
Semestre du printemps 2025

Leçon 19 – 06/05/2025

Physique – Mise à niveau

6. Rotation en deux dimensions

• 6.4 Théorème du  moment cinétique

• 6.5 Référentiel du centre de masse
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En effet, c’est une conséquence du théorème du moment cinétique :

• MS = r  F = 0  LS = LSez = cste
• LS = rsin mv = cste
• dA = (1/2)rds sin

Ainsi, la vitesse aréolaire s’écrit :
1 1
2 2 2

sin sin cstesLdA ds
A r rv

dt dt m
     

3ème loi de Kepler :



6.4.6 Lois de Kepler

3Physique – Mise à niveau

En effet, c’est une conséquence du théorème du moment cinétique :

• MS = r  F = 0  LS = LSez = cste
• LS = rsin mv = cste
• dA = (1/2)rds sin

Ainsi, la vitesse aréolaire s’écrit :
1 1
2 2 2

sin sin cstesLdA ds
A r rv

dt dt m
     

3ème loi de Kepler :

Le rapport de la période de révolution T de la planète au carré
divisée par le demi-grand axe a de l’ellipse au cube est une
constante. 2

3 cste  (6.19)
T
a


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Expérience :
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Expérience : Force centrale et 2ème loi de Kepler



6.4.6 Lois de Kepler
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Expérience : Force centrale et 2ème loi de Kepler

• La force de gravitation, comme la tension du fil attaché au puck, est une force 
centrale dirigée en tout temps vers un point fixe, à savoir le soleil.

• Les aires balayées durant des intervalles de temps égaux sont égales.
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2ème loi de Newton (translation)

  (6.20)im i i iF P a
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2ème loi de Newton (translation)

  (6.20)im i i iF P a

2ème loi de Newton (rotation)

 (6.21)A,i A,iM L
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2ème loi de Newton (translation)

  (6.20)im i i iF P a

2ème loi de Newton (rotation)

 (6.21)A,i A,iM L

• La quantité de mouvement P et le moment cinétique LA par rapport au point A sont
des grandeurs extensives.
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2ème loi de Newton (translation)

  (6.20)im i i iF P a

2ème loi de Newton (rotation)

 (6.21)A,i A,iM L

• La quantité de mouvement P et le moment cinétique LA par rapport au point A sont
des grandeurs extensives.

• La quantité de mouvement totale de l’objet est :

  (6.22)
i

 iP P
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2ème loi de Newton (translation)

  (6.20)im i i iF P a

2ème loi de Newton (rotation)

 (6.21)A,i A,iM L

• La quantité de mouvement P et le moment cinétique LA par rapport au point A sont
des grandeurs extensives.

• La quantité de mouvement totale de l’objet est :

  (6.22)
i

 iP P

• Le moment cinétique total de l’objet par rapport au point A est :

  (6.23)
i

A A,iL L
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• On applique la 3ème loi de Newton (action-réaction).
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• On applique la 3ème loi de Newton (action-réaction).

• Les forces intérieures s’annulent deux à deux :
F12 = - F21 ou F12 + F21 = 0



6.4.7 Système de points matériels (objet)

16Physique – Mise à niveau

• On applique la 3ème loi de Newton (action-réaction).

• Les forces intérieures s’annulent deux à deux :
F12 = - F21 ou F12 + F21 = 0

• Les moments des forces intérieures s’annulent aussi deux à deux :
MA(F12) + MA(F21) = 0

En effet,
MA(F21) = bF21ez et MA(F12) = -bF12ez où F21 = F12
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• On applique la 3ème loi de Newton (action-réaction).

• Les forces intérieures s’annulent deux à deux :
F12 = - F21 ou F12 + F21 = 0

• Les moments des forces intérieures s’annulent aussi deux à deux :
MA(F12) + MA(F21) = 0

En effet,
MA(F21) = bF21ez et MA(F12) = -bF12ez où F21 = F12

• Ainsi, seules les forces extérieures et les moments de forces extérieures déterminent
le mouvement d’un objet :

  et    (6.24)m  ext ext
CM A AF P a M L 
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On considère un objet solide indéformable en rotation autour d’un axe passant par un
point A. Les positions relatives des parties de masse mi ne changent pas (« tout bouge
ensemble »).
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On considère un objet solide indéformable en rotation autour d’un axe passant par un
point A. Les positions relatives des parties de masse mi ne changent pas (« tout bouge
ensemble »).

