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Physique – Mise à niveau

6. Rotation en deux dimensions

• 6.4 Théorème du  moment cinétique

• 6.5 Référentiel du centre de masse

• 6.6 Théorème de l’énergie cinétique d’un solide
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On considère un glisseur de masse M sur un rail à air horizontal. Il est attaché à un fil qui
coulisse sur une poulie de moment d’inertie IA et il est entraîné par un contrepoids de
masse m. On veut déterminer .A
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On considère un glisseur de masse M sur un rail à air horizontal. Il est attaché à un fil qui
coulisse sur une poulie de moment d’inertie IA et il est entraîné par un contrepoids de
masse m. On veut déterminer .

Méthode : On considère le glisseur, le contrepoids et la
poulie séparément et ensuite les liens entre les objets.

A
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On considère un glisseur de masse M sur un rail à air horizontal. Il est attaché à un fil qui
coulisse sur une poulie de moment d’inertie IA et il est entraîné par un contrepoids de
masse m. On veut déterminer .

Méthode : On considère le glisseur, le contrepoids et la
poulie séparément et ensuite les liens entre les objets.

1. Objet : glisseur de masse M (translation horizontale)

Forces : poids Mg, soutien S, tension du fil T

Newton : Mg + S + T = MaM

Selon ex : T = MaM

A
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2. Objet : contrepoids (translation verticale)
Forces : poids mg, tension T’

Newton : mg + T’ = mam

Selon ey : mg – T’ = mam
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2. Objet : contrepoids (translation verticale)
Forces : poids mg, tension T’

Newton : mg + T’ = mam

Selon ey : mg – T’ = mam

3. Objet : poulie (rotation)

Forces : poids m’g, soutien N, tensions -T et -T’

Rotation par rapport à A :
Selon ez :

       ' Am I
 

     A A A A A

0 0

M g M N M T M T' ω 

' A ART RT I    
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2. Objet : contrepoids (translation verticale)
Forces : poids mg, tension T’

Newton : mg + T’ = mam

Selon ey : mg – T’ = mam

3. Objet : poulie (rotation)

Forces : poids m’g, soutien N, tensions -T et -T’

Rotation par rapport à A :
Selon ez :

       ' Am I
 

     A A A A A

0 0

M g M N M T M T' ω 

' A ART RT I    

• Si le moment d’inertie est non-nul, i.e., IA  0, alors les normes des tensions sont
différentes, i.e., T  T’.
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4. Liaison glisseur-poulie : La vitesse scalaire vM du glisseur est la même que celle d’un
point sur le bord de la poulie (frottement statique) dont la vitesse angulaire est A.

M A M Av R a R    
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4. Liaison glisseur-poulie : La vitesse scalaire vM du glisseur est la même que celle d’un
point sur le bord de la poulie (frottement statique) dont la vitesse angulaire est A.

M A M Av R a R    

5. Liaison poulie-contrepoids : La vitesse scalaire vm du contrepoids est la même que
celle d’un point du bord de la poulie.

m A m A m Mv R a R a a a      
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4. Liaison glisseur-poulie : La vitesse scalaire vM du glisseur est la même que celle d’un
point sur le bord de la poulie (frottement statique) dont la vitesse angulaire est A.

M A M Av R a R    

5. Liaison poulie-contrepoids : La vitesse scalaire vm du contrepoids est la même que
celle d’un point du bord de la poulie.

m A m A m Mv R a R a a a      

6. Résolution :   A et ICM  IA

 2 2

CM

'
'

CM

T Ma MR
mg T ma mR mgR MR mR I

RT RT I


 



  
      
   


 


2 2

CM

  (6.37)
mgR

MR mR I
 

 

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Un pendule physique est un solide suspendu à un point fixe A.
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Un pendule physique est un solide suspendu à un point fixe A.

Objet : solide
Forces : poids mg, soutien S
Rotation par rapport à A :

  Am I ext
A A AM M g ω
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Un pendule physique est un solide suspendu à un point fixe A.

Objet : solide
Forces : poids mg, soutien S
Rotation par rapport à A :

• Selon ez (donnant le sens positif pour  qui augmente) :

  Am I ext
A A AM M g ω

sin A A Ad mg I I     
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Un pendule physique est un solide suspendu à un point fixe A.

