0C, donc

−1 > 0C

on aurait alors
i > 0C =⇒ −i > 0C =⇒ i > 0C =⇒ 0C > 0C※



Chapter 2

Outils d’analyse

On va utiliser tous les résultats de Analyse B (pour lesquels les notes ne sont pas fournies).

2.1 Polynômes de Taylor

Essayons de calculer la valeur de π. Géométriquement, π est le demi-périmètre d’un cercle de rayon 1:

π/4
π

x

y

Paramétrisons un point P sur le Γ (0, 1). Chaque point P (x, y) ∈ Γ (0, 1) est l’intersection de Γ (0, 1) avec y = tx et
t ∈ [0, 1]. On sait que11

x2 + y2 = 1

Aussi
y

x
= t

Donc
y2

x2
= t2

et
y2 = t2x2

Ainsi

x2 + t2x2 =1

⇐⇒ x2
(
1 + t2

)
=1

⇐⇒ x2 =
1

1 + t2

Puisque P (x, y) est dans le premier cadran, x ≥ 0 et ainsi

x =
1√
1 + t

, y =
t√

1 + t2

11Pythagore

35
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ẋ =− t

(1 + t)
3
2

ẏ =
1√
1 + t

− t2

(1 + t)
3
2

=
1 + t2 − t2

(1 + t2)
3
2

=
1

(1 + t2)
3
2

P

(
ẋ(t), ẏ(t)

)
x

y

La longueur de
(
ẋ(t), ẏ(t)

)
est égale à √

t2

(1 + t2)
3 +

1

(1 + t2)
3 =

1

1 + t2

Un accroissement d’arc de P
(
x(t), y(t)

)
est donc

dt

1 + t2

On obtient alors que

π

4
=

∫ 1

0

dt

1 + t2

=

∫ 1

0

dt

1− (−t2)

=

∫ 1

0

(
1− t2 + t4 − t6 + t8 − ...

)
dt

=

∫ 1

0

∞∑
n=0

(
−t2

)n
dt

=

∞∑
i=0

∫ 1

0

(
−t2

)n
dt

=⇒ π

4
=1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ ...

Mais a-t-on le droit d’échanger une
∑

infinie et l’intégrale ? Étudions un peu 1
1−r , |r| < 1. Si

1 + r + r2 + r3 + r4 + r5 + r6 + r7 + r8 + r9 + r10 =

10∑
k=0

rk
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On a

(1− r)

10∑
k=0

rk =

10∑
k=0

rk −
10∑
k=0

rk+1

=1− r11

=⇒
10∑
k=0

rk =
1− r11

1− r

n∑
k=0

rk =
1− rn+1

1− r

=
1

1− r
− rn+1

1− r

et ainsi
1

1− r
=

n∑
k=0

rk +
rn+1

1− r︸ ︷︷ ︸
→0,|r|<1

Si on remplace r par
(
−t2

)
π

4
=

∫ 1

0

dt

1− (−t2)

=

∫ 1

0

 n∑
k=0

(
−t2

)k
+

(
−t2

)n+1

1 + t2

 dt

=

n∑
k=0

∫ 1

0

(
−t2

)k
dt+

∫ 1

0

(
−t2

)n+1

1 + t2
dt

=
∑

0≤2k+1≤2n+1

(−1)
k

2k + 1
+

∫ 1

0

(
−t2

)n+1

1 + t2
dt

Mais ∣∣∣∣∣∣
∫ 1

0

(
−t2

)n+1

1 + t2
dt

∣∣∣∣∣∣ ≤
∫ 1

0

t2n+2

1 + t2
dt

≤
∫ 1

0

t2n+2 dt

=
1

2n+ 3

n→∞−−−−→ 0

On a écrit
1

1 + t2
=

n∑
k=0

(
−t2

)n
+

(
−t2

)n+1

1 + t2

On l’appelle le développement limité de f (t) = 1
1+t2 , où

∑n
k=0

(
−t2

)
est le polynôme de Taylor et où (−t2)

n+1

1+t2 est le
terme de correction.