• La dérivée temporelle de l’angle i repérant la masse mi

est identique pour tous les mi . C’est la vitesse angulaire

de rotation A du solide autour du point A :

  (6.25)i A i  
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On considère un objet solide indéformable en rotation autour d’un axe passant par un
point A. Les positions relatives des parties de masse mi ne changent pas (« tout bouge
ensemble »).

• La dérivée temporelle de l’angle i repérant la masse mi

est identique pour tous les mi . C’est la vitesse angulaire

de rotation A du solide autour du point A :

  (6.25)i A i  

• La vitesse scalaire de mi (d’abscisse curviligne si = ri i ) est :

i i i i i Av s r r   
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• Le moment cinétique de la masse mi par rapport à A s’écrit :
2  où , ,A i z A i i i i i i AL L r m v m r   A,iL e
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• Le moment cinétique de la masse mi par rapport à A s’écrit :
2  où , ,A i z A i i i i i i AL L r m v m r   A,iL e

• Le moment cinétique du solide par rapport à A s’écrit :

2   (6.26)i i A z A A z
i i

m r I  
   

 
 A A,iL L e e
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• Le moment cinétique de la masse mi par rapport à A s’écrit :
2  où , ,A i z A i i i i i i AL L r m v m r   A,iL e

• Le moment cinétique du solide par rapport à A s’écrit :

2   (6.26)i i A z A A z
i i

m r I  
   

 
 A A,iL L e e

• Le moment d’inertie du solide par rapport à un axe de symétrie passant par A est
défini comme :

2   (6.27)A i i
i

I m r • Unité physique (SI) : [kg.m2]
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• Le moment cinétique de la masse mi par rapport à A s’écrit :
2  où , ,A i z A i i i i i i AL L r m v m r   A,iL e

• Le moment cinétique du solide par rapport à A s’écrit :

2   (6.26)i i A z A A z
i i

m r I  
   

 
 A A,iL L e e

• Le moment d’inertie du solide par rapport à un axe de symétrie passant par A est
défini comme :

2   (6.27)A i i
i

I m r • Unité physique (SI) : [kg.m2]

C’est une caractéristique du solide dépendant de sa masse et de la répartition de celle-ci :
plus la masse est éloignée de l’axe de rotation, plus le moment d’inertie est grand.
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Expérience :
1. 2.

ez
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Expérience : Tabouret tournant
1. 2.

ez

• En l’absence de moment de forces extérieures, , le moment cinétique LCM

de l’étudiant est conservé : LCM = ICMCMez = cste.

• Ainsi, s’il éloigne les haltères de son corps (12), son moment d’inertie ICM
augmente et sa vitesse angulaire CM diminue et vice versa.

ext
CMM 0
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Expérience :
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Expérience : Roue de vélo sur un tabouret
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Expérience : Roue de vélo sur un tabouret

• Un étudiant assis sur un tabouret déplace une roue en rotation rapide d’une
position initiale où la roue tourne dans un plan vertical à une position finale où
la roue tourne dans un plan horizontal. En position finale, l’étudiant tourne
dans le sens inverse de la roue pour que la composante verticale du moment
cinétique LCM,z reste nulle.
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Remarque :
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• Vitesse angulaire vectorielle A : on associe à la rotation le vecteur A parallèle à
l’axe de rotation, de sens donné par la règle du tire-bouchon et de norme A (unité
(SI) : [rad.s-1]).

Remarque :
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• Vitesse angulaire vectorielle A : on associe à la rotation le vecteur A parallèle à
l’axe de rotation, de sens donné par la règle du tire-bouchon et de norme A (unité
(SI) : [rad.s-1]).

