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Physique – Mise à niveau

6. Rotation en deux dimensions

• 6.5 Référentiel du centre de masse

• 6.6 Théorème de l’énergie cinétique d’un solide
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• Objet : cylindre
• Forces : poids mg, soutien S, frottement f
• Newton : mg + S + f = ma

Selon ex :

Selon ey : mgcos - S = 0

sin   (6.58)mg f ma  
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• Objet : cylindre
• Forces : poids mg, soutien S, frottement f
• Newton : mg + S + f = ma

Selon ex :

Selon ey : mgcos - S = 0

sin   (6.58)mg f ma  

• Rotation (par rapport au centre de masse) :
Selon ez :

  CMI ext
CM CM CMM M f ω

CM CM  (6.59)Rf I  
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• Objet : cylindre
• Forces : poids mg, soutien S, frottement f
• Newton : mg + S + f = ma

Selon ex :

Selon ey : mgcos - S = 0

sin   (6.58)mg f ma  

• Rotation (par rapport au centre de masse) :
Selon ez :

  CMI ext
CM CM CMM M f ω

CM CM  (6.59)Rf I  

• Liaison (le cylindre roule sans glisser : vitesse du point de contact nulle) :

CM CM   (6.60)v R a R    
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• Objet : cylindre
• Forces : poids mg, soutien S, frottement f
• Newton : mg + S + f = ma

Selon ex :

Selon ey : mgcos - S = 0

sin   (6.58)mg f ma  

• Rotation (par rapport au centre de masse) :
Selon ez :

  CMI ext
CM CM CMM M f ω

CM CM  (6.59)Rf I  

• Liaison (le cylindre roule sans glisser : vitesse du point de contact nulle) :

CM CM   (6.60)v R a R    

• Résolution : Soit   CM alors a R 

 2
CM

CM

sin
sin

mg f mR
mgR mR I

Rf I
 

 


  
   




 2 21CM CM

sin sinmgR g
a

mR I I mR
    

 


 acyl. plein > acyl. creux (masse identique)
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Expérience : Cylindres plein et creux
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Expérience : Cylindres plein et creux

• Deux cylindres de masse et de rayon égaux sont lâchés initialement au repos
et roulent sans glisser sur un plan incliné. Le cylindre plein a un moment
d’inertie plus faible et donc une accélération plus grande que le cylindre creux.
Il arrive donc en premier en bas du plan incliné.
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• L’haltère est formé d’une poignée, i.e., d’un cylindre de rayon 
r, et de deux disques de rayon R (où R >> r). Son moment 
d’inertie est la somme des moments d’inertie. 
ICM = ICM(poignée) + 2ICM(disque)

Remarque :
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• L’haltère est formé d’une poignée, i.e., d’un cylindre de rayon 
r, et de deux disques de rayon R (où R >> r). Son moment 
d’inertie est la somme des moments d’inertie. 
ICM = ICM(poignée) + 2ICM(disque)

• Objet : haltère
• Forces : poids mg, soutien S, frottement f, tension T
• Newton :

  (6.61)m m    CMg S f T a

Remarque :
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• L’haltère est formé d’une poignée, i.e., d’un cylindre de rayon 
r, et de deux disques de rayon R (où R >> r). Son moment 
d’inertie est la somme des moments d’inertie. 
ICM = ICM(poignée) + 2ICM(disque)

• Objet : haltère
• Forces : poids mg, soutien S, frottement f, tension T
• Newton :

Selon ex :

Selon ey :

  (6.61)m m    CMg S f T a

Remarque :
On ne peut pas a priori donner le sens du frottement f qui est horizontal f = fex où f 

CMcos   (6.62)f T ma 

0sin   (6.63)mg S T   


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• Rotation (par rapport au centre de masse) :

Selon ez :

    CMI  ext
CM CM CM CMM M f M T ω

CM CM   (6.64)Rf rT I    
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• Rotation (par rapport au centre de masse) :

Selon ez :

    CMI  ext
CM CM CM CMM M f M T ω

CM CM   (6.64)Rf rT I    

• Liaison (l’haltère roule sans glisser : vitesse du point de contact nulle) :

CM CM CM CMv R a R    
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• Rotation (par rapport au centre de masse) :

Selon ez :

    CMI  ext
CM CM CM CMM M f M T ω

CM CM   (6.64)Rf rT I    

• Liaison (l’haltère roule sans glisser : vitesse du point de contact nulle) :

