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Physique – Mise à niveau

8. Circuits à courant continu

• 8.4 Résistance d’un conducteur

• 8.5 Ampèremètre et voltmètre

9. Magnétostatique

• 9.1 Champ magnétique et force de Lorentz

• 9.2 Force de Laplace
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• Dans un conducteur, un électron accéléré par une force électrique F = eE est aussi
freiné par les chocs avec les atomes. Cela est modélisé par une force de frottement
proportionnelle à la vitesse F = -v où  > 0.
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• Dans un conducteur, un électron accéléré par une force électrique F = eE est aussi
freiné par les chocs avec les atomes. Cela est modélisé par une force de frottement
proportionnelle à la vitesse F = -v où  > 0.

• Les électrons atteignent rapidement une vitesse
limite constante donnée par la 2ème loi de Newton :

0 0où  

e m
e

e





   

   

extF E v a 0

  (8.9)
e


v E

Les électrons se déplacent dans le sens opposé à E.
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• Dans un conducteur, un électron accéléré par une force électrique F = eE est aussi
freiné par les chocs avec les atomes. Cela est modélisé par une force de frottement
proportionnelle à la vitesse F = -v où  > 0.

• Les électrons atteignent rapidement une vitesse
limite constante donnée par la 2ème loi de Newton :
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   

   

extF E v a 0

  (8.9)
e


v E

Les électrons se déplacent dans le sens opposé à E.

• On définit la mobilité  des électrons de la manière suivante :

  où    (8.10)
e 


 v E
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• Dans un fil de section S et de longueur L, le courant électrique I uniforme dû au
déplacement des électrons de conduction s’écrit :

(8.3) (8.10)

I enSv enS E   1
  (8.11)

I
E

ne S


Georg Ohm
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• Dans un fil de section S et de longueur L, le courant électrique I uniforme dû au
déplacement des électrons de conduction s’écrit :

(8.3) (8.10)

I enSv enS E   1
  (8.11)

I
E

ne S


• Comme le champ électrique est uniforme, la tension U entre les extrémités du fil
s’écrit :

 
0 0

  (8.12)
L L

U E r dr E dr EL   

Georg Ohm
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• Dans un fil de section S et de longueur L, le courant électrique I uniforme dû au
déplacement des électrons de conduction s’écrit :

(8.3) (8.10)

I enSv enS E   1
  (8.11)

I
E

ne S


• Comme le champ électrique est uniforme, la tension U entre les extrémités du fil
s’écrit :

 
0 0

  (8.12)
L L

U E r dr E dr EL   
• La tension U est donc liée au courant I par la loi d’Ohm :

1
  où    (8.13)

L
U RI R

ne S
 

Georg Ohm
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• Dans un fil de section S et de longueur L, le courant électrique I uniforme dû au
déplacement des électrons de conduction s’écrit :

(8.3) (8.10)

I enSv enS E   1
  (8.11)

I
E

ne S


• Comme le champ électrique est uniforme, la tension U entre les extrémités du fil
s’écrit :

 
0 0

  (8.12)
L L

U E r dr E dr EL   
• La tension U est donc liée au courant I par la loi d’Ohm :

1
  où    (8.13)

L
U RI R

ne S
 

• La résistance R est proportionnelle à la longueur L du fil et inversement 
proportionnelle à sa section S.

Georg Ohm
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Expérience : Loi d’Ohm sur un fil

1. On mesure le courant I qui parcourt un fil à l’aide d’un ampèremètre.

2. On mesure la tension U aux bornes du même fil à l’aide d’un voltmètre.

3. On en déduit la résistance R = U/I grâce à la loi d’Ohm.



8.4 Résistance d’un conducteur

15Physique – Mise à niveau



8.4 Résistance d’un conducteur

16Physique – Mise à niveau

• Unité (SI) de la résistance : l’Ohm [] = [V.A-1] = [kg.m2.s-3.A-2]
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• Unité (SI) de la résistance : l’Ohm [] = [V.A-1] = [kg.m2.s-3.A-2]

• La résistance d’un matériau est caractérisée par sa résistivité  :
1

  où    (8.14)
L

R
S ne

 


 
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• Unité (SI) de la résistance : l’Ohm [] = [V.A-1] = [kg.m2.s-3.A-2]

• La résistance d’un matériau est caractérisée par sa résistivité  :
1

  où    (8.14)
L

R
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• La mobilité  et la densité électronique n sont des grandeurs spécifiques au matériau
qui sont indépendantes de sa géométrie.