Objet : solide
Forces : poids mg, soutien S
Rotation par rapport à A :

• Selon ez (donnant le sens positif pour  qui augmente) :

  Am I ext
A A AM M g ω

sin A A Ad mg I I     

• Soit 2 0
A

mgd
I

    2sin   (6.38)  
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Un pendule physique est un solide suspendu à un point fixe A.

Objet : solide
Forces : poids mg, soutien S
Rotation par rapport à A :

• Selon ez (donnant le sens positif pour  qui augmente) :

  Am I ext
A A AM M g ω

sin A A Ad mg I I     

• Soit

• Dans l’approximation des petits angles :  << 1  sin  

2 0
A

mgd
I

    2sin   (6.38)  

2   (6.39)   (oscillateur harmonique)
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Un pendule physique est un solide suspendu à un point fixe A.

Objet : solide
Forces : poids mg, soutien S
Rotation par rapport à A :

• Selon ez (donnant le sens positif pour  qui augmente) :

  Am I ext
A A AM M g ω

sin A A Ad mg I I     

• Soit

• Dans l’approximation des petits angles :  << 1  sin  

• Plus IA est grand, plus la période d’oscillation est longue.

2 0
A

mgd
I

    2sin   (6.38)  

2   (6.39)   (oscillateur harmonique)
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Expérience :
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Expérience : Pendule physique
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Expérience : Pendule physique

• On constate que la période d’oscillation du pendule physique est une fonction
de la position de l’axe de rotation qui détermine le moment d’inertie.
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Expérience : Pendule physique

• On constate que la période d’oscillation du pendule physique est une fonction
de la position de l’axe de rotation qui détermine le moment d’inertie.

• Plus IA est grand, plus la période d’oscillation est longue.

22 2 CM  et  A
A

I
T I I md

mgd
    

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6.5 Référentiel du centre de 
masse
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• Par rapport à un référentiel d’inertie muni d’une origine O, la 2ème loi de Newton en
translation et en rotation pour un point matériel s’exprime comme :

  et   (6.40)i im i O,i O,iF a M L  
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• Par rapport à un référentiel d’inertie muni d’une origine O, la 2ème loi de Newton en
translation et en rotation pour un point matériel s’exprime comme :

  et   (6.40)i im i O,i O,iF a M L  

• On considère un objet formé de points matériels et on note aCM l’accélération de son
centre de masse.
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• Par rapport à un référentiel d’inertie muni d’une origine O, la 2ème loi de Newton en
translation et en rotation pour un point matériel s’exprime comme :

  et   (6.40)i im i O,i O,iF a M L  

• On considère un objet formé de points matériels et on note aCM l’accélération de son
centre de masse.

• On se limite au cas où le centre de masse a un mouvement rectiligne (translation) par
rapport au référentiel d’inertie.
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• Par rapport à un référentiel d’inertie muni d’une origine O, la 2ème loi de Newton en
translation et en rotation pour un point matériel s’exprime comme :

  et   (6.40)i im i O,i O,iF a M L  

• On considère un objet formé de points matériels et on note aCM l’accélération de son
centre de masse.

• On se limite au cas où le centre de masse a un mouvement rectiligne (translation) par
rapport au référentiel d’inertie.

• Les grandeurs cinématiques (position, vitesse, accélération) dans le référentielR’ du
centre de masse sont liées aux grandeurs correspondantes dans le référentiel

d’inertieR par :
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• Référentiel d’inertie : R
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• Référentiel d’inertie : R
• Référentiel du centre de masse : R’
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• Référentiel d’inertie : R
• Référentiel du centre de masse : R’
1. Position :

     (6.41)
 

 i CM ir r r'
'
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• Référentiel d’inertie : R
• Référentiel du centre de masse : R’
1. Position :

     (6.41)
 

 i CM ir r r'
'

2. Vitesse : = +   (6.42)i CM iv v v '
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• Référentiel d’inertie : R
• Référentiel du centre de masse : R’
1. Position :

     (6.41)
 

 i CM ir r r'
'

2. Vitesse : = +   (6.42)i CM iv v v '

3. Accélération : = +   (6.43)i CM ia a a '
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• Référentiel d’inertie : R
• Référentiel du centre de masse : R’
1. Position :

     (6.41)
 

 i CM ir r r'
'

2. Vitesse : = +   (6.42)i CM iv v v '

3. Accélération : = +   (6.43)i CM ia a a '

• Le centre de masse (CM) est immobile par rapport à R’.
;    et    (6.44)  CM CM CMr ' 0 v ' 0 a ' 0
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Remarque :

Chute libre en voiture
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• 2ème loi de Newton (référentiel d’inertie R) :

  où    (6.45)im  i i i CM iF a a a a '

Remarque :

Chute libre en voiture
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• 2ème loi de Newton (référentiel d’inertie R) :

  où    (6.45)im  i i i CM iF a a a a '

• 2ème loi de Newton (référentiel du centre de masse R’) :
  (6.46)i im m i CM iF a a ' où le terme -miaCM est une force appelée « force d’inertie ».