S oit f : I → R un fonction n fois dérivable en x0 ∈ Df . Le polynôme de Taylor de f (x), autour de x0, à l’ordre n
est donné par

Pf,x0,n(x) =

n∑
k=0

f (k) (x0)

k!
(x− x0)

k

A
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Théorème
Soit f : I → R, une fonction n fois dérivable en x0 ∈ Df , alors

lim
x→x0

f (x)− Pf,x0,n(x)

(x− x0)
k

= 0,∀k = 0, 1, ..., n

⋄

Preuve
Fixons k = {0, n} ∩ N. Si k = 0, par convention, (x− x0)

k
= 1. On a

lim
x→x0

f (x)− Pf,x0,n(x) =

f (x)−
n∑

k=0

f (k) (x0)

k!
(x− x0)

k


= lim

x→x0

− f (0) (x0)

0!
− 1

=f (x0)− f (x0)

=0

Si k ̸= 0

lim
x→x0

f (x)−
∑n

l=0
f(l)(x0)

l! (x− x0)
l

(x− x0)
k

=
BH

lim
x→x0

f (1) (x)−
∑n

l=1
f(l)(x0)

l! l (x− x0)
l−1

l (x− x0)
k−1

=
BH

...

k fois
=
BH

f (k) (x)−
∑n

l=k
f(l)(x0)

l! l · (l − 1) · ... · (l − k + 1) (x− x0)
l−k

k! (x− x0)
0

=
f (k) (x0)− f(k)(x0)

k! k · (k − 1) · ... · (1) · (x− x0)
0

k!

=
f (k) (x0)− f (k) (x0)

k!
=0

□

On pose pour une fonction f suffisamment dérivable en x0

f (x) = Pf,x0,n(x) + (x− x0)
nε(x), lim

x→x0

ε(x) = 0

Théorème
Si f est une fonction n fois continûment dérivable en x0 et si

f (x) = P (x) + (x− x0)
nε(x)

avec P (x) un polynôme de degré n et
lim

x→x0

ε(x) = 0

alors
P (x) = Pf,x0,n(x)

⋄

Preuve
Calculer

lim
x→x0

f (x)− P (x)− (x− x0)
nε(x)

(x− x0)n
=0
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On peut en conclure que

lim
x→x0

f (x)− P (x)

(x− x0)n
= 0

En appliquant la s (pour lesquels les notes ne sont pas fournies)uffisamment de fois, on conclut que

P (x) = Pf,x0,n(x)

□

Ex 1. f (x) = 1
1−x , x0 = 0

f (x) =

N∑
n=0

xn+
xN+1

1− x︸ ︷︷ ︸
xN x

1−x

En posant
ε(x) =

x

1− x
, lim
x→x0

ε(x) = 0

Donc

P 1
1−x ,0,N (x) =

N∑
n=0

xn

Ex 2. f (x) = ln (x) , f ′ (x) = 1
x = 1

1−(1−x) . On prend x0 = 1, si x ∈ (0, 2)

f ′ (x) =
1

x

=

N∑
n=0

(1− x)
n
+

(1− x)
N+1

x

P 1
x ,1,N (x) =

N∑
n=0

(1− x)n ε(x) =
(1− x)

x∫ x

1

1

t
dt =

N∑
n=0

∫ t

1

(1− t)
n
dt+

∫ x

1

(
1− tN

) (1− t)

t
dt

=⇒ ln (x) =
N∑

n=0

∫ x

1

(−1)
n
(t− 1)

n
dt+ (−1)

N+1
∫ x

1

(t− 1)
n

t
dt

=

N∑
n=0

(−1)
n (x− 1)

n+1

n+ 1
+ (−1)

N+1
∫ x

1

(t− 1)
N+1

t
dt

Mais ∣∣∣∣∣(−1)
N+1

∫ x

1

(t− 1)
N+1

t
dt

∣∣∣∣∣ ≤
∫ x

1

|t− 1|N+1

|t|
dt

• si x ≥ 1

≤
∫ x

1

(t− 1)
N+1

dt =
1

N + 2
(x− 1)

