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Corrigé de la Série 3

\ 1.4. Nombres rationnels \

1.| Montrez que pour m,n € Z,
mn=0 <& n=0oum=0~0.

(Indication: observer que pour (a,b) € N2, alors (a,b) ~ (d,0) ou (a,b) ~ (0,d) avec
deN.)

m,n € Z signifie que m = (@, by)] et n = [(ay,b,)]. Pour tout couple (a,b) € N?,
on a soit (a,b) ~ (d,0) si a = b+ d, soit (a,b) ~ (0,d) si b=a+ d. Ainsi,

(o, 0)] i (@, o) ~ (o, 0) €t (an, bp) ~ (dn, 0),

- 10, dud)] i (@ b) ~ (A, 0) et (an,b) ~ (0,d,),

m X 1= [(ams bn)] < [(an, b)) = (ddy, 0)] St (s b)) ~ (0, o) €t (an, by) ~ (0,d,),
(0, dnd)] St (@, o) ~ (0, don) €t (an, by) ~ (dn, 0).

Dans tous les cas on a
mxn=1[0,0)] < (an,bn)~(0,0)ou (a,,b,) ~ (0,0),

e mxn=0&m=0oun=0.

2. | Vérifier que ~' est une relation d’équivalence sur Z x Z*.

(a) ~ est réflexif. En effet, Pour (m,n) € Z x Z* on a mn = nm par la commu-
tativité du produit sur Z. Ainsi, (m,n) ~' (m,n).

(b) ~' est symétrique. En effet, pour (m,n), (k,l) € Z x Z*, on a
(m,n) ~" (k1) & ml=kn < kn=ml < (k1) ~" (m,n).
(c) ~ est transitif. En effet, pour (m,n), (k,1), (a,b) € Z x Z*, on a

(m,n) ~" (k1) et (k,1) ~' (a,b)
& ml=knet kb=al
< mlb=knbet kb= al (x sur Z posséde la propriété de simplification)
& mlb=anl et kb= al
< mb=an et kb= al (x sur Z posséde la propriété de simplification)

= (m,n)~'(a,b).

3.|Montrer que

V(a,b),(c,d) € ZxZ*, [(a,b)] =](c,d)] & (a,b) ~' (c,d).
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Supposons que (a,b) ~' (¢,d). Soit (k,l) € [(a,b)]. Par définition, on a donc que
(k,l) ~' (a,b). Par transitivité, on a donc que (k,l) ~' (¢,d), c’est-a-dire que
(k,1) € [(¢,d)]. On en conclut que [(a,bd)] C [(c,d)].

Soit (k,l) € [(¢,d)]. Par définition, on a donc que (k,l) ~' (¢,d). Puisque ~/
est symétrique et qu'on a supposé (a,b) ~' (¢,d), on a aussi (¢,d) ~' (a,b). Par
transitivité, on a donc que (k,l) ~' (a,b), c’est-a-dire que (k,l) € [(a,b)]. On en
conclut que [(¢, d)] = [(a, )]

Supposons maintenant que que [(¢,d)] = [(a,b)]. Comme ~" est réflexive, on a
(a,b) ~' (a,b), ou encore que (a,b) € [(a,b)]. L’égalité des deux classes d’équivalence
nous conduit alors & (a,b) ~' (¢, d).

4.| Vérifier que les opérations + et x font de Q un corps commutatif.

Pour p,q, € Q on pose p = [(mp, )], ¢ = [(mg,n,)] et p = [(my, n,)].
(a) L’opération + fait de Q un groupe abélien.
i.
p+q = [(mp,np)] + [(mg, ng)] = [(mpng + mgny, npng)]
= [(mgny + mpng, ngny)] = [(mg, ng)] + [(my, np)] = g + p,

ou nous avons utilisé la commutativité de la somme et du produit sur Z.

ii.
(p+q) +r= ([(mp’ np)] + [(mq, nq)]) + [(my, np)]
= [(mpng + mgny, npng)] + [(mr, ny)]

= [((mpnq + mgny)n, + mynyng, npnan)]

[(mpnan + ny(mgn, + ngm,.), npnan)]
= [(myp, np)] + [(mgny + myny, ngn, )]
= [(mmnp)] + ([(mqv nq)] + [(mranr)]) =p+ (q + T)v

ol nous avons utilisé la commutativité de la somme et du produit sur Z,
ainsi que la distributivité de ce dernier sur la premiére.

iii. En identifiant 0 a la classe [(0,1)] on trouve

p+0=[(my,n,)] + [(0,1)] = [(my,n,)] = p,

et la commutativité de la somme, déja vérifiée, nous conduit aussi & 0+p =
p. Ainsi 0 est I’élément neutre pour I'addition.

