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4.1 Conservation de l’énergie . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Energie cinétique et travail . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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8.4 Puissance électrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.5 Résistance d’un conducteur . . . . . . . . . . . . . . . . . . . . . . . . . 29

8.5.1 Loi d’Ohm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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1 Introduction

1.1 But de la physique

Comprendre et décrire les phénomènes naturels par des lois aussi générales que possible.

1.2 Loi physique et rôle des mathématiques

Grandeur physique (ou observable) : adéquation entre le monde réel et le monde
symbolique.

Mesure : comparaison avec une référence (système international d’unités).

Observation : ensemble de mesures de grandeurs physiques.

Loi : règle en accord avec l’observation et permettant la prédiction d’autres observa-
tions. Relation mathématique entre des grandeurs physiques.

2 Mouvement dans le plan

2.1 Matière et espace

Objet : un morceau de matière.

Masse : quantité de matière de l’objet.
Symboles : m,M ; unité : kg.

Volume : portion de l’espace occupé par l’objet.
Symbole : V ; unité : m3.

Masse volumique :

ρ =
m

V
, unité : kg m−3.

Densité :
d =

ρ

ρeau liquide

, unité : - (pas d’unité).

Surface : symboles : S, σ ; unité : m2.

Longueur : symboles : x, r, s, d, L ; unité : m.

2.2 Référentiel, origine, repère fixe

Référentiel : un objet de référence par rapport auquel est donné le mouvement d’un
objet.

Origine : un point lié au référentiel, noté O.

Repère fixe orthonormé : triplet (O,~ex, ~ey), avec ~ex ⊥ ~ey et ||~ex|| = ||~ey|| = 1.
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2.3 Vecteur position et temps

Vecteur position : vecteur donnant la position de l’objet dans le référentiel.

objet
~r

O

Symbole : ~r ; unité : m.

Direction, sens et norme de ~r :

direc
tio

n

sen
s

norm
e

objet
~r

O

Décomposition de ~r dans le repère choisi :

objet
~rα

O ~ex

~ey
~r = x~ex + y ~ey =

(
x
y

)
=

(
r cosα
r sinα

)
.

r = ||~r || =
√
x2 + y2 .

x et y sont les composantes de ~r selon le repère (O,~ex, ~ey) .

Temps : comparaison de durées.

Symbole : t ; unité : s.

Le vecteur position est une fonction du temps : ~r = ~r(t).

Déplacement : comparaison entre deux positions ~r1 et ~r2 d’un objet.

P1

~r1
P2

~r2

∆~r

O

~r1 = ~r(t1) : ancienne position
~r2 = ~r(t2) : nouvelle position
∆~r = ~r2 − ~r1 : déplacement

Symbole : ∆~r ; unité : m.

Rencontre de deux objets :

∃ tr , ~robjet1(tr) = ~robjet2(tr) .
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Trajectoire Γ :

Γ

P0

~r(t0)

P1

~r(t1)

P2~r(t2)

O

Γ =
{
P | ∃ t ,

−→
OP = ~r(t)

}
.

2.4 Vitesse

Considérons un objet à deux instants t1 et t2.

Γ

P1

~r1
P2

~r2

∆~r

O

~r1 = ~r(t1) : ancienne position
~r2 = ~r(t2) : nouvelle position
∆~r = ~r2 − ~r1 : déplacement
∆t = t2 − t1 : durée du déplacement

Vitesse moyenne :

~vmoy =
∆~r

∆t
, unité : m s−1 .

Vitesse (instantanée) :

Γ

~r1

tangente

~r2

~v
∆~r

O

Lorsque ∆t→ 0,
∆~r

∆t
devient vecteur di-

recteur de la tangente à la trajectoire en
~r1 .

~v(t) = lim
∆t→0

∆~r

∆t
= lim

∆t→0

~r(t+ ∆t)− ~r(t)
∆t

=
d~r

dt
= ~̇r(t) , unité : m s−1 .

La vitesse est
• le taux de variation de la position par rapport au temps ;
• un vecteur (avec une direction, un sens et une norme) ;
• tangente à la trajectoire et dans le sens du mouvement.

La vitesse est une fonction du temps : ~v = ~v(t).
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2.5 Accélération

Considérons un objet à deux instants t1 et t2.

Γ

P1

~r1

~v1

P2

~r2 ~v2O

~v1

~v2

∆~v

~v1 = ~v(t1) : ancienne vitesse
~v2 = ~v(t2) : nouvelle vitesse
∆~v = ~v2 − ~v1 : changement de vitesse
∆t = t2 − t1 : durée du déplacement

Accélération (instantanée) :

Γ

~r1

~v1

~r2 ~v2

O

support de ~a

~a

∆~v

~a(t) = lim
∆t→0

∆~v

∆t
= lim

∆t→0

~v(t+ ∆t)− ~v(t)

∆t
=
d~v

dt
= ~̇v(t) , unité : m s−2 .

L’accélération est
• le taux de variation de la vitesse par rapport au temps ;
• un vecteur (avec une direction, un sens et une norme) ;
• toujours dirigée vers l’intérieur du virage.

L’accélération indique
• selon la tangente à la trajectoire, un changement dans la norme de la vitesse ;
• selon la normale à la trajectoire, un changement dans la direction de la vitesse.

L’accélération est une fonction du temps : ~a = ~a(t).
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Exemple : mouvement uniformément accéléré (MUA).

Pour un objet passant par un point A à l’instant t0 (~r(t0) = ~r0 =
−→
OA) avec une

vitesse ~v0 et dont l’accélération est constante, on a

Γ

A
~r0

~v0

~a0

P

~r(t)

~v(t)

~a0

O

~a(t) = ~a0 =
−−→
cste ,

~v(t) = ~a0 · (t− t0) + ~v0 ,

~r(t) =
1

2
~a0 · (t− t0)2 + ~v0 · (t− t0) + ~r0 .

La trajectoire est alors une parabole d’axe parallèle à ~a0.

Exemple : mouvement rectiligne uniforme (MRU).

Il s’agit d’un cas particulier de MUA où l’accélération est nulle.

A
~r0

Γ

P

~r(t)

~v0

~v0

O

~a(t) = ~0 ,

~v(t) = ~v0 ,

~r(t) = ~v0 · (t− t0) + ~r0 .

3 Dynamique

3.1 Première loi de Newton (principe d’inertie)

Un objet en mouvement ne subit aucune action
ssi

son mouvement est rectiligne et uniforme (~a(t) = ~0 ∀t).

Référentiel d’inertie : un référentiel dans lequel le principe d’inertie est valable.

3.2 Deuxième loi de Newton

Un objet en mouvement subit une action
ssi

sa vitesse est modifiée (~a 6= ~0).

Pour un objet considéré,
~F = m~a ,

où m est la masse de l’objet, ~a son accélération et ~F la somme des forces qu’il subit.