• Unité physique (SI) de la résistivité : [ .m] = [kg.m3.s-3.A-2]
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• Unité (SI) de la résistance : l’Ohm [] = [V.A-1] = [kg.m2.s-3.A-2]
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• Unité (SI) de la résistance : l’Ohm [] = [V.A-1] = [kg.m2.s-3.A-2]

• La résistance d’un matériau est caractérisée par sa résistivité  :
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• La mobilité  et la densité électronique n sont des grandeurs spécifiques au matériau
qui sont indépendantes de sa géométrie.

• Unité physique (SI) de la résistivité : [ .m] = [kg.m3.s-3.A-2]

Exemples : 1. cuivre,  = 2  10-8 .m;  2. eau pure,  = 2  105 .m

• La conductivité est l’inverse de la résistivité : 1
  (8.15)




• Un conducteur a une faible résistivité et donc une grande conductivité alors qu’un
isolant a une faible conductivité et donc une grande résistivité.
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Expérience : Mesure de la résistivité de différents matériaux

Al = 28  10-9 .m
Cu = 17  10-9 .m
acier = 75  10-8 .m
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Expérience : Mesure de la résistivité de différents matériaux

1. On mesure le courant I et la tension U aux bornes d’un fil d’aluminium,
d’acier inox et de cuivre.

2. Le rapport entre la tension U et le courant I donne la résistance R du fil.

3. En divisant la résistance par la longueur l du fil et en le multipliant par la
section S, on trouve la résistivité  du fil.

Al = 28  10-9 .m
Cu = 17  10-9 .m
acier = 75  10-8 .m
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• Lorsqu’un courant circule dans un fil ou un dispositif de résistance R, la puissance 
électrique est convertie en puissance thermique.

(chauffage électrique)

James Joule
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• Lorsqu’un courant circule dans un fil ou un dispositif de résistance R, la puissance 
électrique est convertie en puissance thermique.

• Soit U la tension aux bornes de la résistance, 
la puissance électrique s’écrit :

(chauffage électrique)
2

2
(8.13)

  (8.16)
U

P UI RI
R

  

James Joule
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• Lorsqu’un courant circule dans un fil ou un dispositif de résistance R, la puissance 
électrique est convertie en puissance thermique.

• Soit U la tension aux bornes de la résistance, 
la puissance électrique s’écrit :

(chauffage électrique)
2

2
(8.13)

  (8.16)
U

P UI RI
R

  

• Si la puissance électrique P est constante durant un intervalle de temps t, le travail 
fournit au dispositif s’écrit :

2
2   (8.17)

U
W P t t RI t

R
     

James Joule
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• Lorsqu’un courant circule dans un fil ou un dispositif de résistance R, la puissance 
électrique est convertie en puissance thermique.

• Soit U la tension aux bornes de la résistance, 
la puissance électrique s’écrit :

(chauffage électrique)
2

2
(8.13)

  (8.16)
U

P UI RI
R

  

• Si la puissance électrique P est constante durant un intervalle de temps t, le travail 
fournit au dispositif s’écrit :

2
2   (8.17)

U
W P t t RI t

R
     

• Ce travail est converti en chaleur dans la résistance, c’est l’effet Joule.

James Joule
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1. Branchement de résistances en série :
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1. Branchement de résistances en série :

• Tension : U = RI; U1 = R1I; U2 = R2I; U3 = R3I 
U = U1 + U2 + U3 = (R1 + R2 + R3)I = RI 
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1. Branchement de résistances en série :

• Tension : U = RI; U1 = R1I; U2 = R2I; U3 = R3I 
U = U1 + U2 + U3 = (R1 + R2 + R3)I = RI 

• Résistance : 1 2 3   (8.18)R R R R  
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1. Branchement de résistances en série :

• Tension : U = RI; U1 = R1I; U2 = R2I; U3 = R3I 
U = U1 + U2 + U3 = (R1 + R2 + R3)I = RI 

• Résistance : 1 2 3   (8.18)R R R R  

• En série, les résistances s’additionnent.
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2. Branchement de résistances en parallèle :
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2. Branchement de résistances en parallèle :

• Courants : 1 2 3
1 2 3

1 2 3
1 2 3

1 1 1

; ; ;U U U U
I I I I

R R R R

U
I I I I U

R R R R

   

 
       

 
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2. Branchement de résistances en parallèle :

• Résistance :
1 2 3

1 1 1 1
  (8.19)

R R R R
  

• Courants : 1 2 3
1 2 3

1 2 3
1 2 3

1 1 1

; ; ;U U U U
I I I I

R R R R

U
I I I I U

R R R R

   

 
       

 
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2. Branchement de résistances en parallèle :

• En parallèle, les inverses des résistances s’additionnent.