Remarque :

Chute libre en voiture
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• 2ème loi de Newton (référentiel d’inertie R) :

  où    (6.45)im  i i i CM iF a a a a '

• 2ème loi de Newton (référentiel du centre de masse R’) :
  (6.46)i im m i CM iF a a ' où le terme -miaCM est une force appelée « force d’inertie ».

Remarque :
Si le référentiel du centre de masse a un mouvement de rotation par rapport au référentiel
d’inertie, il faut ajouter d’autres forces d’inertie (centrifuge, Coriolis, Euler).

Chute libre en voiture
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• 2ème loi de Newton (référentiel d’inertie R) :

  où    (6.45)im  i i i CM iF a a a a '

• 2ème loi de Newton (référentiel du centre de masse R’) :
  (6.46)i im m i CM iF a a ' où le terme -miaCM est une force appelée « force d’inertie ».

Remarque :
Si le référentiel du centre de masse a un mouvement de rotation par rapport au référentiel
d’inertie, il faut ajouter d’autres forces d’inertie (centrifuge, Coriolis, Euler).

Chute libre en voiture
Objet : masse m
Forces : poids mg, force d’inertie -maCM

Référentiel : centre de masse de la voiture
Newton : mg – maCM = ma’ 

  (6.47)  CMa' g a
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• Le moment de la force Fi par rapport à l’origine O s’écrit :

     (6.48)i i        
CM,i

O,i i i CM i CM i i

M

M r F r r' F r F r' F
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• Le moment de la force Fi par rapport à l’origine O s’écrit :

     (6.48)i i        
CM,i

O,i i i CM i CM i i

M

M r F r r' F r F r' F

• La somme des moments de force (6.48) est :
 (6.49)

i i i

        ext ext ext ext ext ext
O O,i CM i CM,i CM CMM M r F M r F M  
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• Le moment de la force Fi par rapport à l’origine O s’écrit :

     (6.48)i i        
CM,i

O,i i i CM i CM i i

M

M r F r r' F r F r' F

• La somme des moments de force (6.48) est :
 (6.49)

i i i

        ext ext ext ext ext ext
O O,i CM i CM,i CM CMM M r F M r F M  

• Le moment cinétique par rapport à l’origine O s’écrit :
   i im m     O,i i i CM i CM iL r v r r' v v '

  (6.50)i i i im m m m        
CM,i

O,i CM CM CM i i CM i i

L

L r v r v ' r' v r' v '
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• Le moment de la force Fi par rapport à l’origine O s’écrit :

     (6.48)i i        
CM,i

O,i i i CM i CM i i

M

M r F r r' F r F r' F

• La somme des moments de force (6.48) est :
 (6.49)

i i i

        ext ext ext ext ext ext
O O,i CM i CM,i CM CMM M r F M r F M  

• Le moment cinétique par rapport à l’origine O s’écrit :
   i im m     O,i i i CM i CM iL r v r r' v v '

  (6.50)i i i im m m m        
CM,i

O,i CM CM CM i i CM i i

L

L r v r v ' r' v r' v '

• La somme des moments cinétiques (6.50) est égale à :

 

i i i
i i i i i

m m m

m m m
 

       

      

    O O,i CM CM CM i i CM CM,i

CM CM CM CM CM CM CM

0 0

L L r v r v ' r' v L

r v r v ' r ' v L
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  (6.51)m  O CM CM CML r v L
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  (6.51)m  O CM CM CML r v L

• La dérivée temporelle de (6.51) s’écrit :

 m m


    
CM

O CM CM CM CM CM

v

L r v r v L  

  (6.52)m  O CM CM CML r a L 
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  (6.51)m  O CM CM CML r v L

• La dérivée temporelle de (6.51) s’écrit :

 m m


    
CM

O CM CM CM CM CM

v

L r v r v L  

  (6.52)m  O CM CM CML r a L 

• Le théorème du moment cinétique pour un solide devient :

ext
O OM L (O est un point fixe)

  où  m m      ext ext ext
CM CM CM CM CM CMr F M r a L F a
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  (6.51)m  O CM CM CML r v L

• La dérivée temporelle de (6.51) s’écrit :

 m m


    
CM

O CM CM CM CM CM

v

L r v r v L  

  (6.52)m  O CM CM CML r a L 

• Le théorème du moment cinétique pour un solide devient :

ext
O OM L (O est un point fixe)

  où  m m      ext ext ext
CM CM CM CM CM CMr F M r a L F a

• Ainsi,

Ce théorème est valable même si le centre de masse est accéléré.