Force : action qui modifie la vitesse de l’objet.

Symboles : ~F , ~S, ~N, ~T , ~f ; unité : kg m s−2 = N (“newton”).

5



Remarque :
• La force est la cause, l’accélération la conséquence.
• Les vecteurs ~a et ~F sont parallèles et de même sens.
• Plus l’objet contient de matière, plus il est difficile de modifier sa vitesse.

Si un objet est au repos, la somme des forces qu’il subit est nulle :

objet statique ⇒ ~F = ~0 , ∀ t .

La réciproque est fausse : l’objet peut être en MRU.

3.3 Forces particulières

3.3.1 Forces à distance

1) Force de gravitation : les masses s’attirent.

r
m

objet

M

~F

||~F || = G
Mm

r2
,

où G ∼= 6.67 · 10−11 N m2 kg−2 est la constante
gravitationnelle.

Près de la surface de la terre, la force de gravitation est appelée le poids.

objet

sol

m~g
~g ~F = m~g ,

où ~g est dirigé vers le centre de la terre et
g = ||~g|| ∼= 9.81 m s−2.

2) Force électrique : les charges électriques peuvent soit s’attirer, soit se repousser.

3) Force magnétique : une charge électrique en mouvement est déviée par un courant
électrique.

3.3.2 Forces de contact

Les forces de contact sont exercées par traction, par pression ou par cisaillement.

Exemples : tension, soutien, frottement.

Cas particulier : le ressort élastique.

mur

longueur
naturelle

~d

~F

La force élastique est opposée à la dé-
formation ~d du ressort,

~F = −k~d ,

où la constante du ressort k mesure sa ri-
gidité. Unité de k : N m−1.
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3.4 Quantité de mouvement

Pour un objet de masse m et de vitesse ~v,

Quantité de mouvement :

~P = m~v , unité : kg m s−1 .

Pour un objet formé de N parties de masses m1, m2, . . . , mN de vitesses ~v1, ~v2, . . . , ~vN ,

Quantité de mouvement (totale) :

~P = ~P1 + ~P2 + · · ·+ ~PN = m1~v1 +m2~v2 + · · ·+mN~vN .

La deuxième loi de Newton s’écrit alors

~F = ~̇P ,

où ~F = ~F1 + ~F2 + · · · + ~FN est la somme de toutes les forces exercées sur toutes les
parties de l’objet.

3.5 Centre de masse

Pour un objet formé de N parties de masses m1, m2, . . . , mN repérées par leurs positions
~r1, ~r2, . . .,~rN ,

Centre de masse :

~rCM =
m1~r1 +m2~r2 + . . .+mN~rN

m
,

où m = m1 +m2 + . . .+mN est la masse totale de l’objet considéré.

Ainsi,
~P = m~vCM .

La quantité de mouvement de l’objet peut être vue comme celle d’une masse unique en
mouvement située au CM.
La deuxième loi de Newton s’écrit alors

~F = ~̇P = m~aCM .

Cette loi donne le mouvement du CM de l’objet soumis à des forces.

3.6 Troisième loi de Newton (action=réaction)

On observe que pour deux parties 1 et 2 d’un objet considéré, la force ~F1→2 que 1 exerce
sur 2 et la force ~F2→1 que 2 exerce sur 1 sont

1

2

~F2→1

~F1→2

• de même support ;
• opposées ;
• de même norme ;

~F1→2 + ~F2→1 = ~0 .
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Les forces internes s’annulent donc deux à deux. Seules les forces externes sont
déterminantes.
La deuxième loi de Newton s’écrit finalement

~F ext = ~̇P = m~aCM .

3.7 Pression

Considérons une face S d’un objet et une force ~F exercée sur cette face.

~Fn ~F

S
~Ft

~F = ~Fn + ~Ft .

~Fn est normale à S et ~Ft est tangente à S.

Pression moyenne :

pmoy =
||~Fn||
S

, unité : N m−2 = Pa (“pascal”) .

En découpant S en petits morceaux ∆S, nous mettons en évidence la contribution ∆~Fn
de la force normale ~Fn sur chaque ∆S :

~Fn

S
∆S

∆S

∆~Fn

S = ∆S1 + ∆S2 + . . .
~Fn = ∆~Fn,1 + ∆~Fn,2 + . . .

Pression (locale) :

p(~r) = lim
∆S→0

||∆~Fn||
∆S

=
dFn
dS

.

Remarque : la pression est

1) un scalaire positif, p ≥ 0 ;

2) une fonction de l’espace et du temps, p = p(~r, t).

Cas particulier : si la force normale est répartie uniformément sur la face S,

||~Fn|| = pS .

Autres unités de pression :

• le bar : 1 bar = 105 Pa = 1000 hPa ;
• l’atmosphère : 1 atm = 1.013 · 105 Pa ;
• le millimètre de mercure : 1 atm = 760 mmHg = 1013 mbar = 1013 hPa.
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Loi du gaz parfait :
pV = NkT = nRT ,

où p est la pression du gaz, V le volume occupé par le gaz, N le nombre de
molécules, T la température du gaz (en kelvin, K), k = 1.38 · 10−23 J K−1 la
constante de Boltzmann, n = N/NA est le nombre de moles et R = NAk =
8.31 J K−1 mole−1 la constante du gaz parfait. Une mole de molécules contient en-
viron NA = 6.02 · 1023 molécules, NA étant le nombre d’Avogadro.

3.8 Hydrostatique

3.8.1 Définition d’un fluide

Un fluide est un matériau qui, contrairement à un solide, se transforme continuellement
sous une contrainte tangentielle (cisaillement) arbitraire. Si la contrainte est relâchée,
une déformation subsiste.

L’hydrostatique concerne les fluides au repos.

3.8.2 Forces dans un fluide au repos, loi de Pascal

S

fluide
~Ft

~Fn

~F

Dans un fluide, considérons un petit volume
(de fluide).
S représente une des faces du volume.
Le fluide environnant exerce une force ~F sur
chaque face S :

~F = ~Fn + ~Ft .

Comme le fluide est au repos, il n’exerce pas de cisaillement : ~Ft = ~0 . Ainsi, la force
exercée par le fluide sur une face du volume au repos est normale à la face (~F = ~Fn).

Les forces qu’un fluide au repos exerce sur un
corps immobile sont exclusivement normales.

∆~F

Loi de Pascal : l’intensité de la force exercée par le fluide sur une face ne dépend pas
de l’orientation de la face.
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3.8.3 Loi de l’hydrostatique

Considérons un fluide au repos, soumis à la gravitation.

m~g

~Fsous

~Fsur

~Flat

~g

~ez

h1

h2

Objet : parallélépipède rectangle de fluide entre deux
niveaux h1 et h2.
Forces : poids et forces de pression verticales et
latérales.
Newton :

m~g + ~Fsur + ~Fsous + ~Flat = ~0 .