N+2

• si 0 < x ≤ 1

≤
∫ x

1

|t− 1|N+1

x
dt ≤ 1

(N + 2)x
(1− x)

N+2

Donc

Pln(x),1,N+1(x) =

N∑
n=0

(−1)
(x− 1)

n+1

n+ 1
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On constate que si x ∈ (0, 2]

ln (x) =

∞∑
n=0

(−1)
n (x− 1)

n+1

n+ 1

Donc si x = 2

=⇒ ln (2) = 1− 1

2
+

1

3
− 1

4
+

1

5
− ...

=⇒ ln (10) = ln

(
23

10

8

)
= 3 ln (2) + ln

(
5

4

)

Corollaire
Si f, g : R → R n fois continûment dérivables en x0 ∈ Df,g, alors

1. Pf+g,x0,n(x) = Pf,x0,n(x) + Pg,x0,n(x)

2. Pf+g,x0,n(x) =
[
Pf,x0,n(x) · Pg,x0,n(x)

]
n

où [...]n signifie que l’on retient que les termes (x− x0)
k, k ≤ n

⋄

Preuve

1.

f (x) =Pf,x0,n(x) + (x− x0)
n
εf (x),

g (x) =Pg,x0,n(x) + (x− x0)
n
εg(x),

lim
x→x0

εf (x), εg(x) =0

=⇒ f (x) + g (x) =Pf,x0,n(x) + Pg,x0,n(x)︸ ︷︷ ︸
Pf+g,x0,n

(x− x0)
n (

εf (x) + εg(x)
)︸ ︷︷ ︸

εf+g(x)

2. Exo

□

Théorème
Soit f : R → R, n+ 1 fois dérivable sur un intervalle I, et x0, x ∈ I. Alors

f (x)− Pf,x0,n(x) =
(x− x0)

n+1

(n+ 1)!
f (n+1) (ξ)

avec ξ ∈
(
min (x0, x) ,max (x0, x)

)
⋄

Preuve
Posons [x0, x] ∋ y 7→ F (y), où

F (y) = f (x)− Pf,y,n(x)− c(x− y)

où
c =

1

(x− x0)n+1

(
f (x)− Pf,x0,n(x)

)
F (x) =0

F (x0) =0
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et F (y) est dérivable en (x0, x). Par le , (pour lesquels les notes ne sont pas fournies)

∃ξ ∈ (x0, x) |F ′(ξ) = 0

⇐⇒ 0 = − d

dy

n∑
k=0

f (k) (y)

k!
(x− y)k

∣∣∣∣∣∣
y=ξ

+ (n+ 1)x(x− ξ)n

⇐⇒ 0 =−
n∑

k=0

f (k) (ξ)

k!
(x− ξ)k +

∑
k=1

f (k) (ξ)

k!
k(x− ξ)k−1 + (n+ 1)c(x− ξ)n

⇐⇒ 0 =− f (n+1) (ξ)

n!
(x− ξ)n + (n+ 1)c(x− ξ)n

⇐⇒ c =
f (n+1) (ξ)

(n+ 1)!

=
1

(x− x0)n+1

(
f (x)− Pf,x0,n(x)

)
□
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Chapter 3

Introduction aux équations différentielles

Équation différentielle ordinaire Une équation différentielle est une équation dont l’inconnue est une fonction.
Par exemple:

mẍ = −GMm

∥x∥3
x, t 7→ x(t)

Ou encore:
mẍ = −kx

Ce sont des équations différentielles ordinaires, abrégées EDO, car la fonction ne dépend que d’une variable.

A

Rem Il existe d’autres équations différentielles, comme celle de Navier-Stokes, ou encore celle de Yang-Mills, qui
dépendent de plusieurs variables.

