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Physique – Mise à niveau

4. Énergie

• 4.3 Puissance

5. Oscillateur harmonique

• 5.1 Évolution

• 5.2 Caractéristiques

• 5.3 Énergie mécanique
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Pour un système donné, l’énergie sous une forme donnée E (mécanique, électrique,

thermique, …) peut changer au cours du temps. La puissance P mesure l’énergie échangée
avec l’extérieur par unité de temps :

0
lim   (4.35)
t

E dE
P E

t dt 


  



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• Unité physique (SI) : le Watt [W] = [kg.m2.s-3]
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• Unité physique (SI) : le Watt [W] = [kg.m2.s-3]

• La puissance due au travail infinitésimal W d’une force extérieure 
s’écrit :

  (4.36)
ddE W

P
dt dt dt


     ext extCM
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thermique, …) peut changer au cours du temps. La puissance P mesure l’énergie échangée
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• Unité physique (SI) : le Watt [W] = [kg.m2.s-3]

• La puissance due au travail infinitésimal W d’une force extérieure 
s’écrit :

  (4.36)
ddE W

P
dt dt dt


     ext extCM

CM
r

F F v

1.

2.

FextvCM > 0  P > 0 (accélération)

FextvCM < 0  P < 0 (freinage)
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On considère un moteur électrique qui soulève une masse m à vitesse v0 = cste. L’énergie
potentielle gravitationnelle de la masse m augmente dû au travail effectué par le moteur
pour s’opposer au poids :
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On considère un moteur électrique qui soulève une masse m à vitesse v0 = cste. L’énergie
potentielle gravitationnelle de la masse m augmente dû au travail effectué par le moteur
pour s’opposer au poids :

     

0 0 0  (4.37)

W W m ddE
P m

dt dt dt dt
m mgv

  
     

    

CMT g r
g

g v

Remarque :
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On considère un moteur électrique qui soulève une masse m à vitesse v0 = cste. L’énergie
potentielle gravitationnelle de la masse m augmente dû au travail effectué par le moteur
pour s’opposer au poids :

     

0 0 0  (4.37)

W W m ddE
P m

dt dt dt dt
m mgv

  
     

    

CMT g r
g

g v

Remarque :
Comme le moteur fournit de l’énergie potentielle gravitationnelle au système, sa puissance 
est positive.
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On considère l’action d’une force de frottement visqueux f = -vCM où  > 0 sur un
projectile dont le mouvement est rectiligne. On néglige son poids.
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On considère l’action d’une force de frottement visqueux f = -vCM où  > 0 sur un
projectile dont le mouvement est rectiligne. On néglige son poids.

• La puissance due à l’action de la force de frottement est :

  2 0CM

W ddE
P v

dt dt dt


          CM
CM CM

f r
f v v

Remarque :
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On considère l’action d’une force de frottement visqueux f = -vCM où  > 0 sur un
projectile dont le mouvement est rectiligne. On néglige son poids.

• La puissance due à l’action de la force de frottement est :

  2 0CM

W ddE
P v

dt dt dt


          CM
CM CM

f r
f v v

Remarque :
Comme la force de frottement dissipe l’énergie cinétique du projectile, sa puissance est
négative.
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• Le rendement  est une grandeur sans unité physique définie comme le rapport entre
la puissance utile (puissance que la machine délivre) et la puissance fournie (puissance
que la machine reçoit initialement).

utile

fournie

P
P

 

Exemple :
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• Le rendement  est une grandeur sans unité physique définie comme le rapport entre
la puissance utile (puissance que la machine délivre) et la puissance fournie (puissance
que la machine reçoit initialement).

utile

fournie

P
P

 

Exemple : Moteur électrique

Le moteur reçoit une puissance électrique Pél de la prise murale et il
la convertit en puissance mécanique Pméc (mouvement de rotation
de l’axe).

méc

él

P
P

 



4.3.3 Rendement

19Physique – Mise à niveau

• Le rendement  est une grandeur sans unité physique définie comme le rapport entre
la puissance utile (puissance que la machine délivre) et la puissance fournie (puissance
que la machine reçoit initialement).

utile

fournie

P
P

 

Exemple : Moteur électrique

Le moteur reçoit une puissance électrique Pél de la prise murale et il
la convertit en puissance mécanique Pméc (mouvement de rotation
de l’axe).

méc

él

P
P

  Le second principe de la thermodynamique requiert que 0    1.
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Expérience : Moteur de Stirling
1. 2.

Robert Stirling

1. Un brûleur rempli d’alcool échauffe l’air contenu dans un cylindre,
fournissant ainsi de la chaleur au moteur qui est activé par le lancement de la
roue.

2. Une lampe qui se situe au foyer gauche d’un système de miroirs paraboliques
éclaire et chauffe un corps noir qui se trouve au foyer droit. La différence de
température de part et d’autre de la roue à droite entraîne son mouvement.



