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Corrigé de la Série 3

1.4. Nombres rationnels

1. Montrez que pour m,n ∈ Z,

mn = 0 ⇔ n = 0 ou m = 0.

(Indication: observer que pour (a, b) ∈ N2, alors (a, b) ∼ (d, 0) ou (a, b) ∼ (0, d) avec
d ∈ N.)

m,n ∈ Z signifie que m = [(am, bm)] et n = [(an, bn)]. Pour tout couple (a, b) ∈ N2,
on a soit (a, b) ∼ (d, 0) si a = b+ d, soit (a, b) ∼ (0, d) si b = a+ d. Ainsi,

m× n = [(am, bm)]× [(an, bn)] =


[(dmdn, 0)] si (am, bm) ∼ (dm, 0) et (an, bn) ∼ (dn, 0),

[(0, dmdn)] si (am, bm) ∼ (dm, 0) et (an, bn) ∼ (0, dn),

[(dmdn, 0)] si (am, bm) ∼ (0, dm) et (an, bn) ∼ (0, dn),

[(0, dmdn)] si (am, bm) ∼ (0, dm) et (an, bn) ∼ (dn, 0).

Dans tous les cas on a

m× n = [(0, 0)] ⇔ (am, bm) ∼ (0, 0) ou (an, bn) ∼ (0, 0),

i.e. m× n = 0 ⇔ m = 0 ou n = 0.

2. Vérifier que ∼′ est une relation d’équivalence sur Z× Z∗.

(a) ∼′ est réflexif. En effet, Pour (m,n) ∈ Z × Z∗ on a mn = nm par la commu-
tativité du produit sur Z. Ainsi, (m,n) ∼′ (m,n).

(b) ∼′ est symétrique. En effet, pour (m,n), (k, l) ∈ Z× Z∗, on a

(m,n) ∼′ (k, l) ⇔ ml = kn ⇔ kn = ml ⇔ (k, l) ∼′ (m,n).

(c) ∼′ est transitif. En effet, pour (m,n), (k, l), (a, b) ∈ Z× Z∗, on a

(m,n) ∼′ (k, l) et (k, l) ∼′ (a, b)

⇔ ml = kn et kb = al

⇔ mlb = knb et kb = al (× sur Z possède la propriété de simplification)

⇔ mlb = anl et kb = al

⇔ mb = an et kb = al (× sur Z possède la propriété de simplification)

⇒ (m,n) ∼′ (a, b).

3. Montrer que

∀(a, b), (c, d) ∈ Z× Z∗, [(a, b)] = [(c, d)] ⇔ (a, b) ∼′ (c, d).
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Supposons que (a, b) ∼′ (c, d). Soit (k, l) ∈ [(a, b)]. Par définition, on a donc que
(k, l) ∼′ (a, b). Par transitivité, on a donc que (k, l) ∼′ (c, d), c’est-à-dire que
(k, l) ∈ [(c, d)]. On en conclut que [(a, b)] ⊂ [(c, d)].
Soit (k, l) ∈ [(c, d)]. Par définition, on a donc que (k, l) ∼′ (c, d). Puisque ∼′

est symétrique et qu’on a supposé (a, b) ∼′ (c, d), on a aussi (c, d) ∼′ (a, b). Par
transitivité, on a donc que (k, l) ∼′ (a, b), c’est-à-dire que (k, l) ∈ [(a, b)]. On en
conclut que [(c, d)] = [(a, b)].
Supposons maintenant que que [(c, d)] = [(a, b)]. Comme ∼′ est réflexive, on a
(a, b) ∼′ (a, b), ou encore que (a, b) ∈ [(a, b)]. L’égalité des deux classes d’équivalence
nous conduit alors à (a, b) ∼′ (c, d).

4. Vérifier que les opérations + et × font de Q un corps commutatif.

Pour p, q, r ∈ Q on pose p = [(mp, np)], q = [(mq, nq)] et p = [(mr, nr)].

(a) L’opération + fait de Q un groupe abélien.
i.

p+ q = [(mp, np)] + [(mq, nq)] = [(mpnq +mqnp, npnq)]

= [(mqnp +mpnq, nqnp)] = [(mq, nq)] + [(mp, np)] = q + p,

où nous avons utilisé la commutativité de la somme et du produit sur Z.
ii.

