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• La note maximale est accordée dès 20 points acquis. La dernière question permet l’acquisition de
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Première partie, questions à choix unique

Pour chaque question, marquer la case correspondante à la réponse correcte sans faire de ratures. Il n’y a
qu’une seule réponse correcte par question.

Question 1 (2 points)
Si [(7, 3)] ∈ Z, alors:

(14, 6) ∈ [(7, 3)].

(−3,−7) = [(7, 3)].

(4, 0) = [(7, 3)].

(5, 1) ∈ [(7, 3)].

Question 2 (2 points)
Soit (an)n∈N une suite de rationnels, croissante et bornée. La coupure de Dedekind représentant sa limite
dans R est

A = {r ∈ Q : ∃n ∈ N, r ≤ an}, B = Q \A.

A = ∩n∈NQ<an , B = Q \A.

B = {r ∈ Q : ∀n ∈ N, r ≥ an}, A = Q \B.

A = {an : n ∈ N}, B = Q \A.

Question 3 (2 points)
Soit E ⊂ R un ensemble borné et non vide. Alors:

l’ensemble des minorants de E possède un max-
imum.

E n’a pas de maximum.

comme E est majoré, son maximum est égal à
son supremum.

l’ensemble des majorants de E possède un max-
imum.
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Deuxième partie, questions de type ouvert

Répondre dans l’espace dédié. Votre réponse doit être soigneusement justifiée, toutes les étapes de votre
raisonnement doivent figurer dans votre réponse. Laisser libres les cases à cocher : elles sont réservées au
correcteur.

Question 4: Cette question est notée sur 5 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

Pour α ∈ [0, 4] on définit la fonction fα par

∀x ∈ [0, 1], fα(x) = αx(1− x).

(a) Montrer que ∀α ∈ [0, 4], Im(f) ⊂ [0, 1].

(b) Trouver un point fixe xα non nul pour fα si α > 1.

(c) Pour 1 < α < 3, trouver un intervalle fermé Iα ⊂ [0, 1], contenant un voisinage de xα et tel que fα
∣∣
Iα

est contractante.

Solution

(a) Première solution: Puisque fα est la parabole y = −αx2 + αx, on sait que ses racines se trouvent en
x = 0 et x = 1, et que son maximum égale son sommet: en l’occurence, ce sommet se situe en ( 12 ,

α
4 ).

On en conclut que Im(fα) = [0, α4 ] ⊂ [0, 1] si 0 ≤ α ≤ 4.
Deuxième solution: On peut procéder à une petite étude de fonction: f ′α = α(1 − 2x). La dérivée est
donc positive pour x ≤ 1

2 et négative pour x ≥ 1
2 . Le maximum de fα est donc atteint en x = 1

2 et
vaut α

4 . Les valeurs minimales sont alors sur le bord de l’intervalle [0, 1]: 0 = f(0) = f(1). On conclut
que Im(fα) = [0, α4 ] ⊂ [0, 1] si 0 ≤ α ≤ 4.

(b) Pour trouver un point fixe on doit résoudre αx(1 − x) = x ⇔ αx2 + (1 − α)x = 0. On trouve alors
xα = α−1

α ∈]0, 1] si α > 1.

(c) Par calcul, on trouve f ′α(xα) = −2αxα + α = 2− α. Donc, si 1 < α < 3, |f ′α(xα)| < 1.
Par ailleurs,

|f ′α(x)| < 1 ⇔ −1 < f ′α(x) < 1 ⇔ −1 < α− 2αx < 1 ⇔ α− 1

2α
< x <

α+ 1

2α
.

Ainsi, pour tout intervalle fermé Iα ⊂] 12 −
1
2α ,

1
2 + 1

2α [, on aura maxx∈Iα |f ′(x)| < 1. Donc, par le
théorème des accroissements finis, et si x, y ∈ Iα, |f(x) − f(y)| ≤ maxx∈Iα |f ′(x)| |x − y|, et fα sera
contractante.
Ainsi, tout intervalle fermé Iα ⊂] 12 −

1
2α ,

1
2 + 1

2α [ avec xα ∈ Iα conviendra.
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Question 5: Cette question est notée sur 4 points.