Remarque :

La vitesse de la partie mi en mouvement circulaire autour de A s’écrit alors :

  (6.28)i i Av ω r
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• Vitesse angulaire vectorielle A : on associe à la rotation le vecteur A parallèle à
l’axe de rotation, de sens donné par la règle du tire-bouchon et de norme A (unité
(SI) : [rad.s-1]).

Remarque :

La vitesse de la partie mi en mouvement circulaire autour de A s’écrit alors :

  (6.28)i i Av ω r

• Pour une rotation autour d’un axe de symétrie de l’objet :

  (6.29)AIA AL ω   (6.30)AIA AM ω
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• Vitesse angulaire vectorielle A : on associe à la rotation le vecteur A parallèle à
l’axe de rotation, de sens donné par la règle du tire-bouchon et de norme A (unité
(SI) : [rad.s-1]).

Remarque :

La vitesse de la partie mi en mouvement circulaire autour de A s’écrit alors :

  (6.28)i i Av ω r

• Pour une rotation autour d’un axe de symétrie de l’objet :

  (6.29)AIA AL ω   (6.30)AIA AM ω

où est le vecteur accélération angulaire du solide autour de l’axe passant par A.Aω
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• Vitesse angulaire vectorielle A : on associe à la rotation le vecteur A parallèle à
l’axe de rotation, de sens donné par la règle du tire-bouchon et de norme A (unité
(SI) : [rad.s-1]).

Remarque :

La vitesse de la partie mi en mouvement circulaire autour de A s’écrit alors :

  (6.28)i i Av ω r

• Pour une rotation autour d’un axe de symétrie de l’objet :

  (6.29)AIA AL ω   (6.30)AIA AM ω

où est le vecteur accélération angulaire du solide autour de l’axe passant par A.Aω
Translation Rotation

mext
CMF v AIext

A AM ω

IA = moment d’inertiem = masse d’inertie

Analogie
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1. Anneau (cercle) ou cylindre creux par rapport à l’axe de symétrie passant par le
centre de masse :
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1. Anneau (cercle) ou cylindre creux par rapport à l’axe de symétrie passant par le
centre de masse :

• ri = R   i
2 2 2

CM   (6.31)i i i
i i

I m r m R mR    
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1. Anneau (cercle) ou cylindre creux par rapport à l’axe de symétrie passant par le
centre de masse :

• ri = R   i
2 2 2

CM   (6.31)i i i
i i

I m r m R mR    

2. Disque ou cylindre plein par rapport à l’axe de symétrie passant par le centre de 
masse :

21
2CM   (6.32)I mR 
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3. Sphère creuse par rapport à un axe de symétrie passant par le centre de masse :

22
3CM   (6.33)I mR 
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3. Sphère creuse par rapport à un axe de symétrie passant par le centre de masse :

22
3CM   (6.33)I mR 

4. Boule par rapport à un axe de symétrie passant par le centre de masse :

22
5CM   (6.34)I mR 
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3. Sphère creuse par rapport à un axe de symétrie passant par le centre de masse :

22
3CM   (6.33)I mR 

4. Boule par rapport à un axe de symétrie passant par le centre de masse :

22
5CM   (6.34)I mR 

5. Tige mince par rapport à un axe de symétrie passant par le centre de masse :

21
12CM   (6.35)I mL 
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Jakob Steiner
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6. Règle de Steiner :

Connaissant ICM par rapport à un axe passant par le CM, on cherche à déterminer IA par
rapport à un axe parallèle passant par A.

Jakob Steiner
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6. Règle de Steiner :

Connaissant ICM par rapport à un axe passant par le CM, on cherche à déterminer IA par
rapport à un axe parallèle passant par A.

Jakob Steiner

   



2 2 2

2 2 2

2

2

2

2 CM

  où  

i i

A i i i i i i
i i i i

r d r

I m r m d m m r

md m I


   

        

     

   

   

i CM i CM

i i i

i

CM

0

r r r' r d

d r' d r' d r'

d r'

d r '

'

'
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6. Règle de Steiner :

Connaissant ICM par rapport à un axe passant par le CM, on cherche à déterminer IA par
rapport à un axe parallèle passant par A.

