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Introduction

Ex.: un objet de masse m fixé a un ressort et glissant sur une table
Sans déformation : la force est nulle,

b S . -
mur m f=—-kd=0.

633
En compression : la force est répulsive,
S . R
mur a _kd f=—kd.
g, mmj_L»
m) d o table
€
En élongation : la force est attractive,
S . B
mur —kd @ f=—kd.
€y —
O d l table
= mg
63?

Newton :
mg+ S — kd =mad
Avec le choix de l'origine a la position de repos du ressort, d = z¢, et, selon €, :
—kz(t) = ma(t) = mi(t) .

L’accélération étant toujours opposée au vecteur position, la masse oscille autour
de l'origine.
Pour systématiser la discussion, comme k£, m > 0, nous pouvons poser

k
wi=—>0.
m
L’équation d’évolution s’écrit donc

. 2
I =—wyT.



Oscillateur harmonique

Une équation du type

. 2
T = —wiT

donne I’évolution d’un oscillateur harmonique. Résoudre cette équation revient a chercher
une fonction du temps z(t) vérifiant cette équation faisant intervenir z(t) et ses dérivées
(équation différentielle).

Le mouvement de ’'OH est entierement déterminé si 'on connait de plus sa position et sa
vitesse a un instant ¢y (les conditions initiales) :

I(to) = 29 U(to) = I‘(to) =1 .

La solution est

[E(t) = X COS (WQ(t — to)) + E sin (u}o(t . to)) .

Wo
En effet, avec les dérivées cos’ x = —sinx et sin’ z = cos z, nous vérifions
® I’(to) =X
o &= —woosin(wo(t —to)) +wo 2 cos(wo(t —to)) = @(to) = vo
o i = —wjxocos(wo(t —to)) — Wi sin(wo(t —to)) = —wiw.

On peux montrer que cette solution est unique.

Ex. : lacher de la masse fixée au ressort a tyo = 0 a la position xg et a vitesse nulle.
(t)
KVAVAV/‘ |

T

T
x(t) = xo cos(wot) . Lo
O

Caractéristiques

Les arguments du cos et du sin étant les mémes, nous pouvons écrire la solution également
comme

x(t) = Acos (wo(t —to) + ) ,

A et ¢ étant données par les conditions initiales x(ty) = x¢ et (tg) = vy .

Elle décrit une oscillation (non amortie)
e d’amplitude A : valeur extréme (unité : celle de x)
e de période T' : temps d’un cycle (unité : s)

z(t+T)=2z(t), Vi = wT =n2n,n € Z

27
—> T = — (la plus petite positive.)
Wo



e de fréquence v : nombre de cycles par unité de temps (unité : s7' = Hz)

_1_&)0

T 2
e de pulsation wy : angle (1 tour ~ 27) parcouru par unité de temps (unité : s=1),

par analogie avec le mouvement circulaire uniforme
e de phase ¢ correspondant a un décalage dans le temps.

Exemples

£
m

2 m
T="=2m/-—.
Wy m k

Plus l'inertie est grande, plus la période est importante. Plus le ressort est rigide,
plus l'oscillation est rapide.

Ex. : masse fixée au ressort, wy =

Ex.: masse suspendue a un ressort (vertical).

r La masse oscille autour de la position d’équilibre définie
mg’ - l{?déq =0.
—hkd La pulsation de I'oscillation est encore donnée par wi =
O % et la période vaut
(
2
7T=""_9r m
Wy k
mg
Ex.: pendule simple.
Objet : m
plafond mg+T = mi.
Selon ¢é; :
—mgsina = ma; = m8 = mLd.
Posons wi = £ :

& = —wisina.

I n’y a pas de solution analytique a cette équation. Cependant, si nous considérons
le cas ou « reste petit, nous faisons I'approximation au premier ordre sina ~ « et
alors

o 2
0= —wyo.

C’est I’équation d’un OH.



Energie mécanique

Pour I'objet de masse m fixée a un ressort, la force de rappel est conservative et 1’énergie

mécanique donc conservée :

Ecin + Epot =

2 2

1 1
—mvP 4+ -kd*=E, Vt.

En normalisant avec la division par m , nous avons la conservation de I’énergie (par unité

de masse) d'un OH quelconque,

. 2
T = —wyo

— |l24l
_x f—
2 2

wir? =& Vt.

Pour rappel, le potentiel U(x) est 'opposé d’une primitive de la force (normalisée) :

F(z) =-U'(x).

Pour chaque valeur &, de
I’énergie, l'oscillation se fait au-
tour du point d’équilibre z¢q = 0
situé au minimum du potentiel.
L’énergie cinétique se lit comme
la différence entre & et le poten-
tiel U(x) :

1

EiZZgQ—U([E).