(p+ q) + r =
(
[(mp, np)] + [(mq, nq)]

)
+ [(mr, nr)]

= [(mpnq +mqnp, npnq)] + [(mr, nr)]

= [
(
(mpnq +mqnp)nr +mrnpnq, npnqnr

)
]

= [
(
mpnqnr + np(mqnr + nqmr), npnqnr

)
]

= [(mp, np)] + [(mqnr +mqnr, nqnr)]

= [(mp, np)] +
(
[(mq, nq)] + [(mr, nr)]

)
= p+ (q + r),

où nous avons utilisé la commutativité de la somme et du produit sur Z,
ainsi que la distributivité de ce dernier sur la première.

iii. En identifiant 0 à la classe [(0, 1)] on trouve

p+ 0 = [(mp, np)] + [(0, 1)] = [(mp, np)] = p,

et la commutativité de la somme, déjà vérifiée, nous conduit aussi à 0+p =
p. Ainsi 0 est l’élément neutre pour l’addition.

iv. En identifiant −p à la classe [(−mp, np)], (avec −mp = [(bmp , amp)] si mp =
[(amp , bmp)] dans Z) on trouve

p+ (−p) = [(mp, np)] + [(−mp, np)]

= [(mpnp + (−mp)np, n
2
p)] = [(np(mp + (−mp))n

2
p)]

= [(0, n2
p)] = [(0, 1)] = 0,

où nous avons utilisé la commutativité du produit et la distributivité de
ce dernier sur la somme dans Z, ainsi que (0, n) ∼′ (0, 1) pour tout n ∈ Z.
Ainsi, −p est l’opposé de p dans Q.
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(b) L’opération × fait de Q∗ un groupe abélien.

i.

p× q = [(mp, np)]× [(mq, nq)] = [(mpmq, npnq)]

= [(mqmp, nqnp)] = [(mq, nq)]× [(mp, np)] = q × p,

où nous avons utiliser la commutativité du produit sur Z.
ii.

p×
(
q × r

)
= [(mp, np)]×

(
[(mq, nq)]× [(mr, nr)]

)
= [(mp, np)]× [(mqmr, nqnr)] = [(mpmqmr, npnqnr)]

= [(mpmq, npnq)]× [(mr, nr)]

=
(
[mp,mp)]× [(mq, nq)]

)
× [(mr, nr)] =

(
p× q

)
× r,

où nous avons utiliser la commutativité et l’associativité du produit sur Z.
iii. En identifiant 1 à la classe [(1, 1)] on trouve

p× 1 = [(mp, np)]× [(1, 1)] = [(mp, np)] = p,

et la commutativité du produit, déjà vérifiée, nous conduit aussi à 1×p = p.
Ainsi 1 est l’élément neutre pour le produit.

iv. En identifiant p−1 à la classe [(np,mp)] pour p ∈ Q∗, (remarquer que
p ̸= 0 ⇔ mp ̸= 0, d’où (np,mp) ∈ Z× Z∗) on trouve

p× p−1 = [(mp, np)]× [(np,mp)]

= [(mpnp, npmp)] = [(npmp, npmp)] = [(1, 1)] = 1,

où nous avons utilisé la commutativité du produit de Z, le fait que np ̸=
0 ̸= mp dans Z implique mpnp ̸= 0, ainsi que (m,m) ∼′ (1, 1) pour tout
m ∈ Z∗. Ainsi, p−1 est l’inverse de p ∈ Q∗.

(c) Le produit se distribue sur l’addition dans Q. En effet,

p× (q + r) = [(mp, np)]×
(
[(mq, nq)] + [(mr, nr)]

)
= [(mp, np)]× [(mqnr +mrnq, nqnr)]

= [(mp(mqnr +mrnq), npnqnr)]

= [(mpmqnr, npnqnr)] + [(mpmrnq, npnqnr)]

= [(mpmq, npnq)] + [(mpmr, npnr)] = (q × q) + (p× r),

où nous avons utilisé la distributivité du produit sur l’addition dans Z et le
fait que pour n ∈ Z et m, a ∈ Z∗, (na,ma) ∼′ (n,m), grâce à la propriété de
simplification du produit dans Z.
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5. Montrer les affirmations suivantes:

(a) Q = Q∗
− ∪ {0} ∪Q∗

+ et cette union est disjointe.

(b) Si p, q ∈ Q, alors pq = 0 ∈ Q ssi p = 0 ou q = 0.

(c) Le produit × sur Q est compatible avec la prise de l’opposé de +, i.e. −(pq) = (−p)q.

(d) Le produit × sur Q∗ est compatible avec la prise de l’inverse de ×, i.e. (pq)−1 =
p−1q−1.

(e) L’ordre < sur Q defini par p < q ⇔ q − p ∈ Q∗
+ est total.

