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Oscillateur harmonique ẍ = −ω2x

GB

14 décembre 2018

Introduction

Ex. : un objet de masse m fixé à un ressort et glissant sur une table

mur

table

m
`0

O

~ex

~ey

~S

m~g

Sans déformation : la force est nulle,

~f = −k~d = ~0 .

mur

tableO

~ex

~ey

~S

m~g
~d

−k~d~a

En compression : la force est répulsive,

~f = −k~d .

mur

tableO

~ex

~ey

~S

m~g
~d

−k~d ~a

En élongation : la force est attractive,

~f = −k~d .

Newton :
m~g + ~S − k~d = m~a

Avec le choix de l’origine à la position de repos du ressort, ~d = x~ex et, selon ~ex :

−kx(t) = ma(t) = mẍ(t) .

L’accélération étant toujours opposée au vecteur position, la masse oscille autour
de l’origine.

Pour systématiser la discussion, comme k,m > 0 , nous pouvons poser

ω2
0 =

k

m
> 0 .

L’équation d’évolution s’écrit donc

ẍ = −ω2
0x .
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Oscillateur harmonique

Une équation du type

ẍ = −ω2
0x

donne l’évolution d’un oscillateur harmonique. Résoudre cette équation revient à chercher
une fonction du temps x(t) vérifiant cette équation faisant intervenir x(t) et ses dérivées
(équation différentielle).

Le mouvement de l’OH est entièrement déterminé si l’on connâıt de plus sa position et sa
vitesse à un instant t0 (les conditions initiales) :

x(t0) = x0 v(t0) = ẋ(t0) = v0 .

La solution est

x(t) = x0 cos (ω0(t− t0)) +
v0

ω0

sin (ω0(t− t0)) .

En effet, avec les dérivées cos′ x = − sinx et sin′ x = cosx , nous vérifions
• x(t0) = x0

• ẋ = −ω0x0 sin(ω0(t− t0)) + ω0
v0
ω0

cos(ω0(t− t0)) =⇒ ẋ(t0) = v0

• ẍ = −ω2
0x0 cos(ω0(t− t0))− ω2

0
v0
ω0

sin(ω0(t− t0)) = −ω2
0x .

On peux montrer que cette solution est unique.

Ex. : lâcher de la masse fixée au ressort à t0 = 0 à la position x0 et à vitesse nulle.

x(t) = x0 cos(ω0t) .

t

x(t)

x0

O

T

Caractéristiques

Les arguments du cos et du sin étant les mêmes, nous pouvons écrire la solution également
comme

x(t) = A cos (ω0(t− t0) + ϕ) ,

A et ϕ étant données par les conditions initiales x(t0) = x0 et ẋ(t0) = v0 .

Elle décrit une oscillation (non amortie)
• d’amplitude A : valeur extrême (unité : celle de x)
• de période T : temps d’un cycle (unité : s)

x(t+ T ) = x(t), ∀ t =⇒ ω0T = n2π, n ∈ Z

=⇒ T =
2π

ω0

(la plus petite positive.)



c©
G

.
B

ur
m

ei
st

er
14

dé
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• de fréquence ν : nombre de cycles par unité de temps (unité : s−1 = Hz)

ν =
1

T
=
ω0

2π

• de pulsation ω0 : angle (1 tour ' 2π) parcouru par unité de temps (unité : s−1),
par analogie avec le mouvement circulaire uniforme
• de phase ϕ correspondant à un décalage dans le temps.

Exemples

Ex. : masse fixée au ressort, ω2
0 = k

m

T =
2π

ω0

= 2π

√
m

k
.

Plus l’inertie est grande, plus la période est importante. Plus le ressort est rigide,
plus l’oscillation est rapide.

Ex. : masse suspendue à un ressort (vertical).

mur

O

~ex

m~g

~d

−k~d

~a

La masse oscille autour de la position d’équilibre définie
par

m~g − k~déq = ~0 .

La pulsation de l’oscillation est encore donnée par ω2
0 =

k
m

et la période vaut

T =
2π

ω0

= 2π

√
m

k
.

Ex. : pendule simple.

Γ
sm

plafond

~et

~en

O

α

+m~g

~T

Objet : m
m~g + ~T = m~a .

Selon ~et :

−mg sinα = mat = ms̈ = mLα̈ .

Posons ω2
0 = g

L
:

α̈ = −ω2
0 sinα .

Il n’y a pas de solution analytique à cette équation. Cependant, si nous considérons
le cas où α reste petit, nous faisons l’approximation au premier ordre sinα ' α et
alors

α̈ = −ω2
0α .

C’est l’équation d’un OH.
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Energie mécanique

Pour l’objet de masse m fixée à un ressort, la force de rappel est conservative et l’énergie
mécanique donc conservée :

Ecin + Epot =
1

2
mv2 +

1

2
kd2 = E0 ∀ t .

En normalisant avec la division par m , nous avons la conservation de l’énergie (par unité
de masse) d’un OH quelconque,

ẍ = −ω2
0x ⇐⇒ 1

2
ẋ2 +

1

2
ω2

0x
2 = E0 ∀ t .

Pour rappel, le potentiel U(x) est l’opposé d’une primitive de la force (normalisée) :
F (x) = −U ′(x) .

xéq = 0
x

U(x) U(x) = 1
2
ω2

0x
2

E0

1
2
ẋ2

O
x

ẋ

√
2E0 (x(t), ẋ(t))

√
2E0
ω0

Pour chaque valeur E0 de
l’énergie, l’oscillation se fait au-
tour du point d’équilibre xéq = 0
situé au minimum du potentiel.
L’énergie cinétique se lit comme
la différence entre E0 et le poten-
tiel U(x) :

1

2
ẋ2 = E0 − U(x) .