• Résistance :
1 2 3

1 1 1 1
  (8.19)

R R R R
  

• Courants : 1 2 3
1 2 3

1 2 3
1 2 3

1 1 1

; ; ;U U U U
I I I I

R R R R

U
I I I I U

R R R R

   

 
       

 
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1. Ampèremètre :
Pour mesurer le courant traversant un élément de circuit,
l’ampèremètre doit être branché en série avec cet élément. Sa
résistance doit être la plus petite possible.
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1. Ampèremètre :
Pour mesurer le courant traversant un élément de circuit,
l’ampèremètre doit être branché en série avec cet élément. Sa
résistance doit être la plus petite possible.

2. Voltmètre :
Pour mesurer la tension aux bornes d’un élément de circuit, le
voltmètre doit être branché en parallèle avec cet élément. Sa
résistance doit être la plus grande possible.
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Expérience : Ampèremètre thermique
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Expérience : Ampèremètre thermique

• On observe l’aiguille du dispositif monter ou descendre en fonction du courant
qui circule dans le circuit, mesuré par un multimètre.

• Le courant qui circule dans le fil va dilater ce dernier par effet Joule. En
fonction de la longueur du fil, l’aiguille indique une valeur particulière sur la
graduation.



47Physique – Mise à niveau
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• Champ magnétique B : Grandeur vectorielle intensive définie en tout point
de l’espace.
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Hendrik Lorentz

Nikola Tesla

• Champ magnétique B : Grandeur vectorielle intensive définie en tout point
de l’espace.

• Force de Lorentz F : En présence d’un champ magnétique B généré par un
aimant ou un fil parcouru par un courant, une particule de charge
électrique q en mouvement à la vitesse v subit une force de Lorentz
(magnétique) F :   (9.1)q F v B
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Hendrik Lorentz

Nikola Tesla

• Champ magnétique B : Grandeur vectorielle intensive définie en tout point
de l’espace.

• Force de Lorentz F : En présence d’un champ magnétique B généré par un
aimant ou un fil parcouru par un courant, une particule de charge
électrique q en mouvement à la vitesse v subit une force de Lorentz
(magnétique) F :   (9.1)q F v B

• La force de Lorentz (magnétique) ne travaille pas, car elle est
perpendiculaire au mouvement.
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Hendrik Lorentz

Nikola Tesla

• Champ magnétique B : Grandeur vectorielle intensive définie en tout point
de l’espace.

• Force de Lorentz F : En présence d’un champ magnétique B généré par un
aimant ou un fil parcouru par un courant, une particule de charge
électrique q en mouvement à la vitesse v subit une force de Lorentz
(magnétique) F :   (9.1)q F v B

• La force de Lorentz (magnétique) ne travaille pas, car elle est
perpendiculaire au mouvement.

• Unité physique (SI) du champ magnétique : le Tesla [T] = [N.s.C-1.m-1] 
= [kg.A-1.s-2]
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• Lorsqu’un fil est parcouru par un courant électrique I, les lignes de champ magnétique
B sont des cercles concentriques centrés sur le fil dans un plan perpendiculaire au fil.
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• Lorsqu’un fil est parcouru par un courant électrique I, les lignes de champ magnétique
B sont des cercles concentriques centrés sur le fil dans un plan perpendiculaire au fil.

• Les lignes de champ magnétique B sont fermées.
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• Lorsqu’un fil est parcouru par un courant électrique I, les lignes de champ magnétique
B sont des cercles concentriques centrés sur le fil dans un plan perpendiculaire au fil.

• Les lignes de champ magnétique B sont fermées.