3.1 Équation différentielle ordinaire linéaire de premier ordre

Équation différentielle ordinaire linéaire de premier ordre Une équation différentielle ordinaire linéaire de
premier ordre, abrégée EDOL1, est du type

y′ + py = q

où

• p, q : D → R, continue sur D ⊂ R.

• Une EDOL1 est dite homogène si q = 0. Si on abrège parfois EDOL1 homogène par EDOL1h.

A

Solution Une solution à l’EDOL1 y′ + py = q est une fonction f : I → R, où I ⊂ D est un intervalle ouvert, tel que

f ′ + pf = q

A

43
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Condition initiale Une condition initiale pour une EDOL1 est la donnée d’un point

(x0, y0) ∈ Dp × R

x0, x ∈ I, y(x0) = y0 et tel que f (x0) = y0. On a

y(x) = y0 exp

(
−
∫ x

x0

p dt

)

A

Ex 1. y′ = const. est une EDOL1, de plus elle est homogène si const. = 0, on voit que dans ce cas p = 0, q =
const. .

Ex 2. mẍ = −GMm
∥x∥3 x n’est clairement pas une EDOL1

Ex 3. yy′ + y2 = x2 n’est pas une EDOL1. Par contre, si on pose u = y2, alors on a

u′ = 2yy′

et on obtient
1

2
u′ = u = x2 ⇐⇒ u′ + 2u = 2x2

qui est une EDOL1, avec p = 2, q = 2x2

Ex 4. y′ + cos (x) y = sin (2x) + cos (x), on a p = cos (x) , q = sin (2x) + cos (x) et p, q : R → R sont continues sur R.
Cette équation est donc une EDOL1.

Essayons maintenant de résoudre une EDOL1 homogène

y′ + py = 0

y′ + py =0

⇐⇒ y′ =py

⇐⇒ y′

y
=− p

⇐⇒ d

dx
ln (y) =− p

⇐⇒ ln (y) =

∫ x

x0

(−p) dt+ λ, λ ∈ R

⇐⇒ y =exp

(
−
∫ x

x0

p dt

)
µ, µ ∈ R

Si en plus on a la condition initiale que y(x0) = y0, on doit choisir µ = y0 et la solution devient

y(x) = y0 exp

(
−
∫ x

x0

pdt

)
Rem On part du principe que y ̸= 0

Théorème
Soit y′ + py = 0 une EDOL1h. Soit en I ouvert, tel que I ⊂ Dp. Soit x0 ∈ I et y0 ∈ R. Alors l’EDOl1h possède une
unique solution, donnée par

y = y0 exp

(
−
∫ x

x0

p dt

)
sur I
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⋄

Preuve
Le fait que y soit une solution à l’EDOL1h tel que y(x0) = y0 est clair. Soit f : I → R|f (x0) = y0 et f ′ + pf = 0.
Posons g := f exp

(∫ x

x0
p dt

)
, pour x ∈ I.

On a que

g′ =f ′ exp

(
−
∫ x

x0

p dt

)
+ f exp

(∫ x

x0

pdt

)
p

=exp

(∫ x

x0

p dt

)(
f ′ + pf

)
=0

=⇒ g = const.

=⇒ f = const. exp

(
−
∫ x

x0

p dt

)

Comme de plus
f (x0) = y0

On a

y = y0 exp

(
−
∫ x

x0

pdt

)
= y

□

Lemme
Si f, g : I → R sont solutions de y′ + py = q. Alors f − g est solution de y′ + py = 0

⋄

Preuve
(f − g)

′
= f ′ − g′ = q − pf − q (pg) = −p (f − g)

□

Ex 1. Résoudre
y′ + cot (x) y = 0

avec y
(
π
2

)
= 1, on a p = cot (x) ,D = R \

{
kπ|k ∈ Z

}
, x0 = π

2 , y0 = 1, I = (0, π). D’après le théorème
précédent.

y =1 · exp

(
−
∫ x

π
2

cot (t) dt

)

=exp

(
−
∫ x

π
2

cos (t)

sin (t)
dt

)
=exp

(
− ln

(
sin (x)