4.3.3 Rendement

23Physique – Mise à niveau

Expérience :



4.3.3 Rendement

24Physique – Mise à niveau

Expérience : Oiseaux buveurs (exemple de machine thermique)



4.3.3 Rendement

25Physique – Mise à niveau

Expérience : Oiseaux buveurs (exemple de machine thermique)

• L’oiseau est constitué de deux réservoirs reliés par un tube. Un liquide volatile
est enfermé dans l’oiseau.

• Lorsque le bec de l’oiseau est en contact avec de l’eau froide, le liquide
redescend dans le tube ce qui fait basculer l’oiseau en position verticale.

• L’évaporation de l’eau sur le bec provoque une contraction de l’air dans le
tube, ce qui fait monter le liquide et basculer l’oiseau.
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• Lorsque la force extérieure résultante Fext exercée sur un objet est une force élastique
–kd, le mouvement de l’objet est un mouvement oscillatoire harmonique.
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• Lorsque la force extérieure résultante Fext exercée sur un objet est une force élastique
–kd, le mouvement de l’objet est un mouvement oscillatoire harmonique.

• Afin de déterminer l’évolution d’un oscillateur harmonique, on considère le
mouvement d’un objet de masse m fixé à un ressort de constante k et glissant sans
frottement sur une table.
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• Lorsque la force extérieure résultante Fext exercée sur un objet est une force élastique
–kd, le mouvement de l’objet est un mouvement oscillatoire harmonique.

• Afin de déterminer l’évolution d’un oscillateur harmonique, on considère le
mouvement d’un objet de masse m fixé à un ressort de constante k et glissant sans
frottement sur une table.

• On prend comme origine du repère O, l’extrémité du ressort au repos.

• Au repos, la force élastique est nulle, en compression elle est répulsive, et en
élongation elle est attractive.
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1. Au repos 
(force nulle)

2. En compression 
(force répulsive)

3. En élongation (force 
attractive)
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• Loi du mouvement :
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• Loi du mouvement :
• Projections :

  (5.1)m k m  g S d a
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1. Au repos 
(force nulle)

2. En compression 
(force répulsive)

3. En élongation (force 
attractive)

• Forces : poids mg, soutien S, force élastique -kd

• Loi du mouvement :
• Projections :

  (5.1)m k m  g S d a
, , ,y y x xg S x x    g e S e d e a e

Selon ex :   (5.2)kx mx  

Selon ey : 0   (5.3)mg S S mg    

Comme m > 0 et k > 0, on définit . Ainsi, où2
0

k
m

  2
0   (5.4)x x 

2

2

d dx d x
x

dt dt dt
   
 


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• L’évolution d’un mouvement oscillatoire harmonique est une équation du type :

   2
0   (5.5)x t x t 
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• L’évolution d’un mouvement oscillatoire harmonique est une équation du type :

   2
0   (5.5)x t x t 

• Pour résoudre une telle équation, il faut spécifier la valeur initiale de la position et de
la vitesse de l’objet :      0 0 0 0 0  et  x t x v t x t v
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• L’évolution d’un mouvement oscillatoire harmonique est une équation du type :

   2
0   (5.5)x t x t 

• Pour résoudre une telle équation, il faut spécifier la valeur initiale de la position et de
la vitesse de l’objet :      0 0 0 0 0  et  x t x v t x t v

• La solution générale de cette équation s’écrit :

       0
0 0 0 0 0

0

cos sin   (5.6)
v

x t x t t t t 


   
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• L’évolution d’un mouvement oscillatoire harmonique est une équation du type :

   2
0   (5.5)x t x t 

• Pour résoudre une telle équation, il faut spécifier la valeur initiale de la position et de
la vitesse de l’objet :      0 0 0 0 0  et  x t x v t x t v

• La solution générale de cette équation s’écrit :

       0
0 0 0 0 0

0

cos sin   (5.6)
v

x t x t t t t 


   

• Nous allons à présent démontrer que la solution (5.6) satisfait l’équation du
mouvement oscillatoire harmonique (5.5), compte tenu des conditions initiales
(position, vitesse), en la dérivant deux fois par rapport au temps.
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• Les dérivées par rapport au temps des fonctions sinus et cosinus s’écrivent :

       sin cos   et  cos sin
d d

at b a at b at b a at b
dt dt

      
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• Les dérivées par rapport au temps des fonctions sinus et cosinus s’écrivent :

       sin cos   et  cos sin
d d

at b a at b at b a at b
dt dt

      

• Position : (ici, a = 0 et b = - 0t0)

         0
0 0 0 0 0 0 0

0

cos sin
v

x t x t t t t x t x 


     
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• Les dérivées par rapport au temps des fonctions sinus et cosinus s’écrivent :

       sin cos   et  cos sin
d d

at b a at b at b a at b
dt dt

      

• Position : (ici, a = 0 et b = - 0t0)

         0
0 0 0 0 0 0 0

0

cos sin
v

x t x t t t t x t x 


     

• Vitesse :