CM CM CM CMv R a R    

• Résolution : Soit   CM et CMa a R  

   2
CM

CM

cos
cos

f T mR
R r T mR I

Rf rT I
 

 


  
      




 2
CM

cos
  et

R r
T

mR I
 

 



2

CM

cos
  (6.65)

r
Ra R T

I
m

R





 



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• Rotation (par rapport au centre de masse) :

Selon ez :

    CMI  ext
CM CM CM CMM M f M T ω

CM CM   (6.64)Rf rT I    

• Liaison (l’haltère roule sans glisser : vitesse du point de contact nulle) :

CM CM CM CMv R a R    

• Résolution : Soit   CM et CMa a R  

   2
CM

CM

cos
cos

f T mR
R r T mR I

Rf rT I
 

 


  
      




 2
CM

cos
  et

R r
T

mR I
 

 



2

CM

cos
  (6.65)

r
Ra R T

I
m

R





 




• Discussion :
• Si , l’haltère accélère vers la droite (a > 0).

• Si , l’haltère accélère vers la gauche (a < 0).

• Si , l’haltère est immobile (a = 0). 

cos
r
R

 

cos
r
R

 

cos
r
R

 
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Expérience : Roulement d’une bobine tirée par un fil

• Si l’angle  entre le fil de la bobine et la verticale est tel que , la
bobine se déplace vers la droite.

• Si , la bobine se déplace vers la gauche.

• Si , la bobine tourne sur place. Cet angle est tel que le fil se
trouve dans le prolongement du point de contact entre la bobine et la surface
horizontale.

 arccos r R 

 arccos r R 

 arccos r R 
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6.6 Théorème de l’énergie 
cinétique d’un solide
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• Le théorème de l’énergie cinétique associée au mouvement du centre de masse d’un
corps d’une position initiale r1 à une position finale r2 s’écrit :

où

avec Fext la résultante des forces extérieures.

    1 22 1 ext
cin,CM cin,CM   (6.66)E E W 

22
1 2 1

1
2

ext
cin,CM CM   et  E mv W d   ext

CMF r
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• Le théorème de l’énergie cinétique associée au mouvement du centre de masse d’un
corps d’une position initiale r1 à une position finale r2 s’écrit :

où

avec Fext la résultante des forces extérieures.

    1 22 1 ext
cin,CM cin,CM   (6.66)E E W 

22
1 2 1

1
2

ext
cin,CM CM   et  E mv W d   ext

CMF r

• La dérivée temporelle de l’énergie cinétique du centre de masse s’écrit :

cin,CM   (6.67)E  ext
CMF v
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• Un corps est constitué d’un ensemble de points matériels.

• L’énergie cinétique du corps s’écrit :

21
2cin   (6.68)i i

i

E m v
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• Un corps est constitué d’un ensemble de points matériels.

• L’énergie cinétique du corps s’écrit :

21
2cin   (6.68)i i

i

E m v

• La variation d’énergie cinétique est due au travail des forces qui s’exercent sur chaque
point matériel.

cin   (6.69)
i i i

E        ext int
i i i i i iF v F v F v

Ainsi, ext int
cin   (6.70)

i i

dE d d W W       ext int
i i i iF r F r
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• Un corps est constitué d’un ensemble de points matériels.

• L’énergie cinétique du corps s’écrit :

21
2cin   (6.68)i i

i

E m v

• La variation d’énergie cinétique est due au travail des forces qui s’exercent sur chaque
point matériel.

cin   (6.69)
i i i

E        ext int
i i i i i iF v F v F v

Ainsi,

• La variation d’énergie cinétique (totale) du corps est donnée par le travail des forces
intérieures et extérieures.

ext int
cin   (6.70)

i i

dE d d W W       ext int
i i i iF r F r

    1 2 1 22 1 ext int
cin cin +   (6.71)E E W W  
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• Le mouvement d’un solide indéformable est caractérisé par la
vitesse vCM du CM et la vitesse angulaire de rotation autour du
centre de masse CM.
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• Le mouvement d’un solide indéformable est caractérisé par la
vitesse vCM du CM et la vitesse angulaire de rotation autour du
centre de masse CM.

• La vitesse d’un point matériel du solide s’écrit :

car le point matériel de masse mi a un mouvement circulaire autour du centre de masse.