Jakob Steiner

   



2 2 2

2 2 2

2

2

2

2 CM

  où  

i i

A i i i i i i
i i i i

r d r

I m r m d m m r

md m I


   

        

     

   

   

i CM i CM

i i i

i

CM

0

r r r' r d

d r' d r' d r'

d r'

d r '

'

'

2
CM   (6.36)AI I md 
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Expérience :
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Expérience : Moment d’inertie variable
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Expérience : Moment d’inertie variable

• En variant l’écartement des deux masses sur la barre, on modifie le moment
d’inertie. Plus les masses sont proches de l’axe de rotation, plus le moment
d’inertie ICM est petit et plus l’accélération angulaire est grande, et vice
versa, car

CM

CMI ext
CM CMM ω cste
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6.4.10 Fil enroulé sur une roue d’axe vertical
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On considère un fil de masse négligeable enroulé sur une roue de rayon R et d’axe vertical

fixe. On tire sur le fil avec une force F constante. On veut déterminer .A
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On considère un fil de masse négligeable enroulé sur une roue de rayon R et d’axe vertical

fixe. On tire sur le fil avec une force F constante. On veut déterminer .

Objet : roue de masse m et de rayon R
Forces horizontales : F et soutien S
Translation (CM immobile) : F + S = 0

A
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On considère un fil de masse négligeable enroulé sur une roue de rayon R et d’axe vertical

fixe. On tire sur le fil avec une force F constante. On veut déterminer .

Objet : roue de masse m et de rayon R
Forces horizontales : F et soutien S
Translation (CM immobile) : F + S = 0

Rotation (par rapport à A  CM) :

Selon ez : 

1. Anneau :

2. Disque :

  AI A A AM F L ω 

A A A
A

RF
RF I

I
    

2A
RF F

mR mR
  

2

2
1
2

A
RF F

mRmR
  

(même masse m et rayon R)

A
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On considère un fil de masse négligeable enroulé sur une roue de rayon R et d’axe vertical

fixe. On tire sur le fil avec une force F constante. On veut déterminer .

Objet : roue de masse m et de rayon R
Forces horizontales : F et soutien S
Translation (CM immobile) : F + S = 0

Rotation (par rapport à A  CM) :

Selon ez : 

1. Anneau :

2. Disque :

  AI A A AM F L ω 

A A A
A

RF
RF I

I
    

2A
RF F

mR mR
  

2

2
1
2

A
RF F

mRmR
  

(même masse m et rayon R)

L’accélération angulaire du disque vaut deux fois celle 
de l’anneau.

A
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On considère un glisseur de masse M sur un rail à air horizontal. Il est attaché à un fil qui
coulisse sur une poulie de moment d’inertie IA et il est entraîné par un contrepoids de
masse m. On veut déterminer .A
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On considère un glisseur de masse M sur un rail à air horizontal. Il est attaché à un fil qui
coulisse sur une poulie de moment d’inertie IA et il est entraîné par un contrepoids de
masse m. On veut déterminer .

Méthode : On considère le glisseur, le contrepoids et la
poulie séparément et ensuite les liens entre les objets.

A
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On considère un glisseur de masse M sur un rail à air horizontal. Il est attaché à un fil qui
coulisse sur une poulie de moment d’inertie IA et il est entraîné par un contrepoids de
masse m. On veut déterminer .

Méthode : On considère le glisseur, le contrepoids et la
poulie séparément et ensuite les liens entre les objets.

1. Objet : glisseur de masse M (translation horizontale)

Forces : poids Mg, soutien S, tension du fil T

Newton : Mg + S + T = MaM

Selon ex : T = MaM

A
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2. Objet : contrepoids (translation verticale)
Forces : poids mg, tension T’

Newton : mg + T’ = mam

Selon ey : mg – T’ = mam
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2. Objet : contrepoids (translation verticale)
Forces : poids mg, tension T’

Newton : mg + T’ = mam

Selon ey : mg – T’ = mam

3. Objet : poulie (rotation)

Forces : poids m’g, soutien N, tensions -T et -T’

Rotation par rapport à A :
Selon ez :

       ' Am I
 

     A A A A A

0 0

M g M N M T M T' ω 

' A ART RT I    
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2. Objet : contrepoids (translation verticale)
Forces : poids mg, tension T’