  (6.53)ext
CM CMM L
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• Objet : disque plein

• Forces : poids mg, tension T
• Newton : mg + T = maCM

Selon ey :

21
2CMI mR  

 

CM   (6.54)mg T ma 
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• Objet : disque plein

• Forces : poids mg, tension T
• Newton : mg + T = maCM

Selon ey :

21
2CMI mR  

 

CM   (6.54)mg T ma 

• Rotation (par rapport au centre de masse) :

Selon ez :

  CMI ext
CM CM CMM M T ω

21
2CM CM CM   (6.55)RT I mR   
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56Physique – Mise à niveau

• Objet : disque plein

• Forces : poids mg, tension T
• Newton : mg + T = maCM

Selon ey :

21
2CMI mR  

 

CM   (6.54)mg T ma 

• Rotation (par rapport au centre de masse) :

Selon ez :

  CMI ext
CM CM CMM M T ω

21
2CM CM CM   (6.55)RT I mR   

• Liaison (le fil se déroule) :
CM CM CM CM   (6.56)v R a R    
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57Physique – Mise à niveau

• Objet : disque plein

• Forces : poids mg, tension T
• Newton : mg + T = maCM

Selon ey :

21
2CMI mR  

 

CM   (6.54)mg T ma 

• Rotation (par rapport au centre de masse) :

Selon ez :

  CMI ext
CM CM CMM M T ω

21
2CM CM CM   (6.55)RT I mR   

• Liaison (le fil se déroule) :
CM CM CM CM   (6.56)v R a R    

• Résolution : Soit   CM alors CMa a R  

3 2
1 2 3
2

mg T mR
g

mg mR
RT mR


 



  
   

 


 


2 1
3 3

  et    (6.57)a g T mg  
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Expérience :
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Expérience : Yo-yo
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60Physique – Mise à niveau

Expérience : Yo-yo

• L’accélération du centre de masse d’un yo-yo est égale à , si le yo-yo est
considéré comme un cylindre plein.

• La tension dans le fil vaut 1/3 du poids du yo-yo.

2
3

g
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Expérience :
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Expérience : Roue de Maxwell (yo-yo)
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Expérience : Roue de Maxwell (yo-yo)

• L’accélération  de la roue de Maxwell est déterminée 
expérimentalement à l’aide de capteurs de vitesse connaissant la distance 
verticale qui les sépare.

• À l’aide de capteurs de force fixés aux points de suspension des fils, on montre 
que la tension .

2
3

a g

1
3

T mg
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• Objet : cylindre
• Forces : poids mg, soutien S, frottement f
• Newton : mg + S + f = ma

Selon ex :

Selon ey : mgcos - S = 0

sin   (6.58)mg f ma  
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• Objet : cylindre
• Forces : poids mg, soutien S, frottement f
• Newton : mg + S + f = ma

Selon ex :

Selon ey : mgcos - S = 0

sin   (6.58)mg f ma  

• Rotation (par rapport au centre de masse) :
Selon ez :

  CMI ext
CM CM CMM M f ω

CM CM  (6.59)Rf I  
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• Objet : cylindre
• Forces : poids mg, soutien S, frottement f
• Newton : mg + S + f = ma

Selon ex :

Selon ey : mgcos - S = 0

sin   (6.58)mg f ma  

• Rotation (par rapport au centre de masse) :
Selon ez :

  CMI ext
CM CM CMM M f ω

CM CM  (6.59)Rf I  

• Liaison (le cylindre roule sans glisser : vitesse du point de contact nulle) :

CM CM   (6.60)v R a R    
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• Objet : cylindre
• Forces : poids mg, soutien S, frottement f
• Newton : mg + S + f = ma

Selon ex :

Selon ey : mgcos - S = 0

sin   (6.58)mg f ma  

• Rotation (par rapport au centre de masse) :
Selon ez :