Selon ~ez :
−mg − Fsur + Fsous = 0 .

Ainsi, si le fluide est homogène (ρfluide = cste),

p(h1)− p(h2) = ρfluide g(h2 − h1) .

La différence de pression entre deux niveaux dans un fluide est due au poids (par unité
de surface) du fluide compris entre les niveaux. En particulier, la pression est identique
en tous points d’un même niveau.

3.8.4 Principe d’Archimède

La résultante des forces de pression est appelée poussée d’Archimède ~FA.

fluide

CM

~FA

mmorceau~g

Objet : morceau de fluide
Forces : poids, résultante des forces de pression.
Newton :

mmorceau ~g + ~FA = ~0 ,

où mmorceau = ρfluide Vmorceau.

~FA est une force égale et opposée au poids du liquide dans Vmorceau.
Si nous remplaçons le morceau de fluide immergé par un autre objet au repos, de même
volume immergé, les forces de pressions exercées par le fluide environnant ne changent
pas. Ainsi,

Poussée d’Archimède :
~FA = −ρfluide Vimmergé ~g .

~FA est égale et opposée au poids du liquide déplacé.

Remarque : un corps flottant dans deux fluides subit deux poussées d’Archimède,
données par le volume immergé dans chacun des fluides.
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3.8.5 Unité de pression : le mmHg

La pression atmosphérique pa peut être donnée par la hauteur h d’une colonne de liquide
(mercure) dans un tube :

Hg

air à pa

p ∼= 0 Pa

h

Au niveau de l’interface air-mercure,

pa = pHg = ρHg g h ⇔ h =
pa
ρHg g

.

En particulier, à 1 atm, la hauteur de la colonne
est de 760 mm , d’où la relation

h

760 mm
=

pa
1 atm

.

3.9 Deux intermèdes

3.9.1 Produit scalaire

~a ·~b = ||~a|| ||~b|| cosϕ .

Le produit scalaire est une mesure du parallélisme de deux vecteurs.
Un produit scalaire ~a ·~b positif signifie que les vecteurs ~a et ~b sont plutôt de même sens.
Un produit scalaire ~a ·~b négatif signifie que les vecteurs ~a et ~b sont plutôt de sens opposé.

Remarque : ~v · ~v = ||~v||2 .

3.9.2 Taux de variation d’un produit (algébrique, scalaire ou vectoriel)

d

dt
(AB) = ȦB + AḂ

Pour un vecteur ~v = v~et :
d

dt
(v~et) = v̇~et + v~̇et .

Pour le carré de sa norme :

d

dt
(v2) =

d

dt
(~v · ~v) = 2~v · ~̇v .

3.10 Repère lié au mouvement

3.10.1 Abscisse curviligne, repère lié à la position sur la trajectoire

Abscisse curviligne : s

Γ

O
s > 0

tangente

n
or

m
al

e

~et

~en

P

sQ < 0 Q

+: sens positif
(choix) On choisit O ∈ Γ et un sens positif.

s est l’abscisse du point P ∈ Γ ; unité : m .

s > 0 : P est en avant de O selon

le sens positif ;

s < 0 : P est en arrière de O.

11



On définit pour chaque point de la trajectoire Γ un repère (~et, ~en) lié à ce point :
• ~et est un vecteur normé, tangent à Γ et donnant le sens positif de parcours,
• ~en est un vecteur normé, normal à Γ et indiquant l’intérieur (ou l’extérieur) du

virage.

3.10.2 Vitesse scalaire

En tout point de Γ, la vitesse s’écrit

~v = v~et .

Vitesse scalaire :

v = lim
∆t→0

∆s

∆t
= ṡ , unité : m s−1.

La vitesse scalaire est le taux de variation de l’abscisse curviligne par rapport au temps.
Elle représente la vitesse le long de Γ selon ~et.

3.10.3 Accélérations tangentielle et normale

En tout point de Γ, l’accélération se décompose dans le repère (~et, ~en) :

Γ

tangente

~at

no
rm

al
e

~an

~a

~a = ~at+~an = at~et+an~en .

• Accélération tangentielle :

at = lim
∆t→0

∆v

∆t
= v̇ = s̈ , unité : m s−2 .

L’accélération tangentielle est l’accélération le long de Γ selon ~et. Elle est donc le
taux de variation de la vitesse scalaire par rapport au temps.

• Accélération normale :

|an| =
v2

R
, unité : m s−2 .

R est le rayon de la trajectoire, c.-à-d. le rayon du cercle osculateur (cercle pas-
sant par trois points de la trajectoire infiniment proches). L’accélération normale
donne la variation de la direction de la vitesse ~v.

Remarque : Le vecteur ~an est toujours dirigé vers l’intérieur du virage.
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Exemple : condition de décrochement.

Un objet se déplaçant sur un support subit une force de soutien ~S normale au
support.

support

Γ D ~S = ~0

P

~S 6= ~0~en

~vD
Si l’objet quitte le support, le soutien de-
vient nul au point de décrochement D :

~S = ~0 ;

il s’annule en particulier selon ~en.

3.10.4 Mouvement circulaire

Considérons un objet sur une trajectoire circulaire Γ de rayon R . Une force tangentielle
peut rendre l’objet plus ou moins rapide. Une force normale est nécessaire pour imprimer
le virage à l’objet.

Γ

s

O

ϕ

R m

C
~Fn

~en

~Ft

~et

sens positif
(choix)

Objet : m
Forces : tangentielle et normale
Newton :

~Ft + ~Fn = m~a .

Pour une origine O sur Γ, l’objet est repéré par l’angle ϕ :

s = Rϕ .

La vitesse scalaire est
v = ṡ = Rϕ̇ ,

où ϕ̇ est la vitesse angulaire de l’objet autour de C. C’est le taux de variation de la
position angulaire ϕ par rapport au temps. Elle est souvent notée ω = ϕ̇ .
Alors,

v = Rω , at = v̇ = Rω̇ = Rϕ̈ et |an| =
v2

R
= Rω2 .

Nous obtenons ainsi 
selon ~et : Ft = mat = mRϕ̈ ,

selon ~en : Fn = man = mRω2 .
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4 Energie

4.1 Conservation de l’énergie

L’énergie est une grandeur pouvant caractériser un système. Il s’agit d’un nombre, noté
E, qui est conservé s’il n’y a aucun échange avec l’environnement du système. Ainsi, dans
le cas d’un système isolé, la variation d’énergie entre deux instants t1 et t2, t2 > t1,
est nulle :

∆E = E(t2)− E(t1) = 0 .

Dans le cas d’un système non isolé, des échanges peuvent se faire avec l’environnement
du système et l’on a en général

∆E = E(t2)− E(t1) 6= 0 .