Dans le plan (x, ẋ) , appelé espace
de phase, l’équation

1

2
ẋ2 +

1

2
ω2

0x
2 = E0

décrit une ellipse, appelée orbite.
L’orbite est un rendu visuel de la
relation entre position et vitesse
(selon ~ex).

Ex. : pendule simple. Dans l’approximation des petits angles sinα ≈ α , la conserva-
tion de l’énergie mécanique (par unité de masse) s’écrit

1

2
α̇2 +

1

2
ω2

0α
2 = E0 ∀ t .
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Approximation harmonique

L’approximation harmonique consiste en la linéarisation de la force autour d’un point
d’équilibre stable. Cela revient à considérer l’approximation quadratique du potentiel U(x)
autour d’un minimum local xéq . L’approximation harmonique donne le comportement
oscillant de l’objet près de cette stabilité.

Avec U ′(xéq) = 0 (tangente horizontale), l’approximation quadratique s’écrit

U(x) ' U(xéq) +
1

2
U ′′(xéq)(x− xéq)2 .

La pulsation de l’oscillateur harmonique est donc donnée par

ω2
0 = U ′′(xéq) .

Au voisinage de xéq , le graphe de U(x) a un
comportement parabolique.

Dans l’espace de phase, les orbites sont ap-
prochées par des ellipses.

x

U
U(x)

x

ẋ

E0

xéqxéq

Ex. : pendule simple. La conservation de l’énergie normalisée s’écrit

α̈ = −ω2
0 sinα ⇐⇒ 1

2
α̇2 − ω2

0 cosα = cte ∀ t .

En choisissant la constante telle que le potentiel U(α) est nul pour α = 0 , on a

1

2
α̇2 + ω2

0(1− cosα) = E0 .
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O
α

U(α)

U(α) = ω2
0(1− cosα)

1
2
ω2

0α
2

L’approximation harmonique donne alors

1

2
α̇2 +

1

2
ω2

0α
2 = E0 .

Ex. : charge électrique positive q placée entre deux charges positives identiques dis-
tantes de d .

~F1
~F2

Q Qq

O ~ex

x d− x

La charge q est repoussée par les deux charges et plus q est proche d’une charge,
plus celle-ci la repousse.

La force électrique étant conservative, l’énergie mécanique de la charge q est conservée :

Ecin + Epot,1 + Epot,2 =
1

2
mv2 +

1

4πε0

Qq

x
+

1

4πε0

Qq

d− x
= E0 ∀ t .

En divisant par m , nous avons

1

2
ẋ2 + U(x) = E0

avec

U(x) =
Qq

4πε0m

(
1

x
+

1

d− x

)
.
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O d

x

U(x)

U(x)

1
2
ω2

0(x− xéq)2

E0

O
x

ẋ

xéq

La charge oscille autour de la po-
sition d’équilibre donné par le mi-
nimum du potentiel U(x) :

xéq =
d

2
.

Dans l’approximation quadra-
tique du potentiel au voisinage
de son minimum, nous avons
U ′(xéq) = 0 et

U(x) ≈ Umin+
1

2
U ′′(xéq)(x−xéq)2 .

Nous retrouvons ainsi un oscilla-
teur harmonique, avec

ω2
0 = U ′′(xéq) =

16Qq

πε0md3
.

Plus l’énergie de la charge q est
petite, plus l’approximation est
bonne.

Ex. : oscillation d’un disque vertical de rayon R , de centre O fixe et soumis à des
moments de force.

O

M

Lm

α

M~g

m~g

~S

~T

−~T

+

L’objet formé du disque et de la masse m (la
tige est de masse négligeable) a un moment
d’inertie I par rapport à O . Selon ~ez⊗ :

RT − L cosαmg = Iω̇ .

Pour la masse M , selon ~ey ↓ :

Mg − T = Ma .

Avec la liaison a = Rω̇ , l’évolution de α(t)
est donnée par

RMg − Lmg cosα = (I +MR2)α̈
ou encore par

α̈ =
g

I +MR2
(RM − Lm cosα) .

Les positions d’équilibres sont données par α̈ = 0 :

cosαéq =
RM

Lm
.

Un équilibre est possible si RM < LM .
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La conservation d’énergie s’écrit

1

2
α̇2 + U(α) = cte U(α) =

g

I +MR2
(−RMα + Lm sinα) .

O
α

U(α)

U(α)

Uharm(α)

αéq

αéq

αéq

αéq

αéq

L’approximation quadratique de U(α) autour de αéq = − arccos RM
Lm

donne

U(α) ≈ U(αéq) +
1

2
U ′′(αéq)(α− αéq)2

= U(αéq) +
1

2

g

I +MR2
(0− Lm sinαéq)(α− αéq)2

= U(αéq) +
1

2

Lmg

I +MR2
| sinαéq|(α− αéq)2

= U(αéq) +
1

2
ω2

0(α− αéq)2

où la pulsation est donnée par

ω2
0 =

Lmg

I +MR2
| sinαéq| =

Lmg

I +MR2

√
1− cos2 αéq =

g

I +MR2

√
(Lm)2 − (RM)2 .

Rem. : on obtient le même résultat en développant la force au premier ordre au-
tour de αéq :

α̈ =
g

I +MR2

(
RM − Lm cos

(
αéq + (α− αéq)

))
≈ g

I +MR2

(
RM − Lm

(
cosαéq − sinαéq(α− αéq)

))
= − Lmg

I +MR2
| sinαéq|(α− αéq)

d’où

ω2
0 =

Lmg

I +MR2
| sinαéq| .


