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Corrigé de la Série 2

| 1.2.&1.3. Récurrence et nombres entiers |

1.|Soit laffirmation A(n) : "le nombre 10” + 1 est un multiple de 3".
(a) Montrer que pour tout n € N, si A(n) est vraie, alors A(n + 1) est vraie aussi.

(b) Pourquoi ne peut-on pas conclure par récurrence que Vn € N, A(n) est vraie?

(a) Supposons que 10" 4 1 soit un multiple de 3 pour un certain n € N. On peut
donc écrire 10" + 1 = 3m pour un m € N. Mais alors,

10" +1=10x 10" +1=10"+ 149 x 10" = 3(m + 3 x 10"

et 107! 4 1 est un multiple de 3 aussi.

(b) Pour n =0o0n a 10" + 1 = 10° + 1 = 2, qui n’est pas un multiple de 3. On ne
peut donc pas initialiser le raisonnement par récurrence en prenant ng = 0.
Pour n =1ona 10" 41 = 10' 4+ 1 = 11, qui n’est pas un multiple de 3. On ne
peut donc pas initialiser le raisonnement par récurrence en prenant ng = 1.
En fait, on peut méme montrer par récurrence, qu’aucun nombre naturel qui
s’écrit comme 10”41 n’est multiple de 3. En effet, on montre d’abord facilement
que

n—1

10" +1=2+10"-1=2+9) 10"
k=0
La somme 9 Zz;é 10% est clairement un multiple de 3 alors que 2 ne I’est pas.
Ainsi, c’est I'affirmation contraire qui est vraie: Vn € N, 10™ + 1 n’est pas un
multiple de 3.

2.|On définit sur N? la relation
(n,m) ~(n',m') & n+m'=m+n'.
(a) Déterminer parmi les couples suivants, ceux qui sont en relation:

(1,3), (2,5), (7,2), (4,6), (5,0).

(b) Montrer que ~ est une relation d’équivalence sur N, i.e.
i. V(n,m) € N2 (n,m) ~ (n,m),
ii. Y(n,m),(n’,m’) € N> (n,m) ~ (n/,m’) implique (n’,m’) ~ (n,m),
iii. V(n,m),(n',m’),(n",m") € N? (n,m) ~ (n',m') et (n/,m') ~ (n",m") im-
pliquent (n,m) ~ (n”,m”).

(a) (1,3) ~ (4,6),car 1 +6 =3+ 4.
(7,2) ~ (5,0), car 7+ 0 =2+5.
(2,5) n’est en relation avec aucun des quatre autres couples de nombres naurels.
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(b) i. Clairement, V(n,m) € N>, m +n =m +n, dou (n,m) ~ (n,m).
ii. Si (n,m) ~ (n/,m’), on a par définition n +m’ = n'+m =n+m’, d’ou
(n',m') ~ (n,m).
iii. Sin+m' =n"+metn+m”" =n"+m/ alors n+m" + (n' +m') =
n+m' +n +m" =n"+m+n"+m =n"+m+ (0 +m'), et puisque
N posséde la propriété de simplification, on a n +m” = m + n”. Ainsi,
(n,m) ~ (n',m') et (n',m') ~ (n”,m"”) impliquent (n,m) ~ (n”,m”):

3.|Pour tout (m,n) € N? on définit la classe d’équivalence
[(m,n)] = {(m/,n') € N* + (m/, ) ~ (m,n)}.
On pose alors 'opération
[(m, n)] + [(m',n)] == [(m +m’,n+n')].

(a) Décrire I'ensemble qui correspond a la classe d’équivalence [(1, 3)].
(b) Décrire I'ensemble qui correspond a la classe d’équivalence [(1,3)] + [(3,1)].

(c) Montrer que I'ensemble des classes d’équivalences {[(n,m)] : (n,m) € N?} muni de
+ est un groupe commutatif.