Par convention, on se place du point de vue du système :

• ∆E > 0 signifie que le système gagne de l’énergie ;
• ∆E < 0 signifie que le système perd de l’énergie.

Au cours du temps, l’énergie d’un système peut également changer de forme.

4.2 Energie cinétique et travail

4.2.1 Théorème de l’énergie cinétique

Considérons un objet de masse m.
A un instant donné, on définit l’énergie cinétique de son CM par

Ecin,CM =
1

2
mv2

CM .

C’est l’énergie associée au mouvement. Unité : kg m2 s−2 = N m = J (“joule”).

La variation d’énergie cinétique entre un instant t1 et un instant t2 est donnée par le
théorème de l’énergie cinétique pour le CM :

Ecin,CM(2)− Ecin,CM(1) = W ext
1→2 ,

où

W ext
1→2 =

∫ 2

1

dW ext =

∫ 2

1

~F ext · d~rCM

instant t2

instant t1

Γ

CM

~F ext

d~rCM

est le travail des forces extérieures ~F ext sur le CM, dW ext = ~F ext · d~rCM étant le travail
infinitésimal des forces extérieures sur le CM pour un déplacement d~rCM. Le symbole
d’intégration

∫
désigne la somme des travaux infinitésimaux effectués entre 1 et 2.
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4.2.2 Forces conservatives

Force conservative : Une force est dite conservative si son travail sur l’objet considéré
ne dépend que des extrémités du chemin que l’objet parcourt, et non du chemin
lui-même.

Energie potentielle : Le travail d’une force conservative entre un instant t1 et un
instant t2 peut être écrit comme une différence d’énergie potentielle :

W1→2(~F ext
cons) = Epot,CM(1)− Epot,CM(2) .

L’énergie potentielle est associée à une position ~r du CM de l’objet et est définie
à une constante arbitraire près.

Exemples :

a) Le poids, ~F = m~g.

Epot(~r) = −m~g · ~r + cste = mgh+ cste .

Cette énergie potentielle est associée à la hauteur h du CM au-dessus de l’origine.

b) La gravitation (cas général), ~F = −G Mm

r2
~er .

Epot(~r) = −G Mm

r
+ cste .

c) La force de rappel d’un ressort, ~F = −k~d .

Epot(~r) =
1

2
kd2 + cste .

d) La force de Coulomb, ~F =
1

4πε0

Qq

r2
~er .

Epot(~r) =
1

4πε0

Qq

r
+ cste .

Energie mécanique :
Eméc,CM = Ecin,CM + Epot,CM .

C’est l’énergie associée au mouvement et à la position du CM de l’objet.

La variation d’énergie mécanique entre un instant t1 et un instant t2 est donc donnée
par

Eméc,CM(2)− Eméc,CM(1) = W1→2(~F ext
non cons) .

En d’autres termes, si toutes les forces sont conservatives (ou ne travaillent pas), l’énergie
mécanique du CM est conservée, Eméc,CM = cste.
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4.3 Puissance

Puissance :

P = lim
∆t→0

∆E

∆t
=
dE

dt
= Ė , unité : J s−1 = W (“watt”).

C’est un apport d’énergie par unité de temps.

Rendement :

η =
Putile

Pfournie

, unité : - .

Pour un dispositif transformant de l’énergie d’une forme en une autre, c’est le
rapport entre la puissance utile (la forme voulue) et la puissance fournie (la forme
initiale).

5 Oscillateur harmonique

5.1 Evolution

Une équation du type
ẍ = −ω2

0x

décrit l’évolution d’un oscillateur harmonique. Résoudre cette équation revient à chercher
une fonction du temps x(t) vérifiant cette équation faisant intervenir x(t) et ses dérivées
(équation différentielle).
Le mouvement de l’oscillateur harmonique est entièrement déterminé si l’on connâıt de
plus sa position et sa vitesse à un instant t0 (les conditions initiales) :

x(t0) = x0 v(t0) = ẋ(t0) = v0 .

La solution, unique, est

x(t) = x0 cos (ω0(t− t0)) +
v0

ω0

sin (ω0(t− t0)) .

C’est une oscillation harmonique autour de la position d’équilibre xéq = 0 .

Exemple : lâcher à t0 = 0 à la position x0 et à vitesse nulle.

x(t) = x0 cos(ω0t) .

t

x(t)

x0

O

T
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5.2 Caractéristiques

Les arguments du cos et du sin étant les mêmes, nous pouvons écrire la solution également
comme

x(t) = A cos (ω0(t− t0) + ϕ) .

C’est une oscillation (non amortie)
• d’amplitude A : valeur extrême (unité : celle de x)
• de période T = 2π

ω0
: temps d’un cycle (unité : s)

• de fréquence ν = 1
T

= ω0

2π
: nombre de cycles par unité de temps (unité : s−1 = Hz)

• de pulsation ω0 : angle (1 tour ' 2π) parcouru par unité de temps (unité : s−1).

5.3 Energie mécanique

La conservation de l’énergie (par unité de masse) d’un oscillateur harmonique s’écrit

1

2
ẋ2 +

1

2
ω2

0x
2 = E0 ∀ t .

xéq = 0
x

U(x) U(x) = 1
2
ω2

0x
2

E0

1
2
ẋ2

O
x

ẋ

√
2E0 (x(t), ẋ(t))

√
2E0
ω0

Pour chaque valeur E0 de
l’énergie, l’oscillation se fait au-
tour du point d’équilibre xéq = 0
situé au minimum du potentiel.
L’énergie cinétique se lit comme
la différence entre E0 et le poten-
tiel U(x) :

1

2
ẋ2 = E0 − U(x) .

Dans le plan (x, ẋ) , appelé espace
de phase, l’équation

1

2
ẋ2 +

1

2
ω2

0x
2 = E0

décrit une ellipse, appelée orbite.
L’orbite est un rendu visuel de la
relation entre position et vitesse
(selon ~ex).
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6 Rotation en deux dimensions

6.1 Moment d’une force (rotation autour d’un axe)

Si on veut mettre un objet en mouvement autour d’un axe fixe A, on doit appliquer une
force ~F en un point P .

Vue en 3D

P

axe A

~F

Vue en 2D dans un plan
perpendiculaire à l’axe A

axe A

~r ~FP

La mise en rotation est donnée par

MA = b ||~F || ,

où
b = ||~r || | sinα|

est le bras de levier.

support de ~F

P ~F

axe A

α

~r
b

Moment de la force ~F par rapport à A :

~MA = ~r × ~F , unité : N m ,

avec ~r =
−→
AP . Le sens de la rotation induite par ~MA est donné par la règle du tire-

bouchon. Dans le cas de la figure ci-dessus, le moment de force est sortant : � ~MA.