Newton : mg + T’ = mam

Selon ey : mg – T’ = mam

3. Objet : poulie (rotation)

Forces : poids m’g, soutien N, tensions -T et -T’

Rotation par rapport à A :
Selon ez :

       ' Am I
 

     A A A A A

0 0

M g M N M T M T' ω 

' A ART RT I    

• Si le moment d’inertie est non-nul, i.e., IA  0, alors les normes des tensions sont
différentes, i.e., T  T’.
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4. Liaison glisseur-poulie : La vitesse scalaire vM du glisseur est la même que celle d’un
point sur le bord de la poulie (frottement statique) dont la vitesse angulaire est A.

M A M Av R a R    
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4. Liaison glisseur-poulie : La vitesse scalaire vM du glisseur est la même que celle d’un
point sur le bord de la poulie (frottement statique) dont la vitesse angulaire est A.

M A M Av R a R    

5. Liaison poulie-contrepoids : La vitesse scalaire vm du contrepoids est la même que
celle d’un point du bord de la poulie.

m A m A m Mv R a R a a a      
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4. Liaison glisseur-poulie : La vitesse scalaire vM du glisseur est la même que celle d’un
point sur le bord de la poulie (frottement statique) dont la vitesse angulaire est A.

M A M Av R a R    

5. Liaison poulie-contrepoids : La vitesse scalaire vm du contrepoids est la même que
celle d’un point du bord de la poulie.

m A m A m Mv R a R a a a      

6. Résolution :   A et ICM  IA

 2 2

CM

'
'

CM

T Ma MR
mg T ma mR mgR MR mR I

RT RT I


 



  
      
   


 


2 2

CM

  (6.37)
mgR

MR mR I
 

 

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Un pendule physique est un solide suspendu à un point fixe A.
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Un pendule physique est un solide suspendu à un point fixe A.

Objet : solide
Forces : poids mg, soutien S
Rotation par rapport à A :

  Am I ext
A A AM M g ω
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Un pendule physique est un solide suspendu à un point fixe A.

Objet : solide
Forces : poids mg, soutien S
Rotation par rapport à A :

• Selon ez (donnant le sens positif pour  qui augmente) :

  Am I ext
A A AM M g ω

sin A A Ad mg I I     
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Un pendule physique est un solide suspendu à un point fixe A.

Objet : solide
Forces : poids mg, soutien S
Rotation par rapport à A :

• Selon ez (donnant le sens positif pour  qui augmente) :

  Am I ext
A A AM M g ω

sin A A Ad mg I I     

• Soit 2 0
A

mgd
I

    2sin   (6.38)  
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Un pendule physique est un solide suspendu à un point fixe A.

Objet : solide
Forces : poids mg, soutien S
Rotation par rapport à A :

• Selon ez (donnant le sens positif pour  qui augmente) :

  Am I ext
A A AM M g ω

sin A A Ad mg I I     

• Soit

• Dans l’approximation des petits angles :  << 1  sin  

2 0
A

mgd
I

    2sin   (6.38)  

2   (6.39)   (oscillateur harmonique)
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Un pendule physique est un solide suspendu à un point fixe A.

Objet : solide
Forces : poids mg, soutien S
Rotation par rapport à A :

• Selon ez (donnant le sens positif pour  qui augmente) :

  Am I ext
A A AM M g ω

sin A A Ad mg I I     

• Soit

• Dans l’approximation des petits angles :  << 1  sin  

• Plus IA est grand, plus la période d’oscillation est longue.

2 0
A

mgd
I

    2sin   (6.38)  

2   (6.39)   (oscillateur harmonique)
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Expérience :
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Expérience : Pendule physique
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Expérience : Pendule physique

• On constate que la période d’oscillation du pendule physique est une fonction
de la position de l’axe de rotation qui détermine le moment d’inertie.
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Expérience : Pendule physique

• On constate que la période d’oscillation du pendule physique est une fonction
de la position de l’axe de rotation qui détermine le moment d’inertie.

• Plus IA est grand, plus la période d’oscillation est longue.