Dans le plan (z, &) , appelé espace
de phase, I’équation

Lo 155,
—1 —wix® = &
37 T3 0
décrit une ellipse, appelée orbite.
L’orbite est un rendu visuel de la
relation entre position et vitesse
(selon €,).

Ex.: pendule simple. Dans ’approximation des petits angles sina ~ «, la conserva-
tion de I’énergie mécanique (par unité de masse) s’écrit

1
2

1
—d2 + 50&)(2)0(2 = 80 Vit.



Approximation harmonique

L’approximation harmonique consiste en la linéarisation de la force autour d’un point
d’équilibre stable. Cela revient a considérer I’approximation quadratique du potentiel U (z)
autour d’'un minimum local x¢,. L’approximation harmonique donne le comportement
oscillant de I'objet pres de cette stabilité.

Avec U'(z¢q) = 0 (tangente horizontale), I'approximation quadratique s’écrit
~ 1 " 2
U(z) = Ul(req) + §U (Teq) (T — T4q)” -

La pulsation de l'oscillateur harmonique est donc donnée par

wg = U"(x4q) -

Au voisinage de w4, le graphe de U(x) a un
comportement parabolique.

Dans 'espace de phase, les orbites sont ap-

prochées par des ellipses. ‘ /\ .

Ex.: pendule simple. La conservation de I’énergie normalisée s’écrit

. 1
a:—wgsma — §a2—w§cosozzcte Vit.

En choisissant la constante telle que le potentiel U(«) est nul pour a =0, on a

1
5(542 +wi(l —cosa) =& .



-

O U(a) = wi(1l —cosa)
L’approximation harmonique donne alors

1 1
50.42 + 50.)3@2 = 50 .

Ex.: charge électrique positive ¢ placée entre deux charges positives identiques dis-
tantes de d.

La charge ¢ est repoussée par les deux charges et plus ¢ est proche d’une charge,
plus celle-ci la repousse.

La force électrique étant conservative, I’énergie mécanique de la charge ¢ est conservée :

1@+1 Qq

deg x dregd — x

1
Eein + Epot,l + Epot,2 = 57711}2 + = E(] Vt.

En divisant par m, nous avons

Qg (1 1
Ulz) = dmegm (; Tac x) '

avec




La charge oscille autour de la po-
sition d’équilibre donné par le mi-
nimum du potentiel U(z) :

Léqg — < -
42
Dans l'approximation quadra-
tique du potentiel au voisinage
de son minimum, nous avons
/ L
U'(zeq) =0 et

1

U ~ Umin
() = Uit

U"(w¢q) (x_xéq)2 :

Nous retrouvons ainsi un oscilla-
teur harmonique, avec

16Qq

Teomdd

WS = U”(xéq) =

Plus I'énergie de la charge ¢ est
petite, plus 'approximation est
bonne.

Ex. : oscillation d’un disque vertical de rayon R, de centre O fixe et soumis a des
moments de force.

L’objet formé du disque et de la masse m (la
tige est de masse négligeable) a un moment
d’inertie I par rapport a O. Selon €,® :

RT — Lcosamg = [w.
Pour la masse M , selon €, | :
Mg—T = Ma.

Avec la liaison @ = Rw, I"évolution de «(t)
est donnée par

RMg — Lmgcosa = (I + MR*)é
ou encore par

Q= ﬁ(RM — Lmcosa).
Les positions d’équilibres sont données par & = 0 :
RM
C g — T/ .
0S Olgq T

Un équilibre est possible si RM < LM .



La conservation d’énergie s’écrit

1
5042—1—(](04) = cte U(Oé) = ﬁ(—RM(x—i—Lmsma)
Ula),
!
Uharm(a)
Qg
O
-
Oééq
/
U(a)
aéq
L’approximation quadratique de U(«a) autour de agq = — arccos L— donne

U(0) & Ulow) + 50" (a0 — o)

1 g .

= Ulagq) + §m(0 — Lmsin agy) (@ — agq)?
1 Lmg i

= U(Oééq> -+ §m| S1n Oééq|((l/ — O[éq)2

= Ulagq) + _WS(O‘ - O‘éq)2

2
ou la pulsation est donnée par

m ) Lmg
= —— s = ————==1/1 — cos? Lm)? — (RM)?.
I+ MRstmaeq' I+ MR? o8 ea = 7 + MR2 T e VP = ( )

Rem. : on obtient le méme résultat en développant la force au premier ordre au-

tour de agq :
a = ﬁ (RM —Lm COS(QCéq + (Oé - aéq)))
o et (- o)
Lmg .
_m| sin agq | (a0 — agq)
d’ou
9 Lmg .
Wi = | sin g -

I+ MR?