0

.5 .5 .5 .5

1 2 3 4

Pour cet exercice, f désignera les fonctions sin, cos, sinh et cosh. Pour chacune de ces fonctions,

(a) Calculer dlnf,0(x) pour x ∈ R et n ∈ N.

(b) Evaluer dlnf,0(iy) pour y ∈ R et n ∈ N.

(c) Sachant que limn→∞ dlnf,0(x) = f(x), calculer limn→∞ dlnf,0(iy) pour y ∈ R.

Solution

(a) Les dérivées des fonctions en question sont

dn

dxn
sin(x) =

{
(−1)n/2 sin(x) si n est pair,

(−1)(n−1)/2 cos(x) sinon

dn

dxn
cos(x) =

{
(−1)n/2 cos(x) si n est pair,

(−1)(n+1)/2 sin(x) sinon
.

dn

dxn
sinh(x) =

{
sinh(x) si n est pair,

cosh(x) sinon
.

dn

dxn
cosh(x) =

{
cosh(x) si n est pair,

sinh(x) sinon
.

Evaluant ces dérivées en x = 0 et utilisant la définition des développements limités, on arrive à

dlnsin,0(x) =
∑

0≤2k+1≤n

(−1)k x2k+1

(2k + 1)!
,

dlncos,0(x) =
∑

0≤2k≤n

(−1)k x
2k

(2k)!
,

dlnsinh,0(x) =
∑

0≤2k+1≤n

x2k+1

(2k + 1)!
,

dlncosh,0(x) =
∑

0≤2k≤n

x2k

(2k)!
.

(b) Evaluant les développements limités en iy on obtient

dlnsin,0(iy) =
∑

0≤2k+1≤n

(−1)k (iy)
2k+1

(2k + 1)!
= idlnsinh,0(y),

dlncos,0(iy) =
∑

0≤2k≤n

(−1)k (iy)
2k

(2k)!
= dlncosh,0(y),

dlnsinh,0(iy) =
∑

0≤2k+1≤n

(iy)2k+1

(2k + 1)!
= idlnsin,0(y),

dlncosh,0(iy) =
∑

0≤2k≤n

(iy)2k

(2k)!
= dlncos,0(y).
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(c) Utilisant le fait que toutes ces fonctions sont entières, on obtient

lim
n→∞

dlnsin,0(iy) = i sinh(y),

lim
n→∞

dlncos,0(iy) = cosh(y),

lim
n→∞

dlnsinh,0(iy) = i sin(y),

lim
n→∞

dlncosh,0(iy) = cos(y).
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Question 6: Cette question est notée sur 5 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

Soit I un idéal d’un anneau commutatif A (on peut, sans perte de généralité, prendre Z, K[X] ou C(R) pour
l’anneau en question). On définit le radical

√
I de I comme

√
I := {x ∈ A : ∃n ∈ N∗ t.q. xn ∈ I}.

(a) Montrer que
√
I est un idéal de A.

(b) Si A = Z et que g = pn1
1 pn2

2 . . . pnkk est la factorisation en premiers du générateur de I, quel est le
générateur de

√
I? Justifier clairement votre réponse.

Solution

(a)
√
I n’est pas vide, puisque 0 ∈

√
I.

Si x, y ∈
√
I et si xn, ym ∈

√
I, on calcule

(x+ y)n+m =

n+m∑
k=0

(
n+m

k

)
xkyn+m−k

=

n∑
k=0

(
n+m

k

)
xkyn+m−k +

n+m∑
k=n+1

(
n+m

k

)
xkyn+m−k

=

(
n∑
k=0

(
n+m

k

)
xkyn−k

)
ym + xn

(
n+m∑
k=n+1

(
n+m

k

)
xk−nyn+m−k

)
.