• Leur orientation par rapport à la direction de propagation du courant électrique I est
donnée par la règle du tire-bouchon (ou de la main droite), c’est la Loi d’Ampère.
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• La loi du mouvement s’écrit :

  (9.2)q m  F v B a
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• La loi du mouvement s’écrit :

  (9.2)q m  F v B a

• Le mouvement de la particule a les propriétés suivantes :

 

2

0

1 0
2

cste

q
m

d
v v

dt

      

      

a v v B v a v

a v v v
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• La loi du mouvement s’écrit :

  (9.2)q m  F v B a

• Le mouvement de la particule a les propriétés suivantes :

 

2

0

1 0
2

cste

q
m

d
v v

dt

      

      

a v v B v a v

a v v v

• L’accélération de la particule est une accélération centripète et la norme v de la
vitesse est une constante.
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• La loi du mouvement s’écrit :

  (9.2)q m  F v B a

• Le mouvement de la particule a les propriétés suivantes :

 

2

0

1 0
2

cste

q
m

d
v v

dt

      

      

a v v B v a v

a v v v

• L’accélération de la particule est une accélération centripète et la norme v de la
vitesse est une constante.

• Deux cas :
1. Le mouvement est orthogonal au champ magnétique : v  B

2. Le mouvement est quelconque.
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1. Mouvement circulaire uniforme (MCU) :

q
m

    a B v ω v donc
2 2

2
2  et    (9.3)
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1. Mouvement circulaire uniforme (MCU) :

q
m

    a B v ω v donc
2 2

2
2  et    (9.3)

q q B
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  
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2 2 2 2
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2 2   où  n n
q B q B

R R
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



      

  

a r r e r e

cste (rayon de courbure)  (9.4)
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R
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2. Mouvement hélicoïdal : v = v// + v
      (MRU)
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1. Mouvement circulaire uniforme (MCU) :

q
m

    a B v ω v donc
2 2

2
2  et    (9.3)

q q B
m m

  
B

ω

2 2 2 2
2

2 2   où  n n
q B q B

R R
m m

q B
v R R

m





      

  

a r r e r e

cste (rayon de courbure)  (9.4)
mv

R
q B

 

2. Mouvement hélicoïdal : v = v// + v

• La combinaison entre un MRU selon B et un MCU dans un
plan perpendiculaire à B est un mouvement hélicoïdal
(hélice).

      (MRU)
q q q q
m m m m 
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 
 0

a v B v B v B v B v cste 

cste  (rayon de courbure) (MCU)  (9.5)
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Expérience :
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Expérience : Faisceau d’électrons dans un champ magnétique
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Expérience : Faisceau d’électrons dans un champ magnétique

Si le faisceau est perpendiculaire au champ magnétique, on observe une trajectoire
circulaire. Si le faisceau est parallèle au champ, on observe une trajectoire
rectiligne. Dans le cas général, la trajectoire est hélicoïdale.
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• Le cyclotron est un accélérateur de particules chargées, formé de deux demi-cylindres
creux (« D » ou dee) plongés dans un champ magnétique B uniforme.

Cyclotron
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• Le cyclotron est un accélérateur de particules chargées, formé de deux demi-cylindres
creux (« D » ou dee) plongés dans un champ magnétique B uniforme.

• Dans chaque dee, les particules ont un MCU de rayon 
de courbure :

et une demi-période :

  (9.4)
mv

R
q B
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2
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Cyclotron
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• Le cyclotron est un accélérateur de particules chargées, formé de deux demi-cylindres
creux (« D » ou dee) plongés dans un champ magnétique B uniforme.

• Dans chaque dee, les particules ont un MCU de rayon 
de courbure :

et une demi-période :

  (9.4)
mv

R
q B



2
T m

q B
 


  
1

2
  (9.6)

q B
T m




 

• L’accélération est due à un champ électrique E uniforme 
entre les dees.

  (9.7)
q

ma qE a E
m

  
Cyclotron
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• Le cyclotron est un accélérateur de particules chargées, formé de deux demi-cylindres
creux (« D » ou dee) plongés dans un champ magnétique B uniforme.

• Dans chaque dee, les particules ont un MCU de rayon 
de courbure :

et une demi-période :

  (9.4)
mv

R
q B



2
T m

q B
 


  
1

2
  (9.6)

q B
T m




 

• L’accélération est due à un champ électrique E uniforme 
entre les dees.

• À chaque demi-tour, la vitesse augmente et donc également le rayon de courbure R.