iv. En identifiant —p & la classe [(—m,, n,)], (avec —my, = [(bm,, G, )] si My =
[(@m, bm, )] dans Z) on trouve

p+ (=p) = [(myp, np)] + [(=mp, 1p)]
= [(mpny, + (—my)ny, nzzj)] = [(np(my + <_mp))n;2:)]

= [(0,n)] = [(0,1)] =0,

ol nous avons utilisé la commutativité du produit et la distributivité de
ce dernier sur la somme dans Z, ainsi que (0,n) ~' (0,1) pour tout n € Z.
Ainsi, —p est I'opposé de p dans Q.
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(b) L’opération x fait de Q* un groupe abélien.
p X q = [(mp,np)] X [(mg, ng)] = [(mpmg, nyng)]
= [(mgmy, ngny)] = [(mg, ng)] X [(my,np)] = q X p,
ou nous avons utiliser la commutativité du produit sur Z.
px (g xr) =[(mp,np)] x ([(mg,ng)] x [(mr,n,)])
= [(myp, np)] X [((mgmy, ngn,)| = [(mpmgmy, npngn..)]
= [(mpmyg, nyng)] x [(my, n,)]

= ([mp’mp)] X [(mqvnq)]) X [(my,n,)] = (p X Q) X,

ol nous avons utiliser la commutativité et ’associativité du produit sur Z.
iii. En identifiant 1 & la classe [(1,1)] on trouve

px 1= [(mp,np)] x [(1, )] = [(mp, )] = p,

et la commutativité du produit, déja vérifiée, nous conduit aussi a 1 xp = p.
Ainsi 1 est I’élément neutre pour le produit.

iv. En identifiant p~' a la classe [(n,, m,)] pour p € Q*, (remarquer que
p#0< m,#0, dou (ny,,my) € Z x Z*) on trouve
pxp = [(mp, np)] X [(p, )]
= [(mpny, npmy)] = [(nymy, nym,)| = [(1,1)] =1,
oll nous avons utilisé la commutativité du produit de Z, le fait que n, #

0 # m, dans Z implique myn, # 0, ainsi que (m,m) ~' (1,1) pour tout
m € Z*. Ainsi, p~! est I'inverse de p € Q*.

(¢) Le produit se distribue sur ’addition dans Q. En effet,

[(mp, )] % ([(m2g, 79)] + [(mr, )]

) =
(mp, np)] X [(mgny +myng, ngn,)]

px(g+r
[

= [(mp(mgn, +myng), npngny)]
= [(mpymgn,, npyngn,)] + [(mpmeng, nyngn; )]
= [(mpmg, npng)] + [(mpme, nyne)] = (¢ X q) + (p x 1),
ou nous avons utilisé la distributivité du produit sur ’addition dans Z et le

fait que pour n € Z et m,a € Z*, (na, ma) ~' (n,m), grace a la propriété de
simplification du produit dans Z.
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5.|Montrer les affirmations suivantes:

(a) Q=Q" U{0} UQ et cette union est disjointe.

(b) Sip,qe @, alors pg=0€ Qssip=0ouq=0.

(c¢) Le produit x sur Q est compatible avec la prise de 'opposé de +, i.e. —(pq) = (—p)q.

(d) Le produit x sur Q* est compatible avec la prise de I'inverse de X, i.e. (pg)~! =
Pt

(e) L’ordre < sur Q defini par p < ¢ & ¢ —p € Q7 est total.

(a) Un élément de Q est donc une classe d’équivalence [(a,b)] avec (a,b) € Z x Z*.
Le nombre ab € Z = Z* U {0} UZ? et cette union est disjointe, comme on I'a
vu au cours. Ainsi, [(a,b)] est soit élément de Q* (quand ab € Z* ), soit égale
a 0 (quand ab = 0), soit élément de Q7 (quand ab € Z*).

(b) Posons p = [(ay, by)], ¢ = [(aq, by)] avec (ap,b,), (aq,by) € Z x Z*. Alors,

pg=0 < [(ap,by)] x [(ag,by)] = [(0,1)]
& [(apaq, bpb)] = [(0,1)] & (apaq, byby) ~' (0,1)
& apa,=0 & a,=0oua, =0 (intégrité de Z)
< (ap,by) ~'(0,1) ou (ag,b,) ~ (0,1) < p=0ouqg=0.

—(pg) =0+ (=(pq)) =0 x g+ (—=(pq)) = (p — p)g + (—(pq))
=pq+ (=p)q + (—=(pq)) = pq + (=pq) + (=p)g = 0+ (—p)q = (—p)q.

(Remarquons qu’on ajuste utilisé les régles générales d’un corps commutatif,
sans utiliser la structure spécifique des nombres rationnels.)