Les deux termes sont dans I, puisque ce dernier est un idéal est que xn, ym ∈ I. Donc, (x+ y)n+m ∈ I
et par conséquent, x+ y ∈

√
I.

Si x ∈
√
I et y ∈ A, il doit exister n ∈ N∗ tel que xn ∈ I. Mais alors, (xy)n = xnyn ∈ I et donc,

xy ∈
√
I.

(b) Si y ∈
√
I, ym ∈ I pour un certain m ∈ N∗. Donc, g divise ym. Donc, par le TFAr, tous les facteurs

premiers de g sont aussi des facteurs premier de y. Donc, p1p2, . . . pk divise ym. Par conséquent,
p1p2, . . . pk divise y.
Si p1p2, . . . pk divise y ∈ A, alors g = pn1

1 pn2
2 , . . . pnkk divise ymax{n1,...,nk}. Ainsi, ce dernier élément est

dans
√
I.

En conclusion, y ∈
√
I ssi y se divise par p1p2, . . . pk. Le générateur de

√
I est donc p1p2, . . . pk.
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Question bonus : Cette question est notée sur 2 points.

0

.5 .5

1 2

(a) Soit n ∈ N, n ≥ 2 un nombre non premier. Montrer que si tout diviseur 1 < d < n de n vérifie
2d > n− 1, alors n = 4.

(b) Soit n ≥ 5 un nombre naturel. Montrer que (n−1)!
n ∈ N ssi n n’est pas premier.

(c) Déterminer f−1{0} et f−1{1} pour

N∗ 3 n 7→ f(n) := 1−
⌊
cos2

(
(n− 1)!

n
π

)⌋
− δn 4,

où x 7→ bxc est la fonction partie entière et δn 4 est le symbole de Kronecker.

Solution

(a) si n > 0 n’est pas premier il possède au moins deux diviseurs 1 < d1, d2 < n. Si 2d1, 2d2 > n− 1, on a
alors 4d1d2 = 4n > (n−1)2 = n2−2n+1. Donc, 0 > n2−6n+1. Les seuls nombres naturels vérifiant
cette inégalité sont 1, 2, 3, 4 et 5. Si de plus n ≥ 2, il ne reste que n = 4.

(b) Si n ≥ 5 n’est pas premier, alors d’après le point précédent, il existe des diviseurs 1 < d1, d ≤ 2 < n de
n, tels que 2d1 ≤ n− 1.
Si d1 < d2, alors d1, d2 ∈ {1, 2, 3, . . . , n− 1} et n = d1d2 divise (n− 1)!.
Si d1 = d2, alors d2 < 2d1 ≤ n et d2, 2d1 ∈ {1, 2, 3, . . . , n− 1}. A nouveau, d1d2 = n divise (n− 1)!.
Si n ≥ 5 est premier, alors tous les éléments de {1, 2, . . . , n − 1} sont premiers avec n. (n − 1)! et n
sont donc aussi premiers entre eux et n ne divise pas (n− 1)!

(c) D’après le point précédent, pour n ≥ 5, (n−1)!
n π est un multiple de π ssi n n’est pas premier. Donc,

cos
(

(n−1)!
n π

)
= ±1 ssi n n’est pas premier. Donc

⌊
cos2

(
(n−1)!
n

)⌋
= 1 ssi n n’est pas premier et égal

0 sinon. Donc, pour n ≥ 5, f(n) est la fonction indicatrice sur les nombres premiers.
Si n = 4, f(n) = 0. Si n = 3, f(3) = 1, si n = 2, f(2) = 1 et f(1) = 0. Donc, f est la fonction
indicatrice sur les nombres premier. Donc,

f−1{0} = {n ∈ N∗ : n n’est pas premier}, f−1{1} = {n ∈ N∗ : n est premier}.
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• Pour les questions à choix multiple, on comptera :

les points indiqués si la réponse est correcte,
0 point si il n’y a aucune ou plus d’une réponse inscrite,
0 point si la réponse est incorrecte.

• Utilisez un stylo à encre noire ou bleu foncé et effacez proprement avec du correcteur blanc
si nécessaire.

