Mouvements amortis et forcés

EPFL - MAN - Physique, Bréchet — Burmeister — Sauser 5 mai 2020

1 Freinage proportionnel a la vitesse

1.1 Modele

Considérons un objet glissant sur le sol et soumis a une
force de frottement de la forme

f=-\.

Newton : —A\U = md = mv.

Pour un choix des origines du temps et de I’espace, il passe a 'instant t = 0 en z = 0 avec la vitesse U

(conditions initiales).

Selon €, : —\v =mb, v(0) = vg et 2(0) = 0. Posons |y = 2 |:
‘OJrfyv:O vt avec v(0) = vy et :c(O):O.‘ (1)
Nous cherchons les fonctions du temps v(t) vérifiant (1).
1.2 Solution
Soit f(t) = e 7. Alors f = —ye "t = —~f et f vérifie
f4+yf=0 Vvt.

On peut montrer que toute solution & (1) est multiple de f(t). Ainsi [v(t) = Ae .

Avec la condition initiale v(0) = A = vy,

v(t) = voe . (2)

11 suit (primitive) que z(t) = *%’67% +B.
Avec la condition initiale #(0) = =22 + B =0,
o(t) = (1 -, 3)

Remarque : pour t — 0o, nous avons bien v — 0 (objet s’arréte) et la position finale est © —

v

Vo

(t)
i
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1.3 Evolution semblable : décroissance de la radioactivité

Dans un morceau de matiere radioactive, notons N le nombre de noyaux non désintégrés. Pendant un
intervalle de temps dt, chacun a une probabilité de se désintégrer donnée par

p = Adt,
et leur nombre change de dN = —pN = —ANdt :
N+ AN =0.
Avec un nombre initial Ng = N(0) de noyaux non désintégrés, 1’évolution temporelle est ainsi
N(t) = Noe .
On appelle demie-vie T' d’un élément radioactif le temps de diviser le nombre de noyaux non désintégrés

par deux :

N In2
N(T) = Noe ™ = 2 = T'= ==

Remarque : 7 = 1/ est également la durée de vie moyenne d’un noyau non désintégré.

2 Oscillateur harmonique

2.1 Modéle

Considérons un objet glissant sur le sol et sou-
mis a une force de rappel

d .
— R
R=—kd = —kaé, . I .

Equation de Newton : —kd = ma.

A Dinstant ¢t = 0, il est laché en x = x a vitesse vy (conditions initiales).

Selon €, : —kx = mi, v(0) = vy et 2(0) = 2. Posons |wi = £

‘i +wir=0 WVt avec v(0) = vy et 2(0) = g . ‘ (4)

Nous cherchons les fonctions du temps x(t) vérifiant (4).

2.2 Solution
Rappel : les dérivées de la fonction u(t) = e*, A € C, sont multiples de u(t) :
u™ (t) = A"u(t) neN.

En mettant une telle fonction dans I’équation de I’OH (4), on obtient le polynéme caractéristique et ses
racines
N rwd=0e \=*tiwg.

Les solutions complexes & (4) sont alors uy () = eTot et uy(t) = e ™ot
Toute solution & (4) est combinaison linéaire de u(t) et de ua(t) .
Ainsi z(t) = Ajua (t) + Aqua(t) (A1, A3 € C) et

z(0) = A1u1(0) + A2uz(0) = Ay + Az = g
De plus, v(t) = @(t) = Ayt + Agtiy = iwAju; — iwAsus et

’U(O) = iw(Al — AQ) =1 .
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Les constantes A; et Ao valent alors

et la solution s’écrit donc

x(t) = o cos(wot) + o sin(wot) . (5)

wo

(t)

Dans le cas d’un lacher a vitesse nulle, .
0
‘ x(t) = 2o cos(wyt) . ‘ (6)
t
O
—
T

3 Oscillateur harmonique amorti

3.1 Modele

Considérons un objet glissant sur le sol et soumis & une force de rappel et a un frottement proportionnel
a la vitesse
]?: _/“7: _Higx-
A Tinstant ¢t = 0, il est 1aché en © = g a vitesse vy (conditions initiales).
Selon €, : —ud — kx = mi, v(0) = vy et 2(0) =z . Posons |wd = £ | et |20 = £ |:

‘i +2vi +wiz =0 Vt avec v(0) =0 et z(0) = zo. ‘ (7)

Nous cherchons les fonctions du temps x(t) vérifiant (7).