Si plusieurs forces ~Fi sont appliquées sur l’objet considéré en des points Pi ,

~MA =
∑
i

~MA,i =
∑
i

~ri × ~Fi , avec ~ri =
−−→
APi .

6.2 Statique

Relativement à un référentiel d’inertie, un objet au repos pour la translation et la rotation
vérifie les relations

~F ext =
∑
i

~F ext
i = ~0 et ~M ext

A =
∑
i

~M ext
A,i = ~0 , ∀A .

La somme des forces extérieures et la somme des moments des forces extérieures par
rapport à n’importe quel point fixe A sont nulles.
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6.3 Théorème du moment cinétique

6.3.1 Cas d’une masse ponctuelle

On considère un point A fixe dans un
référentiel d’inertie et une masse ponc-
tuelle m se déplaçant à une vitesse ~v et
soumise à une force ~F .

A~r

P
m

~F~v

Moment cinétique de m par rapport à A :

~LA = ~r × ~P = ~r ×m~v , unité : kg m2 s−1.

Théorème du moment cinétique :

~MA =
d

dt
~LA ≡ ~̇LA .

6.3.2 Cas d’un système de plusieurs masses

On considère un point A et un système
formé de plusieurs masses mi subissant
chacune une force (résultante) ~Fi .
Pour chaque masse mi ,

~MA,i = ~̇LA,i . A

m1~F1 ~v1

m2

~F2

~v2

m3 ~F3
~v3

Moment cinétique du système par rapport à A :

~LA =
∑
i

~LA,i .

Selon la troisième loi de Newton (action=réaction),

~MA =
∑
i

~MA,i =
∑
i

~M ext
A,i .

Seules les forces externes et leur moment interviennent donc dans la dynamique du
système.

Théorème du moment cinétique :

~M ext
A = ~̇LA .
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6.3.3 Cas d’un solide

Dans un solide, les positions relatives des masses mi ne changent pas au cours du temps.

Imaginons un solide en rotation autour d’un
axe passant par A et choisissons un sens posi-
tif de rotation. Selon la règle du tire-bouchon,
ce sens positif de rotation est décrit par un
vecteur ~ez parallèle à l’axe de rotation et
donc normal au plan (x, y).
La rotation du solide est alors complètement
donnée par le vecteur vitesse angulaire

~ωA = ωA ~ez .

La vitesse scalaire, définie à la section 3.10,
s’écrit ainsi

vi = ri θ̇i = ri ωA .

mi

~ey

~vi

θi

~ex

~ri

A

�~ez
sens positif choisi

Le moment cinétique du solide par rapport à A a pour expression

~LA = LA ~ez ,

avec

LA =
∑
i

LA,i =
∑
i

rimi vi =
∑
i

ωAmi r
2
i =

(∑
i

mi r
2
i

)
ωA = IA ωA ,

où
IA =

∑
i

mi r
2
i , unité : kg m2 ,

est le moment d’inertie du solide par rapport à A.
Vectoriellement, on peut écrire

~LA = IA ~ωA et ~M ext
A = ~̇LA = IA ~̇ωA ,

où ~̇ωA est l’accélération angulaire du solide.

Moment d’inertie pour quelques solides homogènes de masse m :

1) Cerceau (cercle) ou cylindre creux, p.r. à l’axe de symétrie passant par le CM

R

~ri mi

CM

ICM = mR2 .

2) Disque ou cylindre plein, p.r. à l’axe de symétrie passant par le CM

R

~ri
mi

CM

ICM =
1

2
mR2 .
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3) Sphère, p.r. à un axe passant par le CM

CM ICM =
2

3
mR2 .

4) Boule, p.r. à un axe passant par le CM

ICM =
2

5
mR2 .

5) Tige mince, p.r. à un axe normal à la tige et passant par le CM

CM
L

ICM =
1

12
mL2 .

Règle de Steiner :
Connaissant ICM p.r. à un axe passant par le
CM, on a IA p.r. à un axe parallèle passant
par A :

IA = md2 + ICM ,

avec d = ||~rCM|| et ICM =
∑
i

mi ri
′2 .

CM

A

~rCM

~rCM + ~ri
′ = ~ri

~ri
′

mi

6.3.4 Référentiel du CM

Dans le référentiel lié au CM d’un objet
constitué de masses ponctuelles mi, on a

~ri︸︷︷︸
rel. à O

= ~rCM︸︷︷︸
rel. à O

+ ~r
′

i︸︷︷︸
rel. au CM

~vi = ~vCM + ~v
′

i

~ai = ~aCM + ~a
′

i .

CM

O

~rCM~ri

~ri
′

mi

~vCM

~Fi

Le CM est immobile par rapport à lui-même :

~r
′

CM = ~0 , ~v
′

CM = ~0 et ~a
′

CM = ~0 .

La deuxième loi de Newton reste valable si l’on ajoute la “force” d’inertie −mi~aCM :

~Fi −mi~aCM = mi~a
′

i .
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Remarque :

En sommant sur les mi, il vient

~F −m~aCM = ~0 .

Le théorème du moment cinétique ~M ext
A = ~̇LA reste valable relativement au référentiel

du CM :
~M ext

CM = ~̇LCM ,

et ce, même si le CM est accéléré !

6.4 Théorème de l’énergie cinétique et énergie cinétique de
rotation d’un solide

Rappel : pour une masse ponctuelle mi : mi~ai = ~Fi .
On peut s’intéresser à l’énergie du CM, ou à celle de toutes les parties du solide.

6.4.1 Energie cinétique du CM de l’objet

Avec Ecin,CM = 1
2
mv2

CM ,

Ecin,CM(2)− Ecin,CM(1) = W ext
1→2 =

∫ 2

1

~F ext · d~rCM .

La variation de l’énergie cinétique du CM de l’objet est donnée par le travail des forces
extérieures sur le CM.

6.4.2 Energie cinétique de l’objet

Produit scalaire avec ~vi, somme sur i : avec Ecin =
∑

iEcin,i =
∑

i
1
2
miv

2
i ,

Ecin(2)− Ecin(1) = W ext
1→2 +W int

1→2 .

La variation de l’énergie cinétique (totale) de l’objet est donnée par le travail des forces
extérieures et intérieures sur leur point d’application.

6.4.3 Cas d’un solide

L’énergie cinétique d’un solide s’écrit

Ecin = Ecin,CM + Ecin,rot. , CM

O

~rCM

~vCM

~ωCM
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avec les définitions

Energie cinétique de translation :

Ecin,CM =
1

2
mv2

CM

Energie cinétique de rotation par rapport au CM :

Ecin,rot. =
1

2
ICM ω2

CM .

La variation de l’énergie cinétique d’un solide ne dépend que des forces extérieures :

Ecin(2)− Ecin(1) = W ext
1→2 =

∑
i

∫ 2

1

~F ext
i · d~ri .