• Si une question est erronée, l’enseignant se réserve le droit de l’annuler.
• La note maximale est accordée dès 20 points acquis. La dernière question permet l’acquisition de

2 points supplémentaires.
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Première partie, questions à choix unique

Pour chaque question, marquer la case correspondante à la réponse correcte sans faire de ratures. Il n’y a
qu’une seule réponse correcte par question.

Question 1 (2 points)
Si [(7, 3)] ∈ Z, alors:

(5, 1) ∈ [(7, 3)].

(14, 6) ∈ [(7, 3)].

(−3,−7) = [(7, 3)].

(4, 0) = [(7, 3)].

Question 2 (2 points)
Soit (an)n∈N une suite de rationnels, croissante et bornée. La coupure de Dedekind représentant sa limite
dans R est

A = {r ∈ Q : ∃n ∈ N, r ≤ an}, B = Q \A.

B = {r ∈ Q : ∀n ∈ N, r ≥ an}, A = Q \B.

A = {an : n ∈ N}, B = Q \A.

A = ∩n∈NQ<an , B = Q \A.

Question 3 (2 points)
Soit E ⊂ R un ensemble borné et non vide. Alors:

E n’a pas de maximum.

l’ensemble des majorants de E possède un max-
imum.

comme E est majoré, son maximum est égal à
son supremum.

l’ensemble des minorants de E possède un max-
imum.
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Deuxième partie, questions de type ouvert

Répondre dans l’espace dédié. Votre réponse doit être soigneusement justifiée, toutes les étapes de votre
raisonnement doivent figurer dans votre réponse. Laisser libres les cases à cocher : elles sont réservées au
correcteur.

Question 4: Cette question est notée sur 5 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

Pour α ∈ [0, 4] on définit la fonction fα par

∀x ∈ [0, 1], fα(x) = αx(1− x).

(a) Montrer que ∀α ∈ [0, 4], Im(f) ⊂ [0, 1].

(b) Trouver un point fixe xα non nul pour fα si α > 1.

(c) Pour 1 < α < 3, trouver un intervalle fermé Iα ⊂ [0, 1], contenant un voisinage de xα et tel que fα
∣∣
Iα

est contractante.

Solution

(a) Première solution: Puisque fα est la parabole y = −αx2 + αx, on sait que ses racines se trouvent en
x = 0 et x = 1, et que son maximum égale son sommet: en l’occurence, ce sommet se situe en ( 12 ,

α
4 ).

On en conclut que Im(fα) = [0, α4 ] ⊂ [0, 1] si 0 ≤ α ≤ 4.
Deuxième solution: On peut procéder à une petite étude de fonction: f ′α = α(1 − 2x). La dérivée est
donc positive pour x ≤ 1

2 et négative pour x ≥ 1
2 . Le maximum de fα est donc atteint en x = 1

2 et
vaut α

4 . Les valeurs minimales sont alors sur le bord de l’intervalle [0, 1]: 0 = f(0) = f(1). On conclut
que Im(fα) = [0, α4 ] ⊂ [0, 1] si 0 ≤ α ≤ 4.

(b) Pour trouver un point fixe on doit résoudre αx(1 − x) = x ⇔ αx2 + (1 − α)x = 0. On trouve alors
xα = α−1

α ∈]0, 1] si α > 1.

(c) Par calcul, on trouve f ′α(xα) = −2αxα + α = 2− α. Donc, si 1 < α < 3, |f ′α(xα)| < 1.
Par ailleurs,

|f ′α(x)| < 1 ⇔ −1 < f ′α(x) < 1 ⇔ −1 < α− 2αx < 1 ⇔ α− 1

2α
< x <

α+ 1

2α
.

