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Corrigé de la Série 2

1.2.&1.3. Récurrence et nombres entiers

1. Soit l’affirmation A(n) : "le nombre 10n + 1 est un multiple de 3".

(a) Montrer que pour tout n ∈ N, si A(n) est vraie, alors A(n+ 1) est vraie aussi.

(b) Pourquoi ne peut-on pas conclure par récurrence que ∀n ∈ N, A(n) est vraie?

(a) Supposons que 10n + 1 soit un multiple de 3 pour un certain n ∈ N. On peut
donc écrire 10n + 1 = 3m pour un m ∈ N. Mais alors,

10n+1 + 1 = 10× 10n + 1 = 10n + 1 + 9× 10n = 3(m+ 3× 10n)

et 10n+1 + 1 est un multiple de 3 aussi.

(b) Pour n = 0 on a 10n + 1 = 100 + 1 = 2, qui n’est pas un multiple de 3. On ne
peut donc pas initialiser le raisonnement par récurrence en prenant n0 = 0.
Pour n = 1 on a 10n +1 = 101 +1 = 11, qui n’est pas un multiple de 3. On ne
peut donc pas initialiser le raisonnement par récurrence en prenant n0 = 1.
En fait, on peut même montrer par récurrence, qu’aucun nombre naturel qui
s’écrit comme 10n+1 n’est multiple de 3. En effet, on montre d’abord facilement
que

10n + 1 = 2 + 10n − 1 = 2 + 9
n−1∑
k=0

10k.

La somme 9
∑n−1

k=0 10
k est clairement un multiple de 3 alors que 2 ne l’est pas.

Ainsi, c’est l’affirmation contraîre qui est vraie: ∀n ∈ N, 10n + 1 n’est pas un
multiple de 3.

2. On définit sur N2 la relation

(n,m) ∼ (n′,m′) ⇔ n+m′ = m+ n′.

(a) Déterminer parmi les couples suivants, ceux qui sont en relation:

(1, 3), (2, 5), (7, 2), (4, 6), (5, 0).

(b) Montrer que ∼ est une relation d’équivalence sur N, i.e.

i. ∀(n,m) ∈ N2, (n,m) ∼ (n,m),
ii. ∀(n,m), (n′,m′) ∈ N2, (n,m) ∼ (n′,m′) implique (n′,m′) ∼ (n,m),
iii. ∀(n,m), (n′,m′), (n′′,m′′) ∈ N2, (n,m) ∼ (n′,m′) et (n′,m′) ∼ (n′′,m′′) im-

pliquent (n,m) ∼ (n′′,m′′).

(a) (1, 3) ∼ (4, 6), car 1 + 6 = 3 + 4.
(7, 2) ∼ (5, 0), car 7 + 0 = 2 + 5.
(2, 5) n’est en relation avec aucun des quatre autres couples de nombres naurels.
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(b) i. Clairement, ∀(n,m) ∈ N2, m+ n = m+ n, d’où (n,m) ∼ (n,m).
ii. Si (n,m) ∼ (n′,m′), on a par définition n +m′ = n′ +m = n +m′, d’où

(n′,m′) ∼ (n,m).
iii. Si n + m′ = n′ + m et n′ + m′′ = n′′ + m′, alors n + m′′ + (n′ + m′) =

n + m′ + n′ + m′′ = n′ + m + n′′ + m′ = n′′ + m + (n′ + m′), et puisque
N possède la propriété de simplification, on a n + m′′ = m + n′′. Ainsi,
(n,m) ∼ (n′,m′) et (n′,m′) ∼ (n′′,m′′) impliquent (n,m) ∼ (n′′,m′′):

3. Pour tout (m,n) ∈ N2 on définit la classe d’équivalence

[(m,n)] := {(m′, n′) ∈ N2 : (m′, n′) ∼ (m,n)}.

On pose alors l’opération

[(m,n)] + [(m′, n′)] := [(m+m′, n+ n′)].

(a) Décrire l’ensemble qui correspond à la classe d’équivalence [(1, 3)].

(b) Décrire l’ensemble qui correspond à la classe d’équivalence [(1, 3)] + [(3, 1)].

(c) Montrer que l’ensemble des classes d’équivalences {[(n,m)] : (n,m) ∈ N2} muni de
+ est un groupe commutatif.