(a) Un élément de Q est donc une classe d’équivalence [(a, b)] avec (a, b) ∈ Z×Z∗.
Le nombre ab ∈ Z = Z∗

− ∪ {0} ∪ Z∗
+ et cette union est disjointe, comme on l’a

vu au cours. Ainsi, [(a, b)] est soit élément de Q∗
− (quand ab ∈ Z∗

−), soit égale
à 0 (quand ab = 0), soit élément de Q∗

+(quand ab ∈ Z∗
+).

(b) Posons p = [(ap, bp)], q = [(aq, bq)] avec (ap, bp), (aq, bq) ∈ Z× Z∗. Alors,

pq = 0 ⇔ [(ap, bp)]× [(aq, bq)] = [(0, 1)]

⇔ [(apaq, bpbq)] = [(0, 1)] ⇔ (apaq, bpbq) ∼′ (0, 1)

⇔ apaq = 0 ⇔ ap = 0 ou aq = 0 (intégrité de Z)

⇔ (ap, bp) ∼′ (0, 1) ou (aq, bq) ∼′ (0, 1) ⇔ p = 0 ou q = 0.

(c)

−(pq) = 0 + (−(pq)) = 0× q + (−(pq)) = (p− p)q + (−(pq))

= pq + (−p)q + (−(pq)) = pq + (−pq) + (−p)q = 0 + (−p)q = (−p)q.

(Remarquons qu’on ajuste utilisé les règles générales d’un corps commutatif,
sans utiliser la structure spécifique des nombres rationnels.)

(d) Pour p, q ∈ Q∗ on a

(pq)−1 = 1× (pq)−1 = pp−1qq−1 × (pq)−1 = p−1q−1pq(pq)−1 = p−1q−1.

(Remarquons qu’on ajuste utilisé les règles générales d’un corps commutatif,
sans utiliser la structure spécifique des nombres rationnels.)

(e) Comme p − q ∈ Q∗
− ∪ {0} ∪ Q∗

+ et que cette union est disjointe, on a soit
p− q ∈ Q∗

+ ⇔ p > q, soit p− q = 0 ⇔ p = q, soit p− q ∈ Q∗
−. Mais comme

p− q = −(q − p) = (−1)(q − p), on a alors q − p ∈ Q∗
+ ⇔ q > p.

6. On rappelle ici que si > est un ordre sur un ensemble X, alors E ⊂ X est dit minoré si
il existe m ∈ X tel que ∀x ∈ E, m ≤ x. Est-ce que les affirmations suivantes sont vraies
(si c’est le cas, montrez-le, sinon, trouvez un contre-exemple)?

(a) Tout sous-ensemble E ⊂ Z non vide et minoré possède un élément minimal pour
l’ordre < dans Z.

(b) Tout sous-ensemble E ⊂ Q non vide et minoré possède un élément minimal pour
l’ordre < dans Q.
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(a) Vrai. Si E ⊂ Z est minoré, cela implique l’existence d’un m ∈ Z, tel que
∀x ∈ E, m ≤ x. La compatibilité de l’ordre dans Z avec l’addition nous
permet alors de dire, que ∀x ∈ E, 0 ≤ x −m, ou encore que E ′ := {x −m :
x ∈ E} ⊂ Z+. Mais comme Z+ peut être identifié à N, on peut identifier E ′ à
un sous-ensemble non-vide de N, qui lui aura un élément minimal, disons m′.
Cet élément m′ peut être identifié à un élément de m′′ ∈ E ′ et comme cette
identification entre Z+ et N conserve l’ordre, on aura que m′′ est minimal dans
E ′. Ainsi, ∀x−m ∈ E ′, m′′ ≤ x−m, i.e. ∀x ∈ E, m′′ +m ≤ x et clairement,
m′′ +m ∈ E.

(b) Faux. On peut par exemple considérer l’ensemble E := {n−1 : n ∈ N∗} (où on
a de nouveau procédé à l’identification de n ∈ N∗ avec l’élément [(n, 1)] ∈ Q+).
Clairement, E est minoré par 0 ∈ Q, mais E ne possède pas d’élément minimal.

7. Pour cet exercice, on identifie 1, 2, 3, . . . ∈ N avec [(1, 0)], [(2, 0)] . . . ∈ Z et m ∈ Z avec
[(m, 1)] ∈ Q.

(a) Trouver deux nombres rationnels 0 < p, q < 1, tels que pq = 3
4
(= 3× 4−1).

(b) Trouver deux nombres rationnels 0 < p < 4 et 0 < q < 5 tels que p× q = 19.