+   où       i CM i CM CM i i CM iv v v ' v ω r' v ' ω r'
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• Le mouvement d’un solide indéformable est caractérisé par la
vitesse vCM du CM et la vitesse angulaire de rotation autour du
centre de masse CM.

• La vitesse d’un point matériel du solide s’écrit :

car le point matériel de masse mi a un mouvement circulaire autour du centre de masse.

+   où       i CM i CM CM i i CM iv v v ' v ω r' v ' ω r'

• Son énergie cinétique s’écrit :

 221 1
2 2cin  =i i i

i i

E m v m    CM CM iv ω r'
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Ainsi,   



2 2 2

2 2 2

2 2

1 2
2

1 1
2 2

1 1
2 2

CM

cin CM CM

CM CM

CM CM CM

i i
i

i i
i

I

E m v r

mv m m r

mv I










    

 
   

           
 

 





CM CM i

CM CM CM

0

v ω r'

v ω r '


'

'
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Ainsi,   



2 2 2

2 2 2

2 2

1 2
2

1 1
2 2

1 1
2 2

CM

cin CM CM

CM CM

CM CM CM

i i
i

i i
i

I

E m v r

mv m m r

mv I










    

 
   

           
 

 





CM CM i

CM CM CM

0

v ω r'

v ω r '


'

'

• L’énergie cinétique est la somme de l’énergie cinétique du centre de masse Ecin,CM et 
de l’énergie cinétique de rotation propre Ecin,rot du solide autour du centre de masse :

cin cin,CM cin,rot   (6.72)E E E 

1
2

2
cin,CM CM   (6.73)E mvoù 1

2
2

cin,rot CM CM   (6.74)E I et
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• La dérivée temporelle de l’énergie cinétique d’un solide indéformable s’écrit :

 

 

cin
i i

i i

i i i

E    

     

      

 

 

  

ext int
i i i i

ext int
i i i CM CM i

ext int int
i i i CM i CM i

F v F v

F v F v ω r'

F v F v F ω r'





6.6.4 Théorème de l’énergie cinétique pour un solide

39Physique – Mise à niveau

• La dérivée temporelle de l’énergie cinétique d’un solide indéformable s’écrit :

 

 

cin
i i

i i

i i i

E    

     

      

 

 

  

ext int
i i i i

ext int
i i i CM CM i

ext int int
i i i CM i CM i

F v F v

F v F v ω r'

F v F v F ω r'



• Ainsi, comme a(b  c) = b(c  a) 

 

cin
i i i

i

i

E

 

   
         

   
     

 

  





ext int int
i i i CM CM i i

ext int int
i i CM CM CM

0 0

ext
i i

F v F v ω r' F

F v F v M ω

F v


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Remarque :
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• La variation de l’énergie cinétique est due au travail des forces extérieures qui
s’exercent sur chaque point matériel i :

ext
iF

cin   (6.75)
i

E   ext
i iF v

Remarque :
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• La variation de l’énergie cinétique est due au travail des forces extérieures qui
s’exercent sur chaque point matériel i :

ext
iF

cin   (6.75)
i

E   ext
i iF v

• On multiplie cette relation par l’intervalle de temps infinitésimal dt. Ainsi,
ext

cin   (6.76)
i

dE d W   ext
i iF r

Remarque :
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• La variation de l’énergie cinétique est due au travail des forces extérieures qui
s’exercent sur chaque point matériel i :

ext
iF

cin   (6.75)
i

E   ext
i iF v

• On multiplie cette relation par l’intervalle de temps infinitésimal dt. Ainsi,
ext

cin   (6.76)
i

dE d W   ext
i iF r

• Par intégration de (1) à (2), on obtient le théorème de l’énergie cinétique :

Remarque :

   
2

1 2 1
2 1 ext

cin cin cin   (6.77)i
i

E E E W d      ext
iF r



6.6.4 Théorème de l’énergie cinétique pour un solide

44Physique – Mise à niveau

• La variation de l’énergie cinétique est due au travail des forces extérieures qui
s’exercent sur chaque point matériel i :

ext
iF

cin   (6.75)
i

E   ext
i iF v

• On multiplie cette relation par l’intervalle de temps infinitésimal dt. Ainsi,
ext

cin   (6.76)
i

dE d W   ext
i iF r

• Par intégration de (1) à (2), on obtient le théorème de l’énergie cinétique :

Remarque :
Pour un solide indéformable, les forces intérieures ne travaillent pas (       ce qui n’est pas 
vrai pour un liquide).