(a) On a par définition
[(1,3)] :={(m',n') e N* : (m,n') ~ (1,3)}
={(m',n)eN* :m +3=n"+1}={(m',n) eN? : n/ =m’ +2}
(b) On a par définition
[(17 3)] + [(37 1)] = [(1 +3,3+ 1)] = [(47 4)]
={(m',n)eN*: (m/,n) ~ (4,4} ={(m/,n) eN* : m/ +4=n' +4}
={(m',n) e N* : n/ =m'} = [(0,0)].
(¢) 1. + est commutative: en effet,
[(a, D) + [(n,m)] = [(a +n,b+m)] = [(n+ a,m +b)] = [(n,m)] +[(a, b)].
ii. + est associative: en effet,
[(a, )] + ([(%k, D] + [(n,m)]) = [(a,b)] + [(k +n, I +m)]
=[la+k+nb+l+m)| =
= [(a+k,b+ 0]+ [(n,m)] = ([(a,b)] + [(k, D)]) + [(n, m)].

iii. + posséde un élément neutre: en effet, pour tout (a,b) € N? on a

[(a,0)] +(0,0)] = [(a, b)] = [(0,0)] + [(a, b)].

. Chaque classe [(a, b)] posséde une réciproque pour I'opération +: en effet,
on remarque déja que puisque V(n,n) € N2, (n,n) ~ (0,0) on a [(0,0)] =
[(n,n)]. Puis,

[(b, )] + [(a,0)] = [(a, b)] + [(b; a)] = [(a + b,a +b)] = [(0,0)].

i

=
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4.| Vrai ou faux (donner un contre-exemple si c’est faux)?
(a) Popération n*m := n™ est commutative sur N.
(b) lopération nxm :=n" est associative sur N.

(c) Topération n +m :=n" sur N posséde un élément neutre.

(a) Faux. Par exemple 8 = 23 = 32 = 9. Donc, 2+ 3 # 3 % 2.
(b) Faux. Par exemple 256 = 22° # (22)3 = 64. Donc, 2+ (2% 3) # (2% 2) 3.

(c) L’opération x posséde un élément neutre a droite, qui est 1. En effet (nx1) =

n' = n pour tout n € N. Par contre, (1 xn) = 1" = 1 pour tout n € N et dés

que n # 1, 1 xn # n.

5. En utilisant le théoréme fondamental de 'arithmétique, montrer que si m,n € N* et si m
est un multiple de n, alors tous les facteurs premiers de n sont aussi des facteurs premiers
de m.

Sin=1et m=1xm, alors n ne posséde aucun facteurs premiers. Donc, triviale-
ment, tous les facteurs premiers de n sont aussi facteurs premiers de m.

Sin > 1 on sait d’aprés le TFA, que n = p1ps ... ps, O Py, pa, . . ., Ps sont les facteurs
premiers de n, énumérés par ordre croissant. Si m est un multiple de n, il existe
k € N tel que m = kn. Si q1q>...q = k est une factorisation de k, on a que

m=kn=qq...qQDp1,D2,--,Ps

et ceci est donc I'unique factorisation en premier de m (a Uordre des facteurs pres).
Ainsi, tous facteur premier de n est aussi facteur premier de m.

6.| En utilisant l'exercice précédent, montrer que si m,n € N*, le plus petit commun multiple
(PPCM(n,m)) et le plus grand commun diviseur (PGCD(n,m)) de n et m existent.
Comment les calcule-t-on? Donner le résultat pour n = 117 et m = 66.

Sin =1oum = 1 on a clairement que PPCM(n, m) = max(n, m) et PGCD(n, m) =
1.

Si n,m > 2, alors le TFA nous garantit I’existence (et 'unicité) de décompositions
en facteurs premiers de n et m

— 1 N2 7 _ m
n=p 'py...p," et m=p...p.",

ol p1, Po, . . . est la liste des nombres premiers en ordre croissant et ny,...,ns, my,...,m; €
N. Si k£ € N est un diviseur commun de n et m, et d’aprés l'exercice précédent,
chaque facteur premier de k£ doit étre un facteur permier de n et de m simultané-
ment. On a donc que

PGCD(n,m) = p{*"™ .. pir/mr

ou n; A'm; := min(n;, m;). Si k € N est un multiple commun de n et m, et d’aprés
Iexercice précédent, chaque facteur premier de n et m doit étre un facteur permier
de k. On a donc que

PPCM(n,m) = py*¥™ ... .plrvmr

Y



EPFL - MaN SCM

ou n; V m; = max(nj, m;).
Comme exemple on prend n = 117 et m = 66, on a
117 = 3 x 3 x 13 = 2°3%5°7°11°13",
66 =2 x 3 x 11 = 2'3'5°711113°,
PGCD(117,66) = 2°3'5°7°11°13" = 3,
PPCM(117,66) = 2'325°7°11'13! = 2'574.