))
=

1

sin (x)
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Ex 2. Trouver f ∈ C1
(
R∗

+

)
|f (xy) = yf (x) ,∀y ∈ R,∀x ∈ R∗

+. Dérivons par rapport à y.

f ′(xy) (xy)
′
=f (x)

=⇒ f ′(xy)xy ln (x) =f (x)

Posons y = 1

f ′(x)× ln (x) =f (x)

Si x ̸= 1,

f ′(x)− 1

x ln (x)
f (x) =0

=⇒ f (x0) =y0 exp

(
+

∫ x

x0

1

ln (A)
dt

)
si x0,x>1

= y0 exp

(
ln
(
ln (t)

)∣∣∣x
xy

)
= y0 exp

(
ln
(
ln (x)

)
− ln

(
ln (x0)

))
=y0

exp
(
ln
(
ln (x)

))
exp

(
ln
(
ln (x)

))
=y0

ln (x)

ln (x0)

Ex 3. y′ + py = q, q ̸= 0, Une solution particulière peut être donné par l’équation suivante:

yp(x) = yh(x)

∫ x

x0

q(t)

yh(t)
dt

avec x0 ∈ [x0, x]. De plus, on a
∃!X ∈ I|yp(X) = 0 ⇐⇒ X = x0

Corollaire
Si y′ + py = q est une EDOL1, et si I ⊂ D est un intervalle ouvert,

y = yp λ ∈ R

yp est une solution particulière à y′ + py = q et

yn = exp

(
−
∫ x

x0

p dt

)

est solution à l’EDOL1h.

⋄

• On peut trouver yp en devinant:
y′ + xy = x2 + 1

Après comparaison des degrés, on cherche
y = ax+ b

y′ = a =⇒ a+ x (ax+ b) = x2 + 1 =⇒ a = 1, b = 0 =⇒ yp = x

Cherchons maintenant une solution de l’homogène:

y′h + xyh = 0, yh = exp

(
−
∫ x

x0

tdt

)
= λe

x2

2
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Soit

y = x+ λ exp

(
−x2

2

)
On cherche la solution avec la condition initiale y(0) = 1

y(0) = 0 + λ exp (0) = λ ≡ 1 =⇒ y(x) = x+ exp

(
−x2

2

)

Théorème de variation des constantes
Soient EDOL1 y′ + py = q, p, q : D → R, continues, soit x0 ∈ I ⊂ D, I un intervalle ouvert. Alors l’unique solution
y′ + py = q, y(x0) = 0 est

yp = exp

(
−
∫ x

x0

p dt

)∫ x

x0

q(t) exp

(∫ t

x0

pds

)
dt


⋄

Ex y′ + cos (x) y = 0 est une EDOL1 homogène, avec p = cos (x) , q = 0. On a aussi p, q : R → R continues sur
R. Cette équation est donc une EDOL1 homogène. Une solution y : U → R,U ⊂ R ouvert. Toute solution à
y′ + py = 0 est de la forme

y(x) = λ exp

(
−
∫ x

x0

p dt

)
, λ ∈ R, [x0, x] ⊂ Dp

On aurait donc

y(x) =λ exp

(
−
∫ x

π

cos (t) dt

)
=λ exp

(
− sin (x)

)
=λ′ exp

(
−
∫ x

π
2

cos (t) dt

)
=λ′ exp

(
− sin (x) + 1

)
=λ′ exp

(
− sin (x)

)
exp (1)

=λ′e exp
(
− sin (x)

)
On a la même solution si λ = λ′e. En mettant maintenant la condition initiale suivante: y(π) = 2, on a

y(x) =2 exp
(
− sin (x)

)
=
2

e
exp

(
− sin (x) + 1

)
On a donc

yp(x) = exp
(
− sin (x)

) ∫ x

π

(sin (2t) + cos (t)) exp
(
sin (t)

)
dt︸ ︷︷ ︸

I

I =exp
(
sin (x)

)
− 1 +

∫ x

π

sin (2t) exp
(
sin (t)