Par ailleurs, les dérivées par rapport au temps s’écrivent

Ėcin,CM = ~F ext · ~vCM et Ėcin,rot. = ~M ext
CM · ~ωCM .

7 Electrostatique

L’électrostatique est l’étude des phénomènes électriques relatifs à des charges immobiles.

7.1 Force, charge et champ électriques

7.1.1 Electrisation par frottements, attraction, répulsion (expérience)

Il existe deux types de charges : positives et négatives. Deux charges de même signe
se repoussent alors que deux charges de signe contraire s’attirent.
Un objet portant autant de charges positives que de charges négatives est dit neutre.

7.1.2 Charge élémentaire

La charge d’un système est toujours un multiple entier positif ou négatif d’une charge
élémentaire e (quantification de la charge) : e = 1.602 · 10−19 C.
Unité de la charge : Le Coulomb C.
La charge électrique totale d’un système isolé est une grandeur conservée.

7.1.3 Force de Coulomb

Force de Coulomb exercée sur une
charge q par une autre charge Q :

~F =
1

4πε0

q Q

r2
~er .

~er

~F

Q

q

(cas où qQ > 0 : répulsion)

r

La constante ε0 = 8.854 · 10−12 N−1m−2C2 est appelée permittivité du vide.
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7.1.4 Champ électrique ~E

La force exercée sur une charge q par une autre charge Q peut donc s’écrire :

~F = q ~E ,

avec
~E =

1

4πε0

Q

r2
~er , unité :

N

C
=

V

m
,

où ~E est le champ électrique produit par la charge Q à l’endroit où se trouve q. Le
volt V est une unité introduite à la section 7.2.

Principe de superposition :
Le champ ~E dû à N charges Q1, Q2, . . . , QN est

~E(~r) = ~E1(~r) + ~E2(~r) + · · ·+ ~EN(~r) .

Q1 > 0

Q2 > 0

~E2(~r)

~E1(~r)

~E(~r) = ~E1(~r) + ~E2(~r)

O

~r

La force électrique excercée sur une charge q située dans le champ électrique est ainsi
donnée par

~F = q ~E .

Lignes de champ :
Un vecteur ~E = ~E(~r) est associé à chaque position ~r et on peut représenter graphi-
quement ce champ vectoriel en traçant un ensemble de vecteurs dont les modules et
les directions correspondent aux valeurs de ~E aux points d’origine des vecteurs dessinés.
Une autre représentation possible d’un champ de vecteurs consiste à tracer des lignes qui
sont tangentes à la direction de ~E en tout point. On parle alors de lignes de champ.
Ces dernières ne peuvent pas se croiser et vont toujours des charges positives aux charges
négatives.
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7.2 Tension et potentiel électrique

Considérons une région où règne un champ électrique ~E(~r) et un chemin Γ d’un point
A vers un point B .

A

B

Γ
~E

d~r

Une charge q suivant Γ subirait la force
électrique ~F = q ~E .

La force électrique est conservative : son travail s’exprime aussi comme une différence
d’énergie potentielle. De plus, la charge q peut être mise en évidence :

WA→B(~F ) =

∫ B

A

~F · d~r = q

∫ B

A

~E · d~r = Epot(A)− Epot(B)

= q UAB = qΦA − qΦB .

Potentiel électrique :
Φ(~r) , unité : V (“volt”).

Le potentiel électrique à la position ~r dans le champ électrique est l’énergie poten-
tielle électrique par unité de charge (“hauteur dans le champ électrique”).

C’est un nombre défini, à une constante arbitraire près, en tout point de l’espace
(champ scalaire).

Tension électrique entre A et B :

UAB =

∫ B

A

~E · d~r = ΦA − ΦB .

La tension électrique est le travail de la force électrique par unité de charge ou
encore la différence de potentiel (“différence de hauteur dans le champ électrique”).

Surface équipotentielle :

L’ensemble des points de l’espace au même potentiel est une surface appelée équipo-
tentielle.

Propriétés :

1) UAB est un nombre réel (positif, négatif ou nul).

2) UAB est indépendante du chemin de A à B : ~E est conservatif.

3) UAB ne dépend que de A et de B .

4) UBA = −UAB (chemin inverse).

5) UAA = 0 V (chemin fermé).

6) UAC = UAB + UBC .

7) En électrostatique, le champ ~E est normal aux équipotentielles.

8) Le potentiel diminue lorsqu’on parcourt une ligne de champ dans le sens de ~E.
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Une charge q suivant un chemin de A vers B dans un champ électrique reçoit de l’énergie
sous forme de travail de la force électrique

WAB = q UAB .

L’électron-volt est une unité d’énergie définie par l’énergie électrique reçue par une charge
élémentaire sous une tension de 1 V :

1 eV = 1.602 · 10−19 J .

Cas particuliers :

a) Charge ponctuelle Q

Q > 0

~E

~er Φ

~E(~r) =
1

4πε0

Q

r2
~er

Φ(~r) =
1

4πε0

Q

r
+ cte

Alors

UAB =
Q

4πε0

(
1

rA
− 1

rB

)
.

Les équipotentielles sont des sphères centrées sur Q .

b) Plaque infinie

+

+

+

+

+

+

+

+

+

+

+

+

+

~E

~ex

Φ ~E(~r) = ~E0 = E0~ex

Φ(~r) = −E0x+ cte

Alors

UAB = ~E0 ·
−→
AB = E0(xB − xA) .

Les équipotentielles sont des plans parallèles à la plaque.

Exemple : un condensateur plan est un ensemble formé de deux plaques conductrices
isolées, se faisant face. Si l’une des armatures est chargée, l’autre possède une
charge de signe contraire.

Q > 0 −Q < 0

fil de connexion

armatures

+
+
+
+
+
+
+
+
+
+
+
+

−
−
−
−
−
−
−
−
−
−
−
−

~E

A B

Q > 0 −Q < 0

U = UAB > 0
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Dans un condensateur, i) on crée un champ ~E, ii) on stocke des charges.

Par convention,
• La charge d’un condensateur est celle de l’armature positive.
• La tension d’un condensateur U est celle du + au −, donc positive.

La tension et la charge sont liées par la relation

Q = CU ,

où C est la capacité du condensateur dont l’unité est CV−1 = F (“farad”). C’est
une caractéristique du condensateur : à tension donnée, plus C est grande, plus la
charge du condensateur est grande. C dépend de la géométrie (distance entre les
armatures, surface, etc.).

Pour le condensateur plan :

C = ε0
S

d
,

où S est la surface d’une des plaques et d la distance entre les plaques (supposées
identiques).