22 2 CM  et  A
A

I
T I I md

mgd
    

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6.5 Référentiel du centre de 
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• Par rapport à un référentiel d’inertie muni d’une origine O, la 2ème loi de Newton en
translation et en rotation pour un point matériel s’exprime comme :

  et   (6.40)i im i O,i O,iF a M L  
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• Par rapport à un référentiel d’inertie muni d’une origine O, la 2ème loi de Newton en
translation et en rotation pour un point matériel s’exprime comme :

  et   (6.40)i im i O,i O,iF a M L  

• On considère un objet formé de points matériels et on note aCM l’accélération de son
centre de masse.
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• Par rapport à un référentiel d’inertie muni d’une origine O, la 2ème loi de Newton en
translation et en rotation pour un point matériel s’exprime comme :

  et   (6.40)i im i O,i O,iF a M L  

• On considère un objet formé de points matériels et on note aCM l’accélération de son
centre de masse.

• On se limite au cas où le centre de masse a un mouvement rectiligne (translation) par
rapport au référentiel d’inertie.
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• Par rapport à un référentiel d’inertie muni d’une origine O, la 2ème loi de Newton en
translation et en rotation pour un point matériel s’exprime comme :

  et   (6.40)i im i O,i O,iF a M L  

• On considère un objet formé de points matériels et on note aCM l’accélération de son
centre de masse.

• On se limite au cas où le centre de masse a un mouvement rectiligne (translation) par
rapport au référentiel d’inertie.

• Les grandeurs cinématiques (position, vitesse, accélération) dans le référentielR’ du
centre de masse sont liées aux grandeurs correspondantes dans le référentiel

d’inertieR par :
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• Référentiel d’inertie : R
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• Référentiel d’inertie : R
• Référentiel du centre de masse : R’
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• Référentiel d’inertie : R
• Référentiel du centre de masse : R’
1. Position :

     (6.41)
 

 i CM ir r r'
'
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• Référentiel d’inertie : R
• Référentiel du centre de masse : R’
1. Position :

     (6.41)
 

 i CM ir r r'
'

2. Vitesse : = +   (6.42)i CM iv v v '
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• Référentiel d’inertie : R
• Référentiel du centre de masse : R’
1. Position :

     (6.41)
 

 i CM ir r r'
'

2. Vitesse : = +   (6.42)i CM iv v v '

3. Accélération : = +   (6.43)i CM ia a a '
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• Référentiel d’inertie : R
• Référentiel du centre de masse : R’
1. Position :

     (6.41)
 

 i CM ir r r'
'

2. Vitesse : = +   (6.42)i CM iv v v '

3. Accélération : = +   (6.43)i CM ia a a '

• Le centre de masse (CM) est immobile par rapport à R’.
;    et    (6.44)  CM CM CMr ' 0 v ' 0 a ' 0
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Remarque :

Chute libre en voiture
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• 2ème loi de Newton (référentiel d’inertie R) :

  où    (6.45)im  i i i CM iF a a a a '

Remarque :

Chute libre en voiture



6.5.1 Force d’inertie et 6.5.2 chute libre en voiture

97Physique – Mise à niveau

• 2ème loi de Newton (référentiel d’inertie R) :

  où    (6.45)im  i i i CM iF a a a a '

• 2ème loi de Newton (référentiel du centre de masse R’) :
  (6.46)i im m i CM iF a a ' où le terme -miaCM est une force appelée « force d’inertie ».

Remarque :

Chute libre en voiture
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• 2ème loi de Newton (référentiel d’inertie R) :

  où    (6.45)im  i i i CM iF a a a a '

• 2ème loi de Newton (référentiel du centre de masse R’) :
  (6.46)i im m i CM iF a a ' où le terme -miaCM est une force appelée « force d’inertie ».

Remarque :
Si le référentiel du centre de masse a un mouvement de rotation par rapport au référentiel
d’inertie, il faut ajouter d’autres forces d’inertie (centrifuge, Coriolis, Euler).