Ainsi, pour tout intervalle fermé Iα ⊂] 12 −
1
2α ,

1
2 + 1

2α [, on aura maxx∈Iα |f ′(x)| < 1. Donc, par le
théorème des accroissements finis, et si x, y ∈ Iα, |f(x) − f(y)| ≤ maxx∈Iα |f ′(x)| |x − y|, et fα sera
contractante.
Ainsi, tout intervalle fermé Iα ⊂] 12 −

1
2α ,

1
2 + 1

2α [ avec xα ∈ Iα conviendra.

y y
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Question 5: Cette question est notée sur 4 points.

0

.5 .5 .5 .5

1 2 3 4

Pour cet exercice, f désignera les fonctions sin, cos, sinh et cosh. Pour chacune de ces fonctions,

(a) Calculer dlnf,0(x) pour x ∈ R et n ∈ N.

(b) Evaluer dlnf,0(iy) pour y ∈ R et n ∈ N.

(c) Sachant que limn→∞ dlnf,0(x) = f(x), calculer limn→∞ dlnf,0(iy) pour y ∈ R.

Solution

(a) Les dérivées des fonctions en question sont

dn

dxn
sin(x) =

{
(−1)n/2 sin(x) si n est pair,

(−1)(n−1)/2 cos(x) sinon

dn

dxn
cos(x) =

{
(−1)n/2 cos(x) si n est pair,

(−1)(n+1)/2 sin(x) sinon
.

dn

dxn
sinh(x) =

{
sinh(x) si n est pair,

cosh(x) sinon
.

dn

dxn
cosh(x) =

{
cosh(x) si n est pair,

sinh(x) sinon
.

Evaluant ces dérivées en x = 0 et utilisant la définition des développements limités, on arrive à

dlnsin,0(x) =
∑

0≤2k+1≤n

(−1)k x2k+1

(2k + 1)!
,

dlncos,0(x) =
∑

0≤2k≤n

(−1)k x
2k

(2k)!
,

dlnsinh,0(x) =
∑

0≤2k+1≤n

x2k+1

(2k + 1)!
,

dlncosh,0(x) =
∑

0≤2k≤n

x2k

(2k)!
.

(b) Evaluant les développements limités en iy on obtient

dlnsin,0(iy) =
∑

0≤2k+1≤n

(−1)k (iy)
2k+1

(2k + 1)!
= idlnsinh,0(y),

dlncos,0(iy) =
∑

0≤2k≤n

(−1)k (iy)
2k

(2k)!
= dlncosh,0(y),

dlnsinh,0(iy) =
∑

0≤2k+1≤n

(iy)2k+1

(2k + 1)!
= idlnsin,0(y),

dlncosh,0(iy) =
∑

0≤2k≤n

(iy)2k

(2k)!
= dlncos,0(y).

y y
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(c) Utilisant le fait que toutes ces fonctions sont entières, on obtient

lim
n→∞

dlnsin,0(iy) = i sinh(y),

lim
n→∞

dlncos,0(iy) = cosh(y),

lim
n→∞

dlnsinh,0(iy) = i sin(y),

lim
n→∞

dlncosh,0(iy) = cos(y).

y y



y +2/6/39+ y
Question 6: Cette question est notée sur 5 points.

0

.5 .5 .5 .5 .5

1 2 3 4 5

Soit I un idéal d’un anneau commutatif A (on peut, sans perte de généralité, prendre Z, K[X] ou C(R) pour
l’anneau en question). On définit le radical

√
I de I comme

√
I := {x ∈ A : ∃n ∈ N∗ t.q. xn ∈ I}.

(a) Montrer que
√
I est un idéal de A.

(b) Si A = Z et que g = pn1
1 pn2

2 . . . pnkk est la factorisation en premiers du générateur de I, quel est le
générateur de

√
I? Justifier clairement votre réponse.

Solution

(a)
√
I n’est pas vide, puisque 0 ∈

√
I.

Si x, y ∈
√
I et si xn, ym ∈

√
I, on calcule

(x+ y)n+m =

n+m∑
k=0

(
n+m

k

)
xkyn+m−k

=

n∑
k=0

(
n+m

k

)
xkyn+m−k +

n+m∑
k=n+1

(
n+m

k

)
xkyn+m−k

=

(
n∑
k=0

(
n+m

k

)
xkyn−k

)
ym + xn

(
n+m∑
k=n+1

(
n+m

k

)
xk−nyn+m−k

)
.