L’énergie stockée dans un condensateur correspond au travail à fournir pour char-
ger ce dernier avec un certain nombre de charges élémentaires :

W =
1

2
CU2 .

8 Circuits à courant continu

8.1 Origine du courant dans un conducteur

8.1.1 Champ électrique dans un conducteur

Un corps est dit conducteur si les charges peuvent facilement y circuler. Dans le cas
contraire, il est dit isolant. Dans un conducteur, il existe des particules chargées sus-
ceptibles de se déplacer.
En électrostatique, le champ électrique est nul à l’intérieur des conducteurs. Deux points
quelconques d’un même conducteur peuvent toujours être joints par un chemin sur lequel
le champ est partout nul. Par conséquent,

• La tension entre deux points d’un conducteur est toujours nulle.

• Tous les points d’un conducteur sont au même potentiel.

• Les lignes de champ sont perpendiculaires à la surface des conducteurs (celle-ci
étant une équipotentielle).

Lorsqu’une tension UAB est établie aux bornes d’un conducteur, il règne un champ ~E
à l’intérieur de ce dernier. Les porteurs de charges (électrons) subissent alors une force

électrique ~F élec. et se déplacent collectivement à une vitesse ~v, créant un courant :

B
e−

~E

A

~F élec.

~v
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Remarques :

• les lignes de champ suivent le conducteur ;
• le conducteur reste neutre ;
• les électrons subissent également un frottement (résistance).

8.2 Courant électrique

Le courant électrique I est la quantité de charges traversant la section d’un conducteur
par unité de temps :

I =
dq

dt
, unité : Cs−1 = A (“ampère”).

Convention : le sens du courant est celui des charges positives.

Exemple : Courant traversant un fil de section S

e−
S

~v

∆x = v∆t

∆Q = enS∆x = enSv∆t ⇒ I =
∆Q

∆t
= enSv ,

où v est la vitesse des électrons et n la den-
sité électronique (nombre d’électrons de conduc-
tion par unité de volume).

8.3 Règles de Kirchhoff

1) Sur un chemin fermé, la somme des tensions est nulle.

Exemple de circuit :

B

FCD

A E Dans toute maille (chemin fermé), la somme des
tensions est nulle :

1) UAB + UBC + UCD + UDA = 0 V.

2) UBE + UEF + UFC + UCB = 0 V.

3) UAE + UEC + UCA = 0 V.

2) La charge est conservée.

Cas d’un noeud dans un circuit :

I3

I1

I5
I4

I2 I1 + I3 = I2 + I4 + I5 .

La somme des courants entrant est égale à la
somme des courants sortant.
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Remarque :

Si on ne connâıt pas le sens d’un courant, on choisit un sens positif et I peut alors
être positif ou négatif.

I2

I3

I1

I1 + I2 + I3 = 0 .

8.4 Puissance électrique

La puissance électrique est une variation d’énergie par unité de temps :

P =
dE

dt
, unité : J s−1 = W (“Watt”).

La puissance électrique fournie à un dispositif de bornes A et B (ex. : circuit électrique,
ampoule, moteur) est l’énergie par unité de temps permettant d’avoir un courant électri-
que I entre A et B.

BA

I
Dispositif P = UAB I .

8.5 Résistance d’un conducteur

Dans un conducteur, un électron accéléré par une force ~F élec. = q ~E est freiné à cause
des chocs avec les atomes et les autres électrons.

e−
~v

chocs

L’électron avance avec une vitesse moyenne
d’environ 0.5 mm s−1.

8.5.1 Loi d’Ohm

L’expérience montre que dans la plupart des conducteurs le courant est proportionnel à
la tension

U = RI , (loi d’Ohm)

où U est la tension aux bornes du conducteur, I est le courant traversant ce dernier, et
R est la résistance du conducteur (unité : VA−1 = Ω, “ohm”)

Remarque : Plus la résistance est faible, plus les électrons se déplacent facilement et
plus le courant est élevé.
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8.5.2 Modèle de la résistance d’un conducteur

On suppose une force de frottement proportionnelle à la vitesse des électrons :

e−

~v~ffrott. = −λ~v

~F élec. = q ~E

En admettant une vitesse des électrons constante (et donc une accélération nulle),

−λ~v − e ~E ∼= ~0 ,

il vient, en norme,

v = uE , où u =
e

λ
est la mobilité.

Dans un fil conducteur, on peut donc écrire I = enSv = enSuE . D’autre part, pour
une longueur L et un champ électrique || ~E|| = E = cste, on a U = EL, de sorte que

U =
L

enSu
I ,

d’où

R =
1

enu︸︷︷︸
ρ

L

S
= ρ

L

S
.

Résistivité :

ρ =
1

enu
, unité : Ω m.

Remarques :

• Plus le conducteur est long, plus sa résistance est grande.
• Plus le conducteur est épais, plus sa résistance est faible.

8.5.3 Effet Joule

En raison de la résistance, la puissance électrique fournie au conducteur est dissipée en
chaleur :

A B

I
R PJoule = RI2.

8.5.4 Groupement de résistances

On cherche à regrouper plusieurs résistances pour obtenir une résistance équivalente.

1) Branchement en série de trois résistances :

I

BA A BRéquivalenteR1 R2 R3

C D I I
∼

Réquivalente = R1 +R2 +R3 .

Le branchement en série augmente donc la résistance.
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2) Branchement en parallèle de trois résistances :

R1

R2

R3

II

I1

I3

I2

BA A BRéquivalente

∼

1

Réquivalente

=
1

R1

+
1

R2

+
1

R3

.

Le branchement en parallèle diminue donc la résistance.

8.6 Ampèremètre et voltmètre

L’ampèremètre mesure des courants alors que le voltmètre mesure des tensions.

Pour mesurer le courant traversant un
élément d’un circuit, on doit insérer
l’ampèremètre en série avec cet élément. La
résistance de l’ampèremètre doit être la plus
petite possible.

A

Pour mesurer la tension aux bornes d’un
élément d’un circuit, on doit insérer le
voltmètre en parallèle avec cet élément. La
résistance du voltmètre doit être la plus
grande possible.

V

9 Magnétostatique

9.1 Force de Lorentz et champ magnétique

La force que subit une particule chargée en mouvement au voisinage d’un aimant ou
d’un fil parcouru par un courant est appelée force de Lorentz :

~F = q ~v × ~B ,

où q est la charge de la particule, ~v sa vitesse et ~B un vecteur dépendant de l’aimant
ou du courant dans le fil, ainsi que de l’endroit ~r où se trouve la charge q (voir exemple
ci-dessous).

Remarque : La force de Lorentz ne travaille pas.

Le champ vectoriel ~B = ~B(~r) est le champ magnétique à l’endroit ~r.

Unité :
Vs

m2
= T (“tesla”).
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Exemple : Cas d’un fil rectiligne infini parcouru par un courant I

�
~B ~B

⊗

2D 3D

plan ⊥ au fil

~B

I
I

Par symétrie,

• ~B est perpendiculaire au fil ;

• les lignes de champ sont des cercles perpendiculaires au fil et centrés sur le fil ;

• || ~B|| ne dépend que de la distance entre le fil et l’endroit où l’on mesure ~B.