!

   
2

1 2 1
2 1 ext

cin cin cin   (6.77)i
i

E E E W d      ext
iF r
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Expérience :
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Expérience : Frottement interne (amortissement avec des œufs)
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Expérience : Frottement interne (amortissement avec des œufs)

• Les forces intérieures à l’œuf cuit (solide indéformable) ne travaillent pas, donc elles
n’amortissent pas le mouvement de rotation autour de l’axe.

• Les forces intérieures à l’œuf cru (liquide) travaillent ce qui génère un amortissement
du mouvement de rotation.
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• La dérivée temporelle de l’énergie cinétique s’écrit :

 cin
i i

i i

i

E      

   
       
   
   

      
   

   

 

 

 

ext ext
i i i CM CM i

ext ext
i CM CM i i

ext ext
i CM CM,i CM

i

ext ext
CM CM CM

F v F v ω r'

F v ω r' F

F v M ω

F v M ω



et cin cin,CM cin,rot   (6.78)E E E   
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• La dérivée temporelle de l’énergie cinétique s’écrit :

 cin
i i

i i

i

E      

   
       
   
   

      
   

   

 

 

 

ext ext
i i i CM CM i

ext ext
i CM CM i i

ext ext
i CM CM,i CM

i

ext ext
CM CM CM

F v F v ω r'

F v ω r' F

F v M ω

F v M ω



et cin cin,CM cin,rot   (6.78)E E E   

Ainsi,

cin,CM   (6.79)E  ext
CMF v

cin,rot   (6.80)E  ext
CM CMM ω
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Une poulie est entraînée par une masse initialement au repos. Quelle 

est la vitesse v de la masse après une chute d’une hauteur h?
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Une poulie est entraînée par une masse initialement au repos. Quelle 

est la vitesse v de la masse après une chute d’une hauteur h?

• Objet 1 : poulie de masse m1
• Forces : poids m1g, soutien S, tension T

• Théorème de l’énergie cinétique :  2
1 2

1 0
2

ext
CM CM 1 2   (6.81)I W W     T
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Une poulie est entraînée par une masse initialement au repos. Quelle 

est la vitesse v de la masse après une chute d’une hauteur h?

• Objet 1 : poulie de masse m1
• Forces : poids m1g, soutien S, tension T

• Théorème de l’énergie cinétique :  2
1 2

1 0
2

ext
CM CM 1 2   (6.81)I W W     T

• Objet 2 : masse d’entraînement m2
• Forces : poids m2g, tension –T

• Théorème de l’énergie cinétique :

     2
2 1 2 2 1 2 2 1 2

1 0
2

ext
1 2   (6.82)m v W W m W m gh W          g T T
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Remarque :
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• En sommant les équations (6.81) et (6.82), on obtient :

   

   

2 2
2 2 1 2 1 2

1 2 1 2

1 1
2 2

0

CM CM

où  

I m v m gh W W

W W

  

 

    

  

T T

T T

Remarque :
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• En sommant les équations (6.81) et (6.82), on obtient :

   

   

2 2
2 2 1 2 1 2

1 2 1 2

1 1
2 2

0

CM CM

où  

I m v m gh W W

W W

  

 

    

  

T T

T T

Ainsi, 2 2
2 2

1 1
2 2CM CM   (6.83)I m v m gh  

Remarque :
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• En sommant les équations (6.81) et (6.82), on obtient :

   

   

2 2
2 2 1 2 1 2

1 2 1 2

1 1
2 2

0

CM CM

où  

I m v m gh W W

W W

  

 

    

  

T T

T T

Ainsi, 2 2
2 2

1 1
2 2CM CM   (6.83)I m v m gh  

• Compte tenu de la liaison,

on obtient alors une relation entre v et h :

2 2
2

1 1
2 2

CM
CM CM CM

I
v R I v

R
   

Remarque :

2
2 22

1
2

CMI
m v m gh

R
    
 

2

2
2

2 2
1

  (6.84)
CM

gh
v gh

I
m R

 

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• En sommant les équations (6.81) et (6.82), on obtient :

   

   

2 2
2 2 1 2 1 2

1 2 1 2

1 1
2 2

0

CM CM

où  

I m v m gh W W

W W

  

 

    

  

T T

T T

Ainsi, 2 2
2 2

1 1
2 2CM CM   (6.83)I m v m gh  

• Compte tenu de la liaison,

on obtient alors une relation entre v et h :

2 2
2

1 1
2 2

CM
CM CM CM

I
v R I v

R
   

Remarque :
En chute libre, v2 = 2gh.