(d) Pour p,q € Q" on a

1 1 1 -1 -1

(pg) " =1x(pg) " =pplag " x (pg) "' =p ¢ 'pa(pg) " =p~'q

(Remarquons qu’on ajuste utilisé les régles générales d’un corps commutatif,
sans utiliser la structure spécifique des nombres rationnels.)

(e) Comme p — ¢ € Q* U{0} UQ*" et que cette union est disjointe, on a soit
p—qeQ & p>gq,s0itp—qg=0 & p=gq,soit p—q € Q. Mais comme
p—q=—(¢—p)=(-1)(g—p),onaalors¢g—pe Qi & ¢>p.

6.| On rappelle ici que si > est un ordre sur un ensemble X, alors £ C X est dit minoré si
il existe m € X tel que Vo € E, m < x. Est-ce que les affirmations suivantes sont vraies
(si c’est le cas, montrez-le, sinon, trouvez un contre-exemple)?

(a) Tout sous-ensemble £ C Z non vide et minoré posséde un élément minimal pour
I'ordre < dans Z.

(b) Tout sous-ensemble ' C @ non vide et minoré posséde un élément minimal pour
I'ordre < dans Q.
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(a) Vrai. Si E C Z est minoré, cela implique l'existence d'un m € Z, tel que
Vr € E, m < x. La compatibilité de 'ordre dans Z avec ’addition nous
permet alors de dire, que Vx € E, 0 < x —m, ou encore que E' := {x —m :
r € E} C Z,. Mais comme Z™" peut étre identifié¢ & N, on peut identifier £’ a
un sous-ensemble non-vide de N, qui lui aura un élément minimal, disons m/'.
Cet élément m’ peut étre identifié & un élément de m” € E’ et comme cette
identification entre Z, et N conserve l'ordre, on aura que m” est minimal dans
E'. Ainsi, Ve —m e E',m" <z —m,ie. V€ E, m" +m < x et clairement,
m’”"+m € E.

(b) Faux. On peut par exemple considérer 'ensemble F := {n~! : n € N*} (ou on

a de nouveau procédé a 'identification de n € N* avec I'élément [(n,1)] € Q).
Clairement, E est minoré par 0 € Q, mais E ne posséde pas d’élément minimal.

7.|Pour cet exercice, on identifie 1,2,3,... € N avec [(1,0)],[(2,0)]... € Z et m € Z avec
[(m,1)] € Q.

(a) Trouver deux nombres rationnels 0 < p,q < 1, tels que pg = ( 3 x471).

(b) Trouver deux nombres rationnels 0 < p < 4 et 0 < ¢ < 5 tels que p x ¢ = 19.

(

c) Soient z,y,r € QF tels que r < xy. Trouver deux nombres rationnels 0 < ¢ < z et
0 <p<uy, tels que pg =r.

(a) Clairement, [(3,4)] = [(6,8)] et [(6,7)] x [(7,8)] = [(42,56)] = [(3,4)]. On a
bien [(0, 1)] < [(6.7)],[(7.8)] < [(1. 1)].

(b) En posant p’ = p x 471 ¢ = ¢ x 57!, on est ramené & trouver deux nombres

rationnels 0 < p/, ¢ < 1, 1 s que p'q =19 x 2071 = 38 x 40~. On trouve par
exemple p’ = [(38,39)] et ¢ = [(39,40)]. On a donc par exemple, p = [(152,39)]
et ¢ = [(195, 40)].

(¢) On pose g =qgxz "t p=px y‘l et on se raméne a trouver deux rationnels
0<¢,p <lavecpqd =rx(zy)™' = [(arbsby, braza,)] = [(2a,b.by, 2b.aza,)],
our = [(a,b.)], x [(ax, x)] et y = [(ay,b,)]. On prend alors par exemple
P = [(2a,byby, 2a,b,b, + 1)] et ¢' = [(2a,b,b, + 1,2b,a,a,)], ce qui nous donne
livre les solutions p = [(2a,b,a,, 2a,b,b, + 1)] et ¢ = [(2a,b,b, + 1,2b,b,a,)].

-1
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Problémes supplémentaires

(PS1) | On considére un ensemble E non vide muni d’une opération x : £ x E — E commutative,

associative et qui posséde la propriété de simplification. Montrer que

(z,2) ~ (y,y) & axy =a"xy

est une relation d’équivalence sur £ x E.

(a) ~ est réflexif: pour (a,b) € E?, on a axb = bxa par commutativité de x. Donc
(a,b) ~ (a,b).

(b) ~ est symétrique: pour (a,b), (c,d) € E? on a axd = bxc implique cxb = dxa
par commutativité de . Donc (a, b) ~ (¢, d) implique (¢, d) ~ (a,b).