Le sens de ~B est donné par la règle du tire-bouchon : en tournant dans le sens indiqué
par ~B, on avance selon I. L’intensité || ~B|| de ~B a quant à elle pour expression

B(d) =
µ0I

2πd
,

où µ0 = 4π · 10−7 V s A−1m−1 est une constante appelée perméabilité magnétique
du vide et d représente la distance entre le fil et l’endroit où l’on mesure ~B.

Pour une charge q à vitesse ~v :

�
~B ~B

⊗

I

~v

q < 0
~v × ~B

~F

9.1.1 Mouvement d’une particule chargée dans un champ magnétique

a) Cas d’un champ magnétique uniforme ( ~B =
−−→
cste)

i) Si ~v ⊥ ~B : mouvement circulaire uniforme de rayon R =
mv

|q|B
.

ii) Si ~v est quelconque : trajectoire hélicöıdale, ayant comme axe une ligne du

champ magnétique ~B.

b) Cas d’un champ magnétique produit par un fil rectiligne infini

Si la vitesse de la particule est parallèle au plan formé par la particule et le fil
rectiligne, cette dernière reste toujours dans le même plan et sa trajectoire a un
rayon de courbure grand loin du fil et petit proche du fil.
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9.1.2 Effet Hall

Un courant dans une feuille métallique plongée dans un champ magnétique ~B induit une
tension transversale.

I I

A

B

+ + + + +

− − − − −

~E

~Félec.

~FLorentz

~v
e−

⊗
~B Sous l’effet de ~FLorentz, les charges se

séparent jusqu’à ce que ~Félec. (due au
champ électrique crée par les charges
déplacées) compense exactement la
force magnétique :

q ( ~E + ~v × ~B) = ~0 ⇒ ~E = −~v × ~B .

Il apparâıt donc une tension transver-
sale UAB.

9.2 Force de Laplace

Considérons un fil de longueur L = ||~L||, parcouru par un courant I et plongé dans un

champ ~B.

⊗
~B

e−
~v

~FLorentz

I

~L

Les électrons de conduction subissent ~FLorentz et
appuient sur le fil. Ainsi, un fil parcouru par un
courant dans un champ magnétique subit la force
de Laplace

~F = I~L× ~B ,

où ~L est le vecteur donnant la longueur du fil et le
sens du courant.

9.2.1 Deux fils parallèles parcourus par des courants

Le courant I2 se trouve dans le champ ~B1 produit par le courant I1.

a) Courants de même sens

⊗
~B1

~F

I1 I2

Les fils se rapprochent.

b) Courants de sens opposé

⊗
~B1

I1 I2

~F

Les fils s’éloignent.
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9.2.2 Galvanomètre, moteur électrique

Le galvanomètre est un cadre rectangulaire de côtés a et b, mobile autour d’un axe et
plongé dans un champ magnétique ~B. Lorsque le cadre est parcouru par un courant I,
ce dernier subit un couple de forces de Laplace.

~B

I

b

axe de rotation

a
~a

Vue de dessus

−~F

~F = I~a× ~B

b/2

θaxe

�

⊗

~B

b/2

Lorsque le couple est compensé par un couple de rappel de constante C, la mesure de
l’angle d’équilibre θ permet de déduire le courant traversant le cadre :

I =
Cθ

abB cos θ
.

Le moteur électrique à courant continu est basé sur le même principe que le gal-
vanomètre si ce n’est que le couple de rappel n’existe pas et que le sens du courant est
inversé périodiquement de manière à ce que le couple soit toujours dans le même sens.

9.3 Moment dipolaire magnétique, aimants

On définit le moment dipolaire
magnétique d’un cadre par

~m = I ~S ,

où ~S est le vecteur normal
au cadre, de norme ab (sur-
face définie par le cadre) et de
sens donné par la règle du tire-
bouchon selon le sens du courant. ~B

I

b

axe de rotation

a

Rotation induite par ~ML = ~m× ~B

~S
α

~ML
~B

~S

�

cadre

I
I

~B
~S

~ML ⊗
~S

~ML = ~0 ~B

Le moment dipolaire ~m tend à s’aligner sur le champ ~B.
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Exemple : un aimant peut être vu comme formé de petits courants permanents : il
crée un champ ~B.

~B

N S

Un second aimant peut être vu comme un dipôle magnétique (moment dipolaire)

~m s’alignant sur le champ ~B produit par le premier aimant :

~B

N S

S
~m

N

Un aimant possède toujours deux pôles. Deux pôles similaires se repoussent et
deux pôles différents s’attirent.

9.4 Induction magnétique

Rappel : on peut créer un champ ~B avec un courant I .
Peut-on créer un courant avec un champ magnétique ? Oui,
• soit en déplaçant le fil conducteur dans le champ ~B
• soit en faisant varier ~B dans le temps.
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1) Force de Lorentz

Dans un champ magnétique ~B constant , considérons un cadre en @ fermé par une
tige mobile déplacée à vitesse ~v0 :

Iind.

~v0e−

~F

� ~B

� ~B
Les électrons de la tige subissent
la force de Lorentz

~F = (−e)~v0 × ~B

et induisent un courant Iind , ceci
sans champ électrique.

Remarque : le courant induit crée un champ induit ~Bind . A l’intérieur du cadre, ce
champ est de sens contraire au champ ~B : il y a une opposition à la variation
du flux du champ magnétique à travers le cadre (loi de Lenz).

2) Loi de Faraday : En chaque point de l’espace (même dans le vide), un champ

magnétique ~B(t) variable dans le temps induit un champ électrique tourbillon-

nant ~Eind(t).

Exemple :

On considère dans l’espace une
région en forme de cylindre infini
d’axe ~ez . A l’intérieur du cylindre
règne un champ magnétique uni-
forme mais dépendant du temps
~B = B(t)~ez , alors qu’à l’extérieur
il est nul.
Si ~B augmente selon ~ez (Ḃ(t) > 0),
il apparâıt avec cette variation un
champ électrique induit ~Eind. .

Ḃ(t) > 0

~B = ~0�~ez

~Eind.

En considérant un chemin fermé Γ dans le champ magnétique variable ~B(t) , on

obtient une circulation du champ électrique induit ~Eind non nulle (contrairement
à la tension en électrostatique). Cette circulation est appelée � force � (par unité
de charge) électro-motrice Eém .

Ḃ(t) > 0

~B = ~0�~ez

~Eind.

Γ

sens positif Selon la loi de Faraday, elle est donnée par

Eém =

∮
Γ

~Eind · d~r = − ~̇B · ~S ,

le sens du vecteur de surface ~S (c’est-à-dire
~ez) étant donné par le sens de parcours de Γ
(règle du tire-bouchon).
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