)
dt

=exp
(
sin (x)

)
− 1 + 2

∫ x

π

sin (t)︸ ︷︷ ︸
v

cos (t) exp
(
sin (t)

)
dt︸ ︷︷ ︸

u′

=exp
(
sin (x)

)
− 1 + 2

[
exp

(
sin (t)

)
sin (t)

∣∣∣− ∫ x

π

cos (t) exp
(
sin (t)

)
dt

]
=exp

(
sin (x)

)
− 1 + 2

[
exp

(
sin (x)

)
sin (x)− exp

(
sin (x)

)
+ 1
]

=1− exp
(
sin (x)

)
+ 2 exp

(
sin (x)

)
sin (x)

=⇒ yp(x) = exp
(
− sin (x)

)
− 1 + 2 sin (x)
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On peut maintenant vérifier notre solution:

y′p =− cos (x) exp
(
− sin (x)

)
+ 2 cos (x)

cos (x) yp =cos (x) exp
(
− sin (x)

)
− cos (x) + cos (x) sin (x)

y′p + cos (x) yp =cos (x) + sin (2x)

On peut également tester avec le fait que l’unique x0 ∈ I|yp(x0) = 0 est π. En effet, on a

yp(π) = exp
(
− sin (π)

)
− 1 + 2 sin (π) = exp (0)− 1 + 0 = 0

Essayons maintenant de deviner une solution particulière. Pour cela, on suppose que

yp(x) = a+ b cos (x) + c sin (x)

Si on dérive, on a

y′p =− b sin (x) + c cos (x)

cos (x) yp =a cos (x) + b cos2(x) + c sin (x) cos (x)

sin (2x) + cos (x) =− b sin (x) + c cos (x) + a cos (x) + b cos2(x) + c sin (x) cos (x)

=− b sin (x) + c cos (x) + a cos (x) + b cos2(x) +
c

2
sin (2x)

c=2,b=0,a=−1⇐⇒ yp(x) =− 1 + 2 sin (x)

On remarque que la différence entre les deux solutions particulières est une solution de l’homogène. Pour finir,
on a

S =
{
2 sin (x)− 1 + λ exp

(
− sin (x)

)
, λ ∈ R

}
Si on veut y(π) = 2, on a

−1 + λ = 2 =⇒ λ = 3

Notre solution est donc
y(x) = 2 sin (x)− 1 + 3 exp

(
− sin (x)

)
Cependant, on peut aussi écrire

S =
{
exp

(
− sin (x)

)
− 1 + 2 sin (x) + λ′ exp

(
− sin (x)

)
|λ′ ∈ R

}
Ce qui nous donnerait λ′ = 2.

Corollaire
Toute solution à y′ + py = q s’écrit comme

y = yp + λyh

avec λ ∈ R et yh solutions de l’homogène y′ + py = 0

=⇒ y0 = y(x)− yp(x0) + λyh(x0) =⇒ λ =
y0 − yp(x0)

yh(x0)

⋄

Ex Soit

y′ + cot (x) y =
exp (x)

sin (x)

On a p = cot (x) , q = exp(x)
sin(x) . On voit que p : Dp → R,Dp = R \

{
kπ|k ∈ Z

}
est continue sur Dp qui est un

ouvert, cependant ce n’est pas un intervalle mais une réunion d’une infinité d’intervalles, on voit que q : Dq → R
est continue sur Dq = R \

{
kπ|k ∈ Z

}
qui est aussi un ouvert, cependant ce n’est pas un intervalle mais une

réunion d’une infinité d’intervalles.
Posons maintenant l’équation homogène:

y′ + cot (x) y = 0
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On a

y(x) =λ exp

(
−
∫ x

π
2

cot (t) dt

)

=λ exp

(
−
∫ x

π
2

cos (t)

sin (t)
dt

)
=λ exp

(
− ln | sin (x) |

)
=λ

1

| sin (x) |

On peut faire ça car:

ln | sin (t) |′ D
=

1

| sin (t) |
| sin (t) |′

=
sgn

(
sin (t)