(c) Soient x, y, r ∈ Q∗
+ tels que r < xy. Trouver deux nombres rationnels 0 < q < x et

0 < p < y, tels que pq = r.

(a) Clairement, [(3, 4)] = [(6, 8)] et [(6, 7)] × [(7, 8)] = [(42, 56)] = [(3, 4)]. On a
bien [(0, 1)] < [(6, 7)], [(7, 8)] < [(1, 1)].

(b) En posant p′ = p × 4−1, q′ = q × 5−1, on est ramené à trouver deux nombres
rationnels 0 < p′, q′ < 1, tels que p′q′ = 19× 20−1 = 38× 40−1. On trouve par
exemple p′ = [(38, 39)] et q′ = [(39, 40)]. On a donc par exemple, p = [(152, 39)]
et q = [(195, 40)].

(c) On pose q′ = q × x−1, p′ = p× y−1 et on se ramène à trouver deux rationnels
0 < q′, p′ < 1 avec p′q′ = r × (xy)−1 = [(arbxby, braxay)] = [(2arbxby, 2braxay)],
où r = [(ar, br)], x = [(ax, bx)] et y = [(ay, by)]. On prend alors par exemple
p′ = [(2arbxby, 2arbxby + 1)] et q′ = [(2arbxby + 1, 2braxay)], ce qui nous donne
livre les solutions p = [(2arbxay, 2arbxby + 1)] et q = [(2arbxby + 1, 2brbxay)].
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Problèmes supplémentaires

(PS1) On considère un ensemble E non vide muni d’une opération ⋆ : E×E → E commutative,
associative et qui possède la propriété de simplification. Montrer que

(x, x′) ∼ (y, y′) ⇔ x ⋆ y′ = x′ ⋆ y

est une relation d’équivalence sur E × E.

(a) ∼ est réflexif: pour (a, b) ∈ E2, on a a⋆b = b⋆a par commutativité de ⋆. Donc
(a, b) ∼ (a, b).

(b) ∼ est symétrique: pour (a, b), (c, d) ∈ E2, on a a⋆d = b⋆c implique c⋆b = d⋆a
par commutativité de ⋆. Donc (a, b) ∼ (c, d) implique (c, d) ∼ (a, b).

(c) ∼ est transitive: pour (a, b), (c, d), (k, l) ∈ E2, on a a ⋆ d = b ⋆ c et c ⋆ l = d ⋆ k
impliquent (a⋆d)⋆l = (b⋆c)⋆l, et par associativité de ⋆, on a a⋆(d⋆l) = b⋆(c⋆l)
et donc a ⋆ (d ⋆ l) = b ⋆ (d ⋆ k). Par commutativité et associativité de ⋆, on
a alors (a ⋆ l) ⋆ d = (b ⋆ k) ⋆ d. Par la propriété de simplification on a donc
a ⋆ l = b ⋆ k, et donc (a, b) ∼ (k, l).

(PS2) On reprend les notations de l’exercice précédent et on pose E2/∼ := {[(x, y)] : (x, y) ∈
E2}. Montrer que l’opération

[(a, b)] ∗ [(c, d)] := [(a ⋆ c, b ⋆ d)]

est bien définie sur E2/∼ et qu’elle en fait un goupe abélien.

Comme vu au cours, ou de manière similaire à l’exercice 3), on trouve que pour
(a, b), (c, d) ∈ E2,

[(a, b)] = [(c, d)] ⇔ (a, b) ∼ (c, d).

Pour montrer que l’opération sur les classes d’équivalences est bien définie, il faut
montrer que (k, l) ∈ [(a, b)] et (k′, l′) ∈ [(c, d)] impliquent (k⋆k′, l ⋆l′) ∈ [(a⋆c, b⋆d)].
Or, (k, l) ∈ [(a, b)] et (k′, l′) ∈ [(c, d)] ssi (k, l) ∼ (a, b) et (k′, l′) ∼ (c, d). Mais alors,

(k ⋆ k′) ⋆ (b ⋆ d) = k ⋆
(
k′ ⋆ (b ⋆ d)

)
( par associativité de ⋆)

= k ⋆
(
(k′ ⋆ b) ⋆ d

)
= k ⋆

(
(b ⋆ k′) ⋆ d

)
( par commutativité de ⋆)

= k ⋆
(
b ⋆ (k′ ⋆ d)

)
= (k ⋆ b) ⋆ (k′ ⋆ d) ( par associativité de ⋆)

= (l ⋆ a) ⋆ (l′ ⋆ c) ( car (k, l) ∼ (a, b) et (k′, l′) ∼ (c, d))

= l ⋆
(
a ⋆ (l′ ⋆ c)

)
= l ⋆

(
(a ⋆ l′) ⋆ c

)
( par associativité de ⋆)

= l ⋆
(
(l′ ⋆ a) ⋆ c

)
= l ⋆

(
l′ ⋆ (a ⋆ c)

)
( par commutativité de ⋆)

= (l ⋆ l′) ⋆ (a ⋆ c) ( par associativité de ⋆).