(a) On a par définition

[(1, 3)] := {(m′, n′) ∈ N2 : (m′, n′) ∼ (1, 3)}
= {(m′, n′) ∈ N2 : m′ + 3 = n′ + 1} = {(m′, n′) ∈ N2 : n′ = m′ + 2}

(b) On a par définition

[(1, 3)] + [(3, 1)] := [(1 + 3, 3 + 1)] = [(4, 4)]

= {(m′, n′) ∈ N2 : (m′, n′) ∼ (4, 4)} = {(m′, n′) ∈ N2 : m′ + 4 = n′ + 4}
= {(m′, n′) ∈ N2 : n′ = m′} = [(0, 0)].

(c) i. + est commutative: en effet,
[(a, b)] + [(n,m)] = [(a+ n, b+m)] = [(n+ a,m+ b)] = [(n,m)] + [(a, b)].

ii. + est associative: en effet,

[(a, b)] +
(
[(k, l)] + [(n,m)]

)
= [(a, b)] + [(k + n, l +m)]

= [(a+ k + n, b+ l +m)] =

= [(a+ k, b+ l)] + [(n,m)] =
(
[(a, b)] + [(k, l)]

)
+ [(n,m)].

iii. + possède un élément neutre: en effet, pour tout (a, b) ∈ N2, on a

[(a, b)] + [(0, 0)] = [(a, b)] = [(0, 0)] + [(a, b)].

iv. Chaque classe [(a, b)] possède une réciproque pour l’opération +: en effet,
on remarque déjà que puisque ∀(n, n) ∈ N2, (n, n) ∼ (0, 0) on a [(0, 0)] =
[(n, n)]. Puis,

[(b, a)] + [(a, b)] = [(a, b)] + [(b, a)] = [(a+ b, a+ b)] = [(0, 0)].
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4. Vrai ou faux (donner un contre-exemple si c’est faux)?

(a) l’opération n ⋆ m := nm est commutative sur N.

(b) l’opération n ⋆ m := nm est associative sur N.

(c) l’opération n ⋆ m := nm sur N possède un élément neutre.

(a) Faux. Par exemple 8 = 23 ̸= 32 = 9. Donc, 2 ⋆ 3 ̸= 3 ⋆ 2.

(b) Faux. Par exemple 256 = 22
3 ̸= (22)3 = 64. Donc, 2 ⋆ (2 ⋆ 3) ̸= (2 ⋆ 2) ⋆ 3.

(c) L’opération ⋆ possède un élément neutre à droite, qui est 1. En effet (n ⋆ 1) =
n1 = n pour tout n ∈ N. Par contre, (1 ⋆ n) = 1n = 1 pour tout n ∈ N et dès
que n ̸= 1, 1 ⋆ n ̸= n.

5. En utilisant le théorème fondamental de l’arithmétique, montrer que si m,n ∈ N∗ et si m
est un multiple de n, alors tous les facteurs premiers de n sont aussi des facteurs premiers
de m.
Si n = 1 et m = 1×m, alors n ne possède aucun facteurs premiers. Donc, triviale-
ment, tous les facteurs premiers de n sont aussi facteurs premiers de m.
Si n > 1 on sait d’après le TFA, que n = p1p2 . . . ps, où p1, p2, . . . , ps sont les facteurs
premiers de n, énumérés par ordre croissant. Si m est un multiple de n, il existe
k ∈ N tel que m = kn. Si q1q2 . . . qt = k est une factorisation de k, on a que

m = kn = q1q2 . . . qtp1, p2, . . . , ps

et ceci est donc l’unique factorisation en premier de m (à l’ordre des facteurs près).
Ainsi, tous facteur premier de n est aussi facteur premier de m.

6. En utilisant l’exercice précédent, montrer que si m,n ∈ N∗, le plus petit commun multiple
(PPCM(n,m)) et le plus grand commun diviseur (PGCD(n,m)) de n et m existent.
Comment les calcule-t-on? Donner le résultat pour n = 117 et m = 66.

Si n = 1 ou m = 1 on a clairement que PPCM(n,m) = max(n,m) et PGCD(n,m) =
1.
Si n,m ≥ 2, alors le TFA nous garantit l’existence (et l’unicité) de décompositions
en facteurs premiers de n et m

n = pn1
1 pn2

2 . . . pnr
r et m = pm1

1 . . . pmr
r ,

où p1, p2, . . . est la liste des nombres premiers en ordre croissant et n1, . . . , ns,m1, . . . ,mt ∈
N. Si k ∈ N est un diviseur commun de n et m, et d’après l’exercice précédent,
chaque facteur premier de k doit être un facteur permier de n et de m simultané-
ment. On a donc que

PGCD(n,m) = pn1∧m1
1 . . . pnr∧mr

r ,

où nj ∧mj := min(nj,mj). Si k ∈ N est un multiple commun de n et m, et d’après
l’exercice précédent, chaque facteur premier de n et m doit être un facteur permier
de k. On a donc que

PPCM(n,m) = pn1∨m1
1 . . . pnr∨mr

r ,
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où nj ∨mj := max(nj,mj).
Comme exemple on prend n = 117 et m = 66, on a

117 = 3× 3× 13 = 20325070110131,

66 = 2× 3× 11 = 21315070111130,

PGCD(117, 66) = 20315070110130 = 3,

PPCM(117, 66) = 21325070111131 = 2′574.