2
2 22

1
2

CMI
m v m gh

R
    
 

2

2
2

2 2
1

  (6.84)
CM

gh
v gh

I
m R

 

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Une roue initialement au repos roule sans glisser sur un plan 
incliné. Que vaut la vitesse de la roue après une descente d’une 
hauteur h?
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Une roue initialement au repos roule sans glisser sur un plan 
incliné. Que vaut la vitesse de la roue après une descente d’une 
hauteur h?

• Objet : roue
• Forces : poids mg, soutien S, frottement statique f
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Une roue initialement au repos roule sans glisser sur un plan 
incliné. Que vaut la vitesse de la roue après une descente d’une 
hauteur h?

• Objet : roue
• Forces : poids mg, soutien S, frottement statique f

• Théorème de l’énergie cinétique :

   2 2
1 2 1 2

1 1
2 2

ext
CM CM CM 1 2   (6.85)mv I W W m W      g f
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Une roue initialement au repos roule sans glisser sur un plan 
incliné. Que vaut la vitesse de la roue après une descente d’une 
hauteur h?

• Objet : roue
• Forces : poids mg, soutien S, frottement statique f

• Théorème de l’énergie cinétique :

   2 2
1 2 1 2

1 1
2 2

ext
CM CM CM 1 2   (6.85)mv I W W m W      g f

Pour un roulement sans glissement, la vitesse du point de contact C est nulle. Ainsi,

d   C Cv 0 r 0  
2

1 2 1
0  (6.86)W d    Cf f r
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Une roue initialement au repos roule sans glisser sur un plan 
incliné. Que vaut la vitesse de la roue après une descente d’une 
hauteur h?

• Objet : roue
• Forces : poids mg, soutien S, frottement statique f

• Théorème de l’énergie cinétique :

   2 2
1 2 1 2

1 1
2 2

ext
CM CM CM 1 2   (6.85)mv I W W m W      g f

Pour un roulement sans glissement, la vitesse du point de contact C est nulle. Ainsi,

Ainsi, la force de frottement statique f ne travaille pas!

d   C Cv 0 r 0  
2

1 2 1
0  (6.86)W d    Cf f r
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Remarque :
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Ainsi,  1 2 0  (6.87)W f

Remarque :
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Ainsi,

De plus,

 1 2 0  (6.87)W f

 1 2   (6.88)W m mgh g

Remarque :
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Ainsi,

De plus,

 1 2 0  (6.87)W f

 1 2   (6.88)W m mgh g

• Donc, la relation (6.85) devient :

2 21 1
2 2CM CM CM   (6.89)mv I mgh 

Remarque :
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Ainsi,

De plus,

 1 2 0  (6.87)W f

 1 2   (6.88)W m mgh g

• Donc, la relation (6.85) devient :

2 21 1
2 2CM CM CM   (6.89)mv I mgh 

• Avec la liaison,

On obtient une relation entre v et h :
CM CMv v R 

2
2

1
2

CMI
m v mgh

R
    
 

2

2

2 2
1

  (6.90)
CM

gh
v gh

I
mR

 


Remarque :
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Ainsi,

De plus,

 1 2 0  (6.87)W f

 1 2   (6.88)W m mgh g

• Donc, la relation (6.85) devient :

2 21 1
2 2CM CM CM   (6.89)mv I mgh 

• Avec la liaison,

On obtient une relation entre v et h :
CM CMv v R 

2
2

1
2

CMI
m v mgh

R
    
 

2

2

2 2
1

  (6.90)
CM

gh
v gh

I
mR

 


Remarque :
Cette vitesse est la même que celle du contrepoids de l’exemple précédent.
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Expérience :
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Expérience : Anagyre

• L’anagyre est un demi-ellipsoïde qui est coupé de manière légèrement
asymétrique.

• Lorsqu’on tourne l’anagyre dans le bon sens, l’axe de rotation est un axe de
symétrie et le mouvement de rotation a lieu normalement.

• Lorsqu’on tourne l’anagyre dans le mauvais sens, l’axe de rotation n’est pas un
axe de symétrie. L’anagyre fait alors demi-tour.