  CMI ext
CM CM CMM M f ω

CM CM  (6.59)Rf I  

• Liaison (le cylindre roule sans glisser : vitesse du point de contact nulle) :

CM CM   (6.60)v R a R    

• Résolution : Soit   CM alors a R 

 2
CM

CM

sin
sin

mg f mR
mgR mR I

Rf I
 

 


  
   




 2 21CM CM

sin sinmgR g
a

mR I I mR
    

 


 acyl. plein > acyl. creux (masse identique)
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Expérience : Cylindres plein et creux
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Expérience : Cylindres plein et creux

• Deux cylindres de masse et de rayon égaux sont lâchés initialement au repos
et roulent sans glisser sur un plan incliné. Le cylindre plein a un moment
d’inertie plus faible et donc une accélération plus grande que le cylindre creux.
Il arrive donc en premier en bas du plan incliné.
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Remarque :
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• L’haltère est formé d’une poignée, d’un cylindre de rayon r, et 
de deux disques de rayon R (où R >> r). Son moment d’inertie 
est la somme des moments d’inertie. 
ICM = ICM(poignée) + 2ICM(disque)

Remarque :
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• L’haltère est formé d’une poignée, d’un cylindre de rayon r, et 
de deux disques de rayon R (où R >> r). Son moment d’inertie 
est la somme des moments d’inertie. 
ICM = ICM(poignée) + 2ICM(disque)

• Objet : haltère
• Forces : poids mg, soutien S, frottement f, tension T
• Newton :

  (6.61)m m    CMg S f T a

Remarque :
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• L’haltère est formé d’une poignée, d’un cylindre de rayon r, et 
de deux disques de rayon R (où R >> r). Son moment d’inertie 
est la somme des moments d’inertie. 
ICM = ICM(poignée) + 2ICM(disque)

• Objet : haltère
• Forces : poids mg, soutien S, frottement f, tension T
• Newton :

Selon ex :

Selon ey :

  (6.61)m m    CMg S f T a

Remarque :
On ne peut pas a priori donner le sens du frottement f qui est horizontal f = fex où f 

CMcos   (6.62)f T ma 

0sin   (6.63)mg S T   


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• Rotation (par rapport au centre de masse) :

Selon ez :

    CMI  ext
CM CM CM CMM M f M T ω

CM CM   (6.64)Rf rT I    
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• Rotation (par rapport au centre de masse) :

Selon ez :

    CMI  ext
CM CM CM CMM M f M T ω

CM CM   (6.64)Rf rT I    

• Liaison (l’haltère roule sans glisser : vitesse du point de contact nulle) :

CM CM CM CMv R a R    
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• Rotation (par rapport au centre de masse) :

Selon ez :

    CMI  ext
CM CM CM CMM M f M T ω

CM CM   (6.64)Rf rT I    

• Liaison (l’haltère roule sans glisser : vitesse du point de contact nulle) :

CM CM CM CMv R a R    

• Résolution : Soit   CM et CMa a R  

   2
CM

CM

cos
cos

f T mR
R r T mR I

Rf rT I
 

 


  
      




 2
CM

cos
  et

R r
T

mR I
 

 



2

CM

cos
  (6.65)

r
Ra R T

I
m

R





 



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• Rotation (par rapport au centre de masse) :

Selon ez :

    CMI  ext
CM CM CM CMM M f M T ω

CM CM   (6.64)Rf rT I    

• Liaison (l’haltère roule sans glisser : vitesse du point de contact nulle) :

CM CM CM CMv R a R    

• Résolution : Soit   CM et CMa a R  

   2
CM

CM

cos
cos

f T mR
R r T mR I

Rf rT I
 

 


  
      




 2
CM

cos
  et

R r
T

mR I
 

 



2

CM

cos
  (6.65)

r
Ra R T

I
m

R





 




• Discussion :
• Si , l’haltère accélère vers la droite (a > 0).

• Si , l’haltère accélère vers la gauche (a < 0).

• Si , l’haltère est immobile (a = 0). 

cos
r
R

 

cos
r
R

 

cos
r
R

 
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Expérience : Roulement d’une bobine tirée par un fil
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Expérience : Roulement d’une bobine tirée par un fil

• Si l’angle  entre le fil de la bobine et la verticale est tel que , la
bobine se déplace vers la droite.

• Si , la bobine se déplace vers la gauche.