  (9.7)
q

ma qE a E
m

  
Cyclotron
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• En présence d’un champ électrique E et d’un champ magnétique B, la force de 
Lorentz F exercée sur une charge en mouvement se généralise à :

Edwin Hall

    (9.8)q  F E v B
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• En présence d’un champ électrique E et d’un champ magnétique B, la force de 
Lorentz F exercée sur une charge en mouvement se généralise à :

Edwin Hall

    (9.8)q  F E v B

• Effet Hall : Un courant dans une feuille métallique plongée dans un champ 
magnétique B induit une tension transversale U12.
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• En présence d’un champ électrique E et d’un champ magnétique B, la force de 
Lorentz F exercée sur une charge en mouvement se généralise à :

Edwin Hall

    (9.8)q  F E v B

• Effet Hall : Un courant dans une feuille métallique plongée dans un champ 
magnétique B induit une tension transversale U12.

• Sous l’effet de la force de Lorentz F, les charges se
séparent jusqu’à ce que la force électrique F = qE
compense la force magnétique F = qv  B.

F = q(E + v  B) = 0  E = -v  B
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• En présence d’un champ électrique E et d’un champ magnétique B, la force de 
Lorentz F exercée sur une charge en mouvement se généralise à :

Edwin Hall

    (9.8)q  F E v B

• Effet Hall : Un courant dans une feuille métallique plongée dans un champ 
magnétique B induit une tension transversale U12.

• Sous l’effet de la force de Lorentz F, les charges se
séparent jusqu’à ce que la force électrique F = qE
compense la force magnétique F = qv  B.

F = q(E + v  B) = 0  E = -v  B

• Il apparaît une tension transversale U12.
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Pierre-Simon de 
Laplace

• On considère un fil de longueur L parcouru par un courant I et plongé dans 
un champ magnétique B.
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Pierre-Simon de 
Laplace

• On considère un fil de longueur L parcouru par un courant I et plongé dans 
un champ magnétique B.

• Les porteurs de charge électrique q subissent une force de Lorentz
(magnétique) F = qv  B qui s’exerce sur le fil. Ainsi, le fil subit une force de
Laplace :

  (9.9)L F I B
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• La force extérieure résultante exercée sur un fil de longueur L est la résultante des
forces de Lorentz magnétiques exercées sur tous les électrons de conduction : F =
N(ev  B) où N = nb d’électrons de conduction.
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• La force extérieure résultante exercée sur un fil de longueur L est la résultante des
forces de Lorentz magnétiques exercées sur tous les électrons de conduction : F =
N(ev  B) où N = nb d’électrons de conduction.

• Compte tenu que le courant I = enSv où n est la densité des électrons de conduction
dans le fil et de N = nSL, F = nSLev  B = L(enSv)  B = LI  B
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• La force extérieure résultante exercée sur un fil de longueur L est la résultante des
forces de Lorentz magnétiques exercées sur tous les électrons de conduction : F =
N(ev  B) où N = nb d’électrons de conduction.

• Compte tenu que le courant I = enSv où n est la densité des électrons de conduction
dans le fil et de N = nSL, F = nSLev  B = L(enSv)  B = LI  B

• La force de Lorentz magnétique F = ev  B est une force qui s’exerce à l’échelle
microscopique sur un électron.
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• La force extérieure résultante exercée sur un fil de longueur L est la résultante des
forces de Lorentz magnétiques exercées sur tous les électrons de conduction : F =
N(ev  B) où N = nb d’électrons de conduction.

• Compte tenu que le courant I = enSv où n est la densité des électrons de conduction
dans le fil et de N = nSL, F = nSLev  B = L(enSv)  B = LI  B

• La force de Lorentz magnétique F = ev  B est une force qui s’exerce à l’échelle
microscopique sur un électron.

• La force de Laplace F = LI  B est une force qui s’exerce à l’échelle macroscopique sur 
l’ensemble des électrons de conduction d’un fil.
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1. Courants orientés dans le même sens :
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1. Courants orientés dans le même sens :

• Le courant I2 est plongé dans le champ magnétique B1 généré 
par le courant I1.

• Comme la force de Laplace F est orientée vers l’intérieur, les fils 
se rapprochent (force attractive).
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1. Courants orientés dans le même sens :

• Le courant I2 est plongé dans le champ magnétique B1 généré 
par le courant I1.

• Comme la force de Laplace F est orientée vers l’intérieur, les fils 
se rapprochent (force attractive).

2. Courants orientés dans le sens opposé :
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1. Courants orientés dans le même sens :

• Le courant I2 est plongé dans le champ magnétique B1 généré 
par le courant I1.