3.2 Solution

Rappel : les dérivées de la fonction u(t) = e, A € C, sont multiples de u(t) :
ul™ (t) = \'u(t) neN.

Les racines du polynoéme caractéristique sont données par

MN4t22A+wi=0e A= —vt4/12—wi.

Supposons que 'amortissement est faible (v? < w3) et posons ’ w=w-12>0 ‘ Les solutions complexes

sont alors _ _
’Uq(t) — efutJrzwt ’LLQ(t) — efutfzwt

Toute solution & (7) est combinaison linéaire de w1 (t) et de uz(t).
Ainsi z(t) = Ayui(t) + Agua(t) (A1, Az € C) et

CU(O) = Alul(o) + AZ'UQ(O) = Al —+ A2 =20.
De plus, v(t) = @(t) = A1ty + Agtiy = (—v +iw)Ayug + (—v —iw) Agus et
0(0) = (—v +iw) Ay + (—v — iw) A = vy.

Les constantes A; et A5 valent alors

1 vy + VI 1 vo + v
Ay =2 "Eo—l-u Ay = = xo_y
2 wo 2 Wo
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et la solution s’écrit donc

Vg + VI

x(t) = (xo cos(wot) + o

sin(wot)> eVt 8)

bansiliation eshamatdicapaidgsbrofitnpent.

z(t) = zg (cos(wt) + Lsin(wt)) e .| (9) TOIN-- - \/

o ="

La période T de 'oscillation amortie est donnée par T = %” . Comme w < wy, la période de l'oscillateur
amortie est plus grande que celle de l'oscillateur harmonique, conséquence du freinage.

4 Oscillateur harmonique amorti et forcé

4.1 Modele

Considérons un objet glissant sur le sol et soumis a une force de rappel, a un frottement proportionnel
a la vitesse et, en plus, & une force périodique de pulsation Q0 (par exemple si 'objet porte une charge
électrique et bouge parallelement & un champ électrique alternatif). A linstant ¢ = 0, il est laché en
x = xo & vitesse vy (conditions initiales). Selon €, : —ut — kx + F'sin(Qt) = mZ, v(0) = v et x(0) = x¢ .

Posons |w?2 = £ | |20 = L let|p=L
m m m

’i +2vi + wiz = psin(Qt) WVt avec v(0) = vg et 2(0) = x¢ . ‘ (10)

Nous cherchons les fonctions du temps z(t) vérifiant (10).

4.2 Solution
On peut montrer que toute solution & I’équation différentielle (10) est une superposition (somme) de deux
fonctions.

— L’une est une solution quelconque au < probleme homogene » (sans second membre), équation
différentielle (7). Cette solution est amortie, donc transitoire : Tyrans(t) = Aje Tt 4 Agevi—iwt

— La seconde est une solution particuliere a 1’équation différentielle (10). Cette solution n’est pas
amortie, mais permanente : Zperm(?) -

Ainsi,

\z(t) = Zoans(t) + Tperm(t) V& avec v(0) = vy et z(0) = aq. \ (11)

4.3 Solution permanente

Nous pouvons nous attendre a ce que Zperm () soit de méme pulsation que l'excitation :
Zperm () = Acos(Qt) + Bsin(Q) .

En imposant que cette fonction soit solution a (10), nous déterminons les coefficients A et B.
Remarquons cependant que sin(§2t) est la partie imaginaire de e**. Comme (10) est une équation
différentielle linéaire, il suffit de chercher la solution complexe Z(t) pour l'excitation complexe pe®*
et d’en prendre la partie imaginaire.