)
| sin (t) |

· cos (t)

y(x) =

{
1

sin(x) x ∈ Dp ∩ R+
2

sin(x) x ∈ Dp ∩ R−

On a donc, pour une solution particulière,

yp(x) =
1

sin (x)

∫ x

π
2

exp (t)

sin (t)
· | sin (t) |dt︸ ︷︷ ︸
I

, x, t ∈ (0, π)

=
1

sin (x)

∫ x

π
2

exp (t) dt

=
exp (x)− exp

(
π
2

)
sin (x)

On a alors:

S =

{
exp (x)− exp

(
π
2

)
sin (x)

+ λ
1

sin (x)
|λ ∈ R

}
, x ∈ (0, π)

Si y
(
π
2

)
= 2, on a

exp
(
π
2

)
− exp

(
π
2

)
sin
(
π
2

) + λ
1

sin
(
π
2

) =2

=⇒ λ =2, y(x) =
exp (x)− exp

(
π
2

)
sin (x)

+
2

sin (x)

Si y
(
π
6

)
= 4, on a

exp
(
π
6

)
− exp

(
π
2

)
sin
(
π
6

) + λ
1

sin
(
π
6

) =4

=⇒ 2 exp

(
π

6

)
− 2 exp

(
π

2

)
+ 2λ =4

=⇒ λ =2 + exp

(
π

6

)
− exp

(
π

2

)
L’unique solution à y′ + cot (x) y = exp(x)

sin(x) est donc

yh(x)

∫ x

x0

q

yh
dt+ y0yh, yh = exp

(
−
∫ x

x0

p dt

)
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3.2 Séparation des variables

Équation différentielle ordinaire à variables séparables Une équation différentielle ordinaire à variables sé-
parables, abrégée EDOVS, est une équation de la forme

y′ = h(y)g(x)

où h : E → R, g : D → R sont continues sur leurs domaines respectifs, E ,D ⊂ R.

A

Solution Une solution est une fonction y : I → R, dérivable sur un intervalle ouvert I ⊂ D et Im (y) ⊂ E qui vérifie

y′ = h(y)g(x)

A

Condition initiale Une condition initiale pour y est (x0, y0) ∈ D × E telle que y(x0) = y0.

A

Discussion
Si

y′ = h(y)g(x)

Si h(y0) ̸= 0, alors h(y) ̸= 0,∀y ∈ I2, un intervalle ouvert qui contient y0. On a alors sur I2

y′

h(y)
= g(x)

Si H(y) est une primitive de 1
h(y) , i.e., d

dyH(y) = 1
h(y) , alors

d

dx
H(y) = g(x)

On aura alors
H(y)−H(y0) =

∫ x

x0

g(t) dt = G(x)

où G(x) est une primitive de g(x), définie sur I1, un intervalle ouvert qui contient x0, x. Donc

H(y) = G(x) +H(y0)

Puisque 1
h(y) ne s’annule pas sur I2, H(y) est une bijective sur I2. Donc

y = H−1(G(x) +H(y0))

Théorème
Soit l’EDOVS y′ = h(y)g(x) et la condition initiale y(x0) = y0, x0 × y0 ∈ D × E . Supposons que

• g : I1 → R est continue, avec I∞ ∋ x0 un intervallee ouvert.

• h : I2 → R est continue, et bornée sur l’intervalle ouvert I2 ∋ y0. Il existe alors un intervalle ouvert J ⊂
I1|x0 ∈ J et il existe une solution unique y : J → R | y′ = h(y)g(x) et y(x0) = y0.
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⋄

Preuve
Puisque h : I2 → R est non-mulle et continue, 1

n
: In → R le sera aussi. Comme y ∈ I2, on peut poser ∀y ∈ I2

H(y) :=

∫ y

y0

1

y(t)
dt

On a h(y0) = 0 et H : I2 → R estinjective, H ′(y) = 1
h(y) . Pour x ∈ I1, on pose