• Comme la force de Laplace F est orientée vers l’intérieur, les fils 
se rapprochent (force attractive).

2. Courants orientés dans le sens opposé :

• Le courant I2 est plongé dans le champ magnétique B1 généré 
par le courant I1.

• Comme la force de Laplace F est orientée vers l’extérieur, les fils 
s’éloignent (force répulsive).
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Expérience :
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Expérience : Force de Laplace exercée sur une canette
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Expérience : Force de Laplace exercée sur une canette

1. Le champ magnétique créé par la bobine induit le mouvement des charges
électriques dans la canette ce qui génère une force de Laplace qui déforme la
canette jusqu’à ce qu’elle se coupe en deux.

2. La force de Laplace qui s’exerce sur les extrémités (composante
perpendiculaire à la bobine) éjecte puissamment les deux parties de la
canette.
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• Un galvanomètre est un cadre rectangulaire de côtés « a » et « b » mobile autour
d’un axe. Le cadre est plongé dans un champ magnétique B uniforme et constant.
Lorsque le cadre est parcouru par un courant I, ce dernier subit un moment de force
de Laplace M = 2r  F compensé par un moment de force élastique M de constante
élastique en torsion C :

I



9.2.3 Galvanomètre

99Physique – Mise à niveau

I



9.2.3 Galvanomètre

100Physique – Mise à niveau

I
    2

2
sin cos

   

      

   

r F r F r F
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I
    2

2
sin cos

   

      

   

r F r F r F

• Moment de force de Laplace : (couple de forces F et -F)

2 2 2
2

sin cosz z
b

aIB    M r F r F e e
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I
    2

2
sin cos

   

      

   

r F r F r F

• Moment de force de Laplace : (couple de forces F et -F)

2 2 2
2

sin cosz z
b

aIB    M r F r F e e

• Moment de force de rappel élastique : 0  où  zC C  M e
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I
    2

2
sin cos

   

      

   

r F r F r F

• Moment de force de Laplace : (couple de forces F et -F)

2 2 2
2

sin cosz z
b

aIB    M r F r F e e

• Moment de force de rappel élastique : 0  où  zC C  M e

• État d’équilibre : (moment de force résultant nul)

2 0coszC baIB C        r F e 0   (9.10)
cos

C
I

Bab




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I
    2

2
sin cos

   

      

   

r F r F r F

• Moment de force de Laplace : (couple de forces F et -F)

2 2 2
2

sin cosz z
b

aIB    M r F r F e e

• Moment de force de rappel élastique : 0  où  zC C  M e

• État d’équilibre : (moment de force résultant nul)

• On a ainsi construit un ampèremètre qui permet de mesurer le courant électrique I
proportionnel à l’angle de déviation  si  << 1.

2 0coszC baIB C        r F e 0   (9.10)
cos

C
I

Bab




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Le moteur électrique à courant continu est basé sur le même principe que le galvanomètre
si ce n’est qu’il n’y a pas de force élastique de rappel et que le courant est inversé à chaque
demi-tour afin que le moment de force de Laplace M = IBab cos ez soit toujours orienté
dans le même sens.
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Le moteur électrique à courant continu est basé sur le même principe que le galvanomètre
si ce n’est qu’il n’y a pas de force élastique de rappel et que le courant est inversé à chaque
demi-tour afin que le moment de force de Laplace M = IBab cos ez soit toujours orienté
dans le même sens.

• Moment de force :

1
2 2

32
2 2
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.

.

zIBab 
 

 
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Le moteur électrique à courant continu est basé sur le même principe que le galvanomètre
si ce n’est qu’il n’y a pas de force élastique de rappel et que le courant est inversé à chaque
demi-tour afin que le moment de force de Laplace M = IBab cos ez soit toujours orienté
dans le même sens.

• Moment de force :

1
2 2

32
2 2

cos

.

.

zIBab 
 

 



   

   

M e

M

M



• En inversant le sens du courant I lorsque  = /2 et  = 3/2, le cadre tourne
toujours dans le même sens!
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Expérience : Moteur électrique simple

• On suspend une bobine au-dessus d’un aimant. La bobine est reliée à une pile
logée dans le boîtier en plastique situé sous l’aimant.

• Le moment de force de Laplace entretient le mouvement de rotation de la
bobine.