Ainsi, (k ⋆ k′, l ⋆ l′) ∼ (a ⋆ c, b ⋆ d) et (k ⋆ k′, l ⋆ l′) ∈ [(a ⋆ c, b ⋆ d)].
∗ fait de E2/∼ un groupe abélien:
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(a) ∗ est commutative: [(a, b)]∗[(c, d)] = [(a⋆c, b⋆d)] = [(c⋆a, d⋆b)] = [(c, d)]∗[(a, b)]
(par commutativité de ⋆).

(b) ∗ est associative:

[(a, b)] ∗
(
[(c, d)] ∗ [(k, l)]

)
= [(a, b)] ∗ [(c ⋆ k, d ⋆ l)]

= [
(
a ⋆ (c ⋆ k), b ⋆ (d ⋆ l)

)
] = [

(
(a ⋆ c) ⋆ k, (b ⋆ d) ⋆ l

)
]

= [(a ⋆ c, b ⋆ d)] ∗ [(k, l)] =
(
[(a, b)] ∗ [(c, d)]

)
∗ [(k, l)],

où nous avons utilisé l’associativité de ⋆.

(c) [(a, a)] est l’élément neutre pour ∗: [(a, a)] ∗ [(c, d)] = [(a ⋆ c, a ⋆ d)] = [(c, d)],
puisque (a ⋆ c, a ⋆ d) ∼ (c, d) par l’associativité et la commutativité de ⋆.

(d) [(a, b)] est l’élément opposé de [(b, a)] pour ∗: [(a, b)] ∗ [(b, a)] = [(a ⋆ b, b ⋆ a)] =
[(a, a)], puisque (a ⋆ b, b ⋆ a) ∼ (a, a) par l’associativité et la commutativité de
⋆.

(PS3) On reprend les notations de l’exercice précédent et on suppose ici, que le lecteur est
familier avec la notion de morphisme de semi-groupes.
Soit G un ensemble non-vide, muni d’une opérations + : G×G → G qui en fait un groupe
abélien. Soit f : E → G un morphisme de semi-groupes et ı : E → E2/∼, a 7→ [(a⋆a, a)].
Montrer qu’il existe un unique morphisme de groupe [f ] : E2/∼ → G, tel que [f ] ◦ ı = f .

On pose
[f ] : [(a, b)] 7→ f(a)− f(b),

où −f(b) est l’opposé de f(b) dans G et où nous avons abrégé f(a) + (−f(b)) par
f(a)− f(b).
[f ] est bien définie: si (c, d) ∈ [(a, b)] alors (c, d) ∼ (a, b) et f(c) − f(d) = f(a) +
f(c)−f(d)−f(a) = f(a⋆c)−f(d⋆a) = f(a⋆c)−f(c⋆b) = f(a)+f(c)−f(c)−f(b) =
f(a)− f(b).
[f ] est un morphisme de groupes: [f ]

(
[(a, b)] ∗ [(c, d)]

)
= f

(
[(a ⋆ c, b ⋆ d)]

)
= f(a ⋆

c) − f(b ⋆ d) = f(a) + f(c) − f(b) − f(d) =
(
f(a) − f(b)

)
+

(
f(c) − f(d)

)
=

[f ]
(
[(a, b)]

)
+ f

(
[(c, d)]

)
.

f = [f ]◦ ı: [f ]◦ ı(a) = [f ]([(a⋆a, a)]) = f(a⋆a)−f(a) = f(a)+f(a)−f(a) = f(a).
Si f = g ◦ ı, alors f(a) = g([(a ⋆ a, a)]), et donc [f ]([(a, b)]) = f(a)− f(b) = g([(a ⋆
a, a)])−g([(b⋆b, b)]) = g([(a⋆a, a)])+g([(b, b⋆b)]) = g([(a⋆a⋆b, a⋆b⋆b)]) = g([(a, b)]),
car (a ⋆ a ⋆ b, a ⋆ b ⋆ b) ∼ (a, b). donc, g = [f ].