G(x) :=

∫ x

x0

g(t) dt, G(x) = 0, G′(x)

On a donc
G−1{Im (H)} ≠ ∅

Comme H eat continue sur I2, alors H(I2) est un intervalle ouvert. Donc G−1{ln (H)} est un ouvert qui contient
x0. Il exsite fonc un intervalle ouvert J ⊂ G−1{Im (g)} et tel que X0 ∈ J . Pour x ∈ J on pose y(x) = H−1(G(x)).
On a yx0 = y0 et

y′ =
d

dx
H−1(G(x))

d
dx f−1(x)= 1

f(f−1(x))
= h(H−1(G(x)))g(x)

= h(y(x))g(x)

Soit f : J → R telle que f ′ = h(f)g et f (x0) = y0. On a alors

H(f(x)) =

∫ f(x)

f(x0)

1

h(s)
ds

s = f(s)

ds = f ′(t) dt
=

∫ y

y0

1

h(f(t))
f ′(t) dt

=

∫ x

x0

g(t) dt

= G(x)

=

∫ x

x0

y′(t)

h(t)
dt

s = y(t)

ds = y′(t) dt
=

∫ y

y0

1

h(s)
ds

= H(y)

Comme H est injective, on a
f(x) = y(x)

□

Marche à suivre
Y ′ = h(y)g(x), g : I1 → R, h : I2 → R∗ continues, avec (x0, y0) ∈ I1 × I2 une condition initiale.

1. G(x) =
∫ x

x0
g(t) dt

2. H(y) =
∫ y

y0

1
h(s) ds
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3. Trouver J ⊂ G−1(Im (H)) | x0 ∈ J

4. Calcul de y = H−1(G(x)) ⇐⇒ H(y) = G(x)

Ex y′ = cos′

x , (x0, y0) = (1, π), g = 1
x
: R∗

+ → R∗, h = cos (y) :
(
π
2 ,

3π
2

)
→ [−1, 0) est continue sur R.

0.1 G(x) =
∫ x

1
1
t dt = ln (x)

0.2

H(y) =

∫ y

π

1

cos (s)
ds

=

∫ y

π

cos (s)

cos2(s)
ds

=

∫ y

π

cos (s)

1− sin2(s)
ds

=

u = sin (s)

du = cos (s) ds
=

∫ sin(y)

0

du

1− u2

=
1

2

∫ sin(y)

0

(
1

1− u
+

1

1 + u

)
du

=
1

2

(
ln

(
1 + u

1− u

))∣∣∣∣∣∣
sin(y)

0

=
1

2
ln

(
1 + sin (y)

1− sin (y)

)

0.3

lim
y→π

2
+
H(y) = lim

y→π
2

+

1

2
ln

(
1 + sin (y)

1− sin (y)

)
= +∞

lim
y→ 3π

2
−
H(y) = lim

y→ 3π
2

−

1

2
ln

(
1 + sin (y)

1− sin (y)

)
= −∞ =⇒ Im (H) = R, G−1(Im (H)) = R∗

+

=⇒ J = R∗
+

0.4

1

2
ln

(
1 + sin (y)

1− sin (y)

)
= ln (x)

⇐⇒ 1 + sin (y)

1− sin (y)
= e2 ln(x) = x2

⇐⇒ 1 + sin (y) = x2(1− sin (y))

⇐⇒ sin (y) (1 + x2) = x2 − 1

⇐⇒ sin (y) =
x2 − 1

x2 + 1

y∈(π
2 , 3π2 )⇐⇒ y = π − arcsin

(
x2 − 1

x2 + 1

)


	Nombres et ensembles
	Nombres naturels et ensembles
	Nombres entiers
	Nombres rationnels
	Nombres réels
	Existence des bornes supérieures et inférieures et ses conséquences
	Nombres complexes

	Outils d'analyse
	Polynômes de Taylor

	Introduction aux équations différentielles
	Équation différentielle ordinaire linéaire de premier ordre
	Séparation des variables