7.1 On pose
2Z:={2n : ne€Z} et 3Z :={3n : n € Z}.

Montrer que
27N 37, = 6Z.

Montrer qu’en général, si a,b € N*,

aZ N bZ = PPCM(a, b)Z.

Soient a,b € N*. On a

aZ = {[(an,am)] : n,m € N}, bZ = {[(bn,bm)] : n,m € N},
aZ NVZ =A{[(n,m)] € Z : 3k, k', 1,I' € N t.q.n = ak = bk',m = al = bl'}.

Par I'exercice 5., si n = ak = bk’, tous les facteurs de a ou de b sont facteurs de n et
reciproquement. Ainsi, n, ainsi que m, doit étre un multiple de PPCM(a, b) Ainsi

aZ N bZ = PPMC(a, b)Z.

Clairement, on a alors
27N 37, = 6.
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Problémes supplémentaires

(PS1

~—

Veérifier les propriétés suivantes pour la multiplication dans Z: VYn,m,p € Z, on a

) m X n=mnxm (commutativité),

(a
(b

) mx (nxp)=(mxn)xp (associativité),
(¢c) m x (n+m) =m xn+m x p (distributivité),
(d) m x [(1,0)] =m (existence d'un élément neutre pour x),
(e) m x [(0,0)] =[(0,0)] (existence d'un élément annulateur pour x),
(f) (—m) x n = —(m x n) (compatibilité de x avec >).

Representons n m et p par leur classes d’equivalences [(an, by)], [(@m, bm)] et [(ap, by)]
respectivement.

(a)
m X n = [(am,bm)] X [(an,bn)] = [(aman + bnbp, @by + biay)]
= [(anam + bpbm, anbm + bnam)] = [(an, bn)] X [(@m, bin)] = n X m.

mx (1 % ) = (@ b)) % ([(@ns b)) X [aps )]
= [(am, bm)] X [(anap + bnby, anb, + byay)]
= [(am(anap + bpby) + by (anby, + bnay), am(anb, + bpay) + by (ana, + bnbp))]
= [((aman + bmbp)ay + (ambn + bnan)by, (amay + byby)by + (ambn + bpnan)ay)]
= [(am@n + binbn, @by + bnay)] X [(ap, by)]
= ([(@m, bm)] x [(an, bu)]) X [ap, by)] = (m x n) x p.

m X (n+p) = [(am, b)) % ([(@n, ba)] + [(ap, by)])
= [(an, bm)] X [(an + ap, bn + bp)]
= [(@m(an + ap) + by (bn + by), bin(an + ap) + am(bn + by))]
= [(am@n + Amay, + bby, + byby, bnas, + bymay + amby, + anby)]
= [(am@n + bibn, @by + binan)] + [(@m@p + by, amby, + biynay)]
= [(am, bm)] X [(@n, bn)] + [(am, bm)] X [(ap, bp)] = m X 0+ m X p.

X [(170)] = [(am’bm)] X [(1’0)] = [(amvbM)] =m.
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m % [(0,0)] = [(am, bm)] x [(0,0)] = [(0,0)].

Notons que sans tenir compte des classes d’équivalences, mais en utilisant que
les régles de calcul sur les groupes, la neutralité de 1 et la distributivité du
produit, on peut aussi montrer que Vn € Z, 0 x n = 0 (ot on a identifié 0 a
[(0,0)] et 1 & [(1,0)]). En effet,

O=n+(—n)=1xn+(—n)=0+1)xn+(—n)=(0xn+1xn)+(—n)
=0xn+n+(—n))=0xn+0=0xn.

(f) Par associativite du produit et puisque [(0,0)] est annulateur, on a
[(0,0)] =[(0,0)] x n = (m+ (—=m)) x n=m X n+ (—m) X n.

Ainsi, —(m x n) = (—m) X n.