• Si , la bobine tourne sur place. Cet angle est tel que le fil se
trouve dans le prolongement du point de contact entre la bobine et la surface
horizontale.

 arccos r R 

 arccos r R 

 arccos r R 
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6.6 Théorème de l’énergie 
cinétique d’un solide
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• Le théorème de l’énergie cinétique associée au mouvement du centre de masse d’un
corps d’une position initiale r1 à une position finale r2 s’écrit :

où

avec Fext la résultante des forces extérieures.

    1 22 1 ext
cin,CM cin,CM   (6.66)E E W 

22
1 2 1

1
2

ext
cin,CM CM   et  E mv W d   ext

CMF r
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• Le théorème de l’énergie cinétique associée au mouvement du centre de masse d’un
corps d’une position initiale r1 à une position finale r2 s’écrit :

où

avec Fext la résultante des forces extérieures.

    1 22 1 ext
cin,CM cin,CM   (6.66)E E W 

22
1 2 1

1
2

ext
cin,CM CM   et  E mv W d   ext

CMF r

• La dérivée temporelle de l’énergie cinétique du centre de masse s’écrit :

cin,CM   (6.67)E  ext
CMF v
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• Un corps est un ensemble de points matériels.

• L’énergie cinétique du corps s’écrit :

21
2cin   (6.68)i i

i

E m v
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• Un corps est un ensemble de points matériels.

• L’énergie cinétique du corps s’écrit :

21
2cin   (6.68)i i

i

E m v

• La variation d’énergie cinétique est due au travail des forces qui s’exercent sur chaque
point matériel.

cin   (6.69)
i i i

E        ext int
i i i i i iF v F v F v

Ainsi, ext int
cin   (6.70)

i i

dE d d W W       ext int
i i i iF r F r
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• Un corps est un ensemble de points matériels.

• L’énergie cinétique du corps s’écrit :

21
2cin   (6.68)i i

i

E m v

• La variation d’énergie cinétique est due au travail des forces qui s’exercent sur chaque
point matériel.

cin   (6.69)
i i i

E        ext int
i i i i i iF v F v F v

Ainsi,

• La variation d’énergie cinétique (totale) du corps est donnée par le travail des forces
intérieures et extérieures.

ext int
cin   (6.70)

i i

dE d d W W       ext int
i i i iF r F r

    1 2 1 22 1 ext int
cin cin +   (6.71)E E W W  
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• Le mouvement d’un solide indéformable est caractérisé par la
vitesse vCM du CM et la vitesse angulaire de rotation autour du
centre de masse CM.
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• Le mouvement d’un solide indéformable est caractérisé par la
vitesse vCM du CM et la vitesse angulaire de rotation autour du
centre de masse CM.

• La vitesse d’un point matériel du solide s’écrit :

car le point matériel de masse mi a un mouvement circulaire autour du centre de masse.

+   où       i CM i CM CM i i CM iv v v ' v ω r' v ' ω r'
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• Le mouvement d’un solide indéformable est caractérisé par la
vitesse vCM du CM et la vitesse angulaire de rotation autour du
centre de masse CM.

• La vitesse d’un point matériel du solide s’écrit :

car le point matériel de masse mi a un mouvement circulaire autour du centre de masse.

+   où       i CM i CM CM i i CM iv v v ' v ω r' v ' ω r'

• Son énergie cinétique s’écrit :

 221 1
2 2cin  =i i i

i i

E m v m    CM CM iv ω r'
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Ainsi,   



2 2 2

2 2 2

2 2

1 2
2

1 1
2 2

1 1
2 2

CM

cin CM CM

CM CM

CM CM CM

i i
i

i i
i

I

E m v r

mv m m r

mv I










    

 
   

           
 

 





CM CM i

CM CM CM

0

v ω r'

v ω r '


'

'
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Ainsi,   



2 2 2

2 2 2

2 2

1 2
2

1 1
2 2

1 1
2 2

CM

cin CM CM

CM CM

CM CM CM

i i
i

i i
i

I

E m v r

mv m m r

mv I










    

 
   

           
 

 





CM CM i

CM CM CM

0

v ω r'

v ω r '


'

'

• L’énergie cinétique est la somme de l’énergie cinétique du centre de masse Ecin,CM et 
de l’énergie cinétique de rotation propre Ecin,rot du solide autour du centre de masse :

cin cin,CM cin,rot   (6.72)E E E 

1
2

2
cin,CM CM   (6.73)E mvoù 1

2
2

cin,rot CM CM   (6.74)E I et