Cherchons donc une solution Z(t) = He™** | de méme pulsation que I'excitation. Avec

= He'? 7 = iQHe** = —Q*He*,
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(10) devient _ _
(=02 +i20Q + wd)He = pet vt

On en tire le coefficient H(2) (fonction de transfert) :

p
HQ) = 5—5——=—=
@) wg — Q2 + 200
que l'on peut mettre sous forme trigonométrique H(Q) = |H|e ™.
Ainsi

Tperm (t) = Im F(t) = Im (He™*) = |H|sin(Qt — ¢) . (12)

L’amplitude de la réponse permanente est donc une fonction de la pulsation de I’excitation :

A
p A
AQ)=H(Q)| =
(@) =A@)] V(wg —02)2 + (2vQ)2
Q
)
Son maximum (résonance) A, = —~L— est atteint pour Q2 = wg — 212,

2vy/wi—v?
Q,
L’oscillateur forcé agit donc comme un filtre basse-bande : les fréquences voisines de o sont bien trans-
T

mises, les autres moins bien.
Comme Im (H) < 0, le déphasage ¢ est entre 0 et 7. On montre qu’il est donné par

wi — Q2 ) 202
Sin =
J@ @z T e -0t @)

cosp = >0 ¢el0,7].

Il décrit, a I’échelle d’une oscillation, le retard temporel de la réponse sur 'excitation. Petit a basses
fréquences, il tend vers 7 a hautes fréquences.

Tperm ¥

¥ réponse
<«

NIE

excitation o

4.4 Battement transitoire

La solution
.’E(t) - xtrans(t) + xpcrm(t)

est une superposition de deux oscillations, de pulsations w et €2, la premieére étant amortie, la seconde
permanente. Voyons comment interpréter cette somme.
Pour le cas simple d’'une addition de deux sinus de méme amplitude, nous avons par identité trigo-

nométrique
Q— Q
sin(Qt) + sin(wt) = 2 cos (th) sin ( ;wt> .
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Si les deux pulsations sont proches, leur moyenne est du méme ordre. Cependant leur demi-différence est

petite :
NQ—i—w Q—w

W~ <.
2 2
Cela s’interprete comme une oscillation rapide de pulsation QQﬂ et d’amplitude fluctuant lentement
au cours du temps avec une pulsation % . Selon si l'interférence entre les deux ondes est constructive

(en phase) ou destructrice (en contre-phase), 'amplitude résultante est importante ou faible : c’est le
battement.

z(t) 2 cos (%t)

L’amortissement de la contribution transitoire xi,ans(t) entraine la disparition progressive du battement.
Ne subsiste que la réponse permanente Tperm(t) . En effet,

sin(Qt) + e sin(wt) = (1 —e ") sin(Qt) + e ¥ (sin(Qt) + sin(wt))

Q- Q
= (1—e ") sin(Qt) + 2" cos <2wt> sin ( ;wt> .

Pour les conditions initiales v(0) = vo = 0 et 2(0) = 29 = 0, la solution & I’équation (10) est donnée par

z(t) = (Acos(wt) + Bsin(wt)) e " + |H|sin(Qt — )

avec
A= |H|sinyp B:%(Vsingo—flcosgo)
et donc
xz(t) = |H] {(sincpcos(wt) + M sin(wt) + sin(Qt — (p)) e vt
+(1— e ) sin(Qt — (p)},. (13)

On y reconnait bien le battement transitoire et la réponse permanente.



A/\M(\MAAA/\/\W/\(\MMMM(\/\/\/\MM(\t

o



	Freinage proportionnel à la vitesse
	Modèle
	Solution
	Evolution semblable: décroissance de la radioactivité

	Oscillateur harmonique
	Modèle
	Solution

	Oscillateur harmonique amorti
	Modèle
	Solution

	Oscillateur harmonique amorti et forcé
	Modèle
	Solution
	Solution permanente
	Battement transitoire