Chute libre en voiture
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• 2ème loi de Newton (référentiel d’inertie R) :

  où    (6.45)im  i i i CM iF a a a a '

• 2ème loi de Newton (référentiel du centre de masse R’) :
  (6.46)i im m i CM iF a a ' où le terme -miaCM est une force appelée « force d’inertie ».

Remarque :
Si le référentiel du centre de masse a un mouvement de rotation par rapport au référentiel
d’inertie, il faut ajouter d’autres forces d’inertie (centrifuge, Coriolis, Euler).

Chute libre en voiture
Objet : masse m
Forces : poids mg, force d’inertie -maCM

Référentiel : centre de masse de la voiture
Newton : mg – maCM = ma’ 

  (6.47)  CMa' g a



6.5.3 Théorème du moment cinétique pour un solide

100Physique – Mise à niveau



6.5.3 Théorème du moment cinétique pour un solide

101Physique – Mise à niveau

• Le moment de la force Fi par rapport à l’origine O s’écrit :

     (6.48)i i        
CM,i

O,i i i CM i CM i i

M

M r F r r' F r F r' F
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• Le moment de la force Fi par rapport à l’origine O s’écrit :

     (6.48)i i        
CM,i

O,i i i CM i CM i i

M

M r F r r' F r F r' F

• La somme des moments de force (6.48) est :
 (6.49)

i i i

        ext ext ext ext ext ext
O O,i CM i CM,i CM CMM M r F M r F M  
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• Le moment de la force Fi par rapport à l’origine O s’écrit :

     (6.48)i i        
CM,i

O,i i i CM i CM i i

M

M r F r r' F r F r' F

• La somme des moments de force (6.48) est :
 (6.49)

i i i

        ext ext ext ext ext ext
O O,i CM i CM,i CM CMM M r F M r F M  

• Le moment cinétique par rapport à l’origine O s’écrit :
   i im m     O,i i i CM i CM iL r v r r' v v '

  (6.50)i i i im m m m        
CM,i

O,i CM CM CM i i CM i i

L

L r v r v ' r' v r' v '
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• Le moment de la force Fi par rapport à l’origine O s’écrit :

     (6.48)i i        
CM,i

O,i i i CM i CM i i

M

M r F r r' F r F r' F

• La somme des moments de force (6.48) est :
 (6.49)

i i i

        ext ext ext ext ext ext
O O,i CM i CM,i CM CMM M r F M r F M  

• Le moment cinétique par rapport à l’origine O s’écrit :
   i im m     O,i i i CM i CM iL r v r r' v v '

  (6.50)i i i im m m m        
CM,i

O,i CM CM CM i i CM i i

L

L r v r v ' r' v r' v '

• La somme des moments cinétiques (6.50) est égale à :

 

i i i
i i i i i

m m m

m m m
 

       

      

    O O,i CM CM CM i i CM CM,i

CM CM CM CM CM CM CM

0 0

L L r v r v ' r' v L

r v r v ' r ' v L
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  (6.51)m  O CM CM CML r v L
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  (6.51)m  O CM CM CML r v L

• La dérivée temporelle de (6.51) s’écrit :

 m m


    
CM

O CM CM CM CM CM

v

L r v r v L  

  (6.52)m  O CM CM CML r a L 
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  (6.51)m  O CM CM CML r v L

• La dérivée temporelle de (6.51) s’écrit :

 m m


    
CM

O CM CM CM CM CM

v

L r v r v L  

  (6.52)m  O CM CM CML r a L 

• Le théorème du moment cinétique pour un solide devient :

ext
O OM L (O est un point fixe)

  où  m m      ext ext ext
CM CM CM CM CM CMr F M r a L F a
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  (6.51)m  O CM CM CML r v L

• La dérivée temporelle de (6.51) s’écrit :

 m m


    
CM

O CM CM CM CM CM

v

L r v r v L  

  (6.52)m  O CM CM CML r a L 

• Le théorème du moment cinétique pour un solide devient :

ext
O OM L (O est un point fixe)

  où  m m      ext ext ext
CM CM CM CM CM CMr F M r a L F a

• Ainsi,

Ce théorème est valable même si le centre de masse est accéléré.

  (6.53)ext
CM CMM L