Les deux termes sont dans I, puisque ce dernier est un idéal est que xn, ym ∈ I. Donc, (x+ y)n+m ∈ I
et par conséquent, x+ y ∈

√
I.

Si x ∈
√
I et y ∈ A, il doit exister n ∈ N∗ tel que xn ∈ I. Mais alors, (xy)n = xnyn ∈ I et donc,

xy ∈
√
I.

(b) Si y ∈
√
I, ym ∈ I pour un certain m ∈ N∗. Donc, g divise ym. Donc, par le TFAr, tous les facteurs

premiers de g sont aussi des facteurs premier de y. Donc, p1p2, . . . pk divise ym. Par conséquent,
p1p2, . . . pk divise y.
Si p1p2, . . . pk divise y ∈ A, alors g = pn1

1 pn2
2 , . . . pnkk divise ymax{n1,...,nk}. Ainsi, ce dernier élément est

dans
√
I.

En conclusion, y ∈
√
I ssi y se divise par p1p2, . . . pk. Le générateur de

√
I est donc p1p2, . . . pk.

y y
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Question bonus : Cette question est notée sur 2 points.

0

.5 .5

1 2

(a) Soit n ∈ N, n ≥ 2 un nombre non premier. Montrer que si tout diviseur 1 < d < n de n vérifie
2d > n− 1, alors n = 4.

(b) Soit n ≥ 5 un nombre naturel. Montrer que (n−1)!
n ∈ N ssi n n’est pas premier.

(c) Déterminer f−1{0} et f−1{1} pour

N∗ 3 n 7→ f(n) := 1−
⌊
cos2

(
(n− 1)!

n
π

)⌋
− δn 4,

où x 7→ bxc est la fonction partie entière et δn 4 est le symbole de Kronecker.

Solution

(a) si n > 0 n’est pas premier il possède au moins deux diviseurs 1 < d1, d2 < n. Si 2d1, 2d2 > n− 1, on a
alors 4d1d2 = 4n > (n−1)2 = n2−2n+1. Donc, 0 > n2−6n+1. Les seuls nombres naturels vérifiant
cette inégalité sont 1, 2, 3, 4 et 5. Si de plus n ≥ 2, il ne reste que n = 4.

(b) Si n ≥ 5 n’est pas premier, alors d’après le point précédent, il existe des diviseurs 1 < d1, d ≤ 2 < n de
n, tels que 2d1 ≤ n− 1.
Si d1 < d2, alors d1, d2 ∈ {1, 2, 3, . . . , n− 1} et n = d1d2 divise (n− 1)!.
Si d1 = d2, alors d2 < 2d1 ≤ n et d2, 2d1 ∈ {1, 2, 3, . . . , n− 1}. A nouveau, d1d2 = n divise (n− 1)!.
Si n ≥ 5 est premier, alors tous les éléments de {1, 2, . . . , n − 1} sont premiers avec n. (n − 1)! et n
sont donc aussi premiers entre eux et n ne divise pas (n− 1)!

(c) D’après le point précédent, pour n ≥ 5, (n−1)!
n π est un multiple de π ssi n n’est pas premier. Donc,

cos
(

(n−1)!
n π

)
= ±1 ssi n n’est pas premier. Donc

⌊
cos2

(
(n−1)!
n

)⌋
= 1 ssi n n’est pas premier et égal

0 sinon. Donc, pour n ≥ 5, f(n) est la fonction indicatrice sur les nombres premiers.
Si n = 4, f(n) = 0. Si n = 3, f(3) = 1, si n = 2, f(2) = 1 et f(1) = 0. Donc, f est la fonction
indicatrice sur les nombres premier. Donc,

f−1{0} = {n ∈ N∗ : n n’est pas premier}, f−1{1} = {n ∈ N∗ : n est premier}.
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