7. On pose
2Z := {2n : n ∈ Z} et 3Z := {3n : n ∈ Z}.

Montrer que
2Z ∩ 3Z = 6Z.

Montrer qu’en général, si a, b ∈ N∗,

aZ ∩ bZ = PPCM(a, b)Z.

Soient a, b ∈ N∗. On a

aZ = {[(an, am)] : n,m ∈ N}, bZ = {[(bn, bm)] : n,m ∈ N},
aZ ∩ bZ = {[(n,m)] ∈ Z : ∃k, k′, l, l′ ∈ N t.q.n = ak = bk′,m = al = bl′}.

Par l’exercice 5., si n = ak = bk′, tous les facteurs de a ou de b sont facteurs de n et
reciproquement. Ainsi, n, ainsi que m, doit être un multiple de PPCM(a, b) Ainsi

aZ ∩ bZ = PPMC(a, b)Z.

Clairement, on a alors
2Z ∩ 3Z = 6Z.
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Problèmes supplémentaires

(PS1) Vérifier les propriétés suivantes pour la multiplication dans Z: ∀n,m, p ∈ Z, on a

(a) m× n = n×m (commutativité),

(b) m× (n× p) = (m× n)× p (associativité),

(c) m× (n+m) = m× n+m× p (distributivité),

(d) m× [(1, 0)] = m (existence d’un élément neutre pour ×),

(e) m× [(0, 0)] = [(0, 0)] (existence d’un élément annulateur pour ×),

(f) (−m)× n = −(m× n) (compatibilité de × avec >).

Representons n m et p par leur classes d’equivalences [(an, bn)], [(am, bm)] et [(ap, bp)]
respectivement.

(a)

m× n = [(am, bm)]× [(an, bn)] = [(aman + bmbn, ambn + bman)]

= [(anam + bnbm, anbm + bnam)] = [(an, bn)]× [(am, bm)] = n×m.

(b)

m× (n× p) = [(am, bm)]×
(
[(an, bn)]× [ap, bp)]

)
= [(am, bm)]× [(anap + bnbp, anbp + bnap)]

= [
(
am(anap + bnbp) + bm(anbp + bnap), am(anbp + bnap) + bm(anap + bnbp)

)
]

= [
(
(aman + bmbn)ap + (ambn + bman)bp, (aman + bmbn)bp + (ambn + bman)ap

)
]

= [(aman + bmbn, ambn + bman)]× [(ap, bp)]

=
(
[(am, bm)]× [(an, bn)]

)
× [ap, bp)] = (m× n)× p.

(c)

m× (n+ p) = [(am, bm)]×
(
[(an, bn)] + [(ap, bp)]

)
= [(am, bm)]× [(an + ap, bn + bp)]

= [
(
am(an + ap) + bm(bn + bp), bm(an + ap) + am(bn + bp)

)
]

= [(aman + amap + bmbn + bmbp, bman + bmap + ambn + ambp)]

= [(aman + bmbn, ambn + bman)] + [(amap + bmbp, ambp + bmap)]

= [(am, bm)]× [(an, bn)] + [(am, bm)]× [(ap, bp)] = m× n+m× p.

(d)

m× [(1, 0)] = [(am, bm)]× [(1, 0)] = [(am, bm)] = m.
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(e)

m× [(0, 0)] = [(am, bm)]× [(0, 0)] = [(0, 0)].

Notons que sans tenir compte des classes d’équivalences, mais en utilisant que
les règles de calcul sur les groupes, la neutralité de 1 et la distributivité du
produit, on peut aussi montrer que ∀n ∈ Z, 0 × n = 0 (où on a identifié 0 à
[(0, 0)] et 1 à [(1, 0)]). En effet,

0 = n+ (−n) = 1× n+ (−n) = (0 + 1)× n+ (−n) = (0× n+ 1× n) + (−n)

= 0× n+ (n+ (−n)) = 0× n+ 0 = 0× n.

(f) Par associativite du produit et puisque [(0, 0)] est annulateur, on a

[(0, 0)] = [(0, 0)]× n = (m+ (−m))× n = m× n+ (−m)× n.

Ainsi, −(m× n) = (−m)× n.