(c) ~ est transitive: pour (a,b), (c,d), (k,l) € E*, onaaxd=bxcet cxl=dxk
impliquent (a*xd)xl = (bxc)*l, et par associativité de x, on a a*(dxl) = bx(cxl)
et donc a x (dx1) = b* (d k). Par commutativité et associativité de *, on

a alors (ax1) xd = (b k) xd. Par la propriété de simplification on a donc
axl=">bxk, et donc (a,b) ~ (k,1).

(PS2) | On reprend les notations de I’exercice précédent et on pose E?/~ := {[(z,y)] : (z,y) €

E?}. Montrer que opération
[(a,b)] * [(¢,d)] = [(a*c,b*d)]

est bien définie sur £?/~ et qu’elle en fait un goupe abélien.

Comme vu au cours, ou de maniére similaire a I’exercice 3), on trouve que pour
(a,b), (c,d) € E?,
[(a,0)] = [(c.d)] < (a,b) ~ (c.d).

Pour montrer que l’opération sur les classes d’équivalences est bien définie, il faut
montrer que (k, 1) € [(a,b)] et (K',1") € [(c,d)] 1rnphquent (kK Ixl") € [(a*xc,bxd)].
Or, (k,1) € [(a,b)] et (K',I') € [(¢,d)] ssi (k,l) ~ (a,b) et (K',I") ~ (c,d). Mais alors,
(kxK)x(bxd) =k« (K% (bxd))
=kx ((K'*b)xd) =k* ((bxk')*d) ( par commutativité de )
=kx (bx (K *d)) = (kxb)* (k' xd) ( par associativité de )
= (Ixa)*x(I'xc) (car (k1) ~ (a,b)et (K1)~ (c,d))

=lx(ax('xc)) =l ((axl)*c) ( par associativité de *)

( par associativité de x)

=1x((I'*a)*c) =1 (I'x(axc)) ( par commutativité de )
= (Ixl")x(axc) ( par associativité de *).

Ainsi, (kx K, Ixl') ~ (a*xc,bxd) et (kxK %) € [(a*c,bxd)].
* fait de E?/~ un groupe abélien:
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(a) * est commutative: [(a,b)]x[(c,d)] = [(a*c, bxd)] = [(cxa, dxb)] = [(¢, d)]*[(a, b)]

(par commutativité de x).

(b) * est associative:

[(a,0)] * ([(c, d)] * [(k, D)]) = [(a,b)] * [(cx &, dx1)]
=[(a*(cxk),bx(d*1))] =[((axc)*k, (bxd) )]

= laxe;bxd)]«[(k, )] = ([(a,0)] * [(c, d)]) * [(k, )],

ol nous avons utilisé 'associativité de .

(c) [(a,a)] est 'élément neutre pour *: [(a,a)] * [(c,d)] = [(a * ¢,axd)] = [(¢,d)],
puisque (a x¢,axd) ~ (¢,d) par associativité et la commutativité de *.

(d) [(a,b)] est 'élément opposé de [(b, a)] pour *: [(a,b)] *[(b,a)] = [(axb,bxa)] =
[(a,a)], puisque (axb,bxa) ~ (a,a) par Iassociativité et la commutativité de
*.

On reprend les notations de 'exercice précédent et on suppose ici, que le lecteur est
familier avec la notion de morphisme de semi-groupes.

Soit G un ensemble non-vide, muni d’une opérations + : G x G — G qui en fait un groupe
abélien. Soit f : E — G un morphisme de semi-groupes et ¢ : £ — E?/~, a + [(axa,a)].

Montrer qu'il existe un unique morphisme de groupe [f] : E?/~ — G, tel que [f] o1 = f.

On pose

[f]:[(a,b)] = f(a) — f(D),
ou —f(b) est Popposé de f(b) dans G et ou nous avons abrégé f(a) + (—f(b)) par
fla) = f(b).
[f] est bien définie: si (¢,d) € [(a,b)] alors (¢,d) ~ (a,b) et f(c) — f(d) = f(a) +
fle)=f(d)—f(a) = f(axc)—f(dxa) = f(axc)— f(exb) = f(a)+ f(c)—f(c)—f(b) =
f(a) = f(b).
[f] est un morphisme de groupes: [f]([(a b)} * [(c, ]) ( axc, b*d ) = f(a
c) — f(bxd) = f(a) + f(c) — f(b) :(f f(b) + ( d)
[1([(a; 0)]) + f([(e, D))
f=1flow [flowa) = [fl([(axa,a)]) = flaxa)— f(a) = f(a)+ f(a) — f(a) = f(a).
Si f =gou,alors f(a) = g([(a*a,a)]), et donc [f|([(a,b)]) = f(a) — f(b) = g([(ax
a,a)])—g([(bxb, b)]) = g([(axa, a)])+g([(b, bxD)]) = ([(G*a*b axbxb)]) = g([(a,D)]),

car (a*axb,axbxb)~ (a,b). donc, g = [f].

H>e