           0 0 0 0 0 0 0 0 0 0sin cosx t x t t v t t v t x t v          
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• Les dérivées par rapport au temps des fonctions sinus et cosinus s’écrivent :

       sin cos   et  cos sin
d d

at b a at b at b a at b
dt dt

      

• Position : (ici, a = 0 et b = - 0t0)

         0
0 0 0 0 0 0 0

0

cos sin
v

x t x t t t t x t x 


     

• Vitesse :

           0 0 0 0 0 0 0 0 0 0sin cosx t x t t v t t v t x t v          

• Accélération :

       2
0 0 0 0 0 0 0 0cos sinx t x t t v t t       



5.1 Évolution

50Physique – Mise à niveau

• Les dérivées par rapport au temps des fonctions sinus et cosinus s’écrivent :

       sin cos   et  cos sin
d d

at b a at b at b a at b
dt dt

      

• Position : (ici, a = 0 et b = - 0t0)

         0
0 0 0 0 0 0 0

0

cos sin
v

x t x t t t t x t x 


     

• Vitesse :

           0 0 0 0 0 0 0 0 0 0sin cosx t x t t v t t v t x t v          

• Accélération :

       2
0 0 0 0 0 0 0 0cos sinx t x t t v t t       

Ainsi,              2 2 20
0 0 0 0 0 0 0 0

0

cos sin
v

x t x t t t t x t x t x t    


 
          

 
 
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• En utilisant le changement de variables :

0
0

0

cos   et  sin   (5.7)
v

x A A 


  
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• En utilisant le changement de variables :

0
0

0

cos   et  sin   (5.7)
v

x A A 


  

la solution générale du mouvement oscillatoire harmonique devient :

        0 0 0 0cos cos sin sin   (5.8)x t A t t t t      
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• En utilisant le changement de variables :

0
0

0

cos   et  sin   (5.7)
v

x A A 


  

la solution générale du mouvement oscillatoire harmonique devient :

        0 0 0 0cos cos sin sin   (5.8)x t A t t t t      

• Compte tenu de l’identité trigonométrique :

         cos cos cos sin sina b a b a b  
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• En utilisant le changement de variables :

0
0

0

cos   et  sin   (5.7)
v

x A A 


  

la solution générale du mouvement oscillatoire harmonique devient :

        0 0 0 0cos cos sin sin   (5.8)x t A t t t t      

• Compte tenu de l’identité trigonométrique :

         cos cos cos sin sina b a b a b  

l‘équation horaire de l’oscillateur harmonique (5.8) se réduit à :

    0 0cos   (5.9)x t A t t   
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• En utilisant le changement de variables :

0
0

0

cos   et  sin   (5.7)
v

x A A 


  

la solution générale du mouvement oscillatoire harmonique devient :

        0 0 0 0cos cos sin sin   (5.8)x t A t t t t      

• Compte tenu de l’identité trigonométrique :

         cos cos cos sin sina b a b a b  

l‘équation horaire de l’oscillateur harmonique (5.8) se réduit à :

    0 0cos   (5.9)x t A t t   

où en inversant (5.7) on obtient :

0

0 0

0 2 2
0
2 2
0 0

1 1

sin
tan

cos

cos
tan

vA
A x

A A
x A

v
x

 
 







   

   




0

0 0

2
0

0 2 2
0 0

1

arctan

  (5.10)

v
x

v
A x

x






 
  

 

 
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• La solution générale de l’oscillateur harmonique

    0 0cos   (5.9)x t A t t   
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• La solution générale de l’oscillateur harmonique

    0 0cos   (5.9)x t A t t   

décrit une oscillation non-amortie :

1. D’amplitude A : unité [m] (élongation ou compression maximale)

2. De période T : unité [s] (durée d’un cycle d’oscillation)

3. De fréquence  : unité [s-1] = [Hz] (nb de cycles par seconde)

4. De pulsation 0 : unité [rad.s-1]

5. D’angle de déphasage  (translation)

01
2T



 

    0
0

22x t T x t t T T
 


      
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(déphasage  = 0 et t0 = 0)
Conditions initiales x(0) = x0 et v(0) = v0 = 0

.
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(déphasage  = 0 et t0 = 0)
Conditions initiales x(0) = x0 et v(0) = v0 = 0

• Équation horaire :

• Équation de la vitesse :

• Équation du mouvement :

   0 0cosx t x t

     0 0 0sinv t x t x t   

     2
0 0 0cosa t x t x t   

.
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Expérience : Plaques de Chladni
1. 2.

• La plaque est excitée mécaniquement sur ses extrémités à l’aide d’un archet 1.
ou en son centre 2. grâce à un vibreur. On visualise les nœuds de l’onde
stationnaire (mouvement oscillatoire dont les nœuds sont fixes) avec du sable.
La valeur de l’amplitude d’une onde stationnaire oscille au cours du temps.
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Exemple :
Objet de masse m fixé à un ressort de constante élastique k lâché sans vitesse initiale, i.e.,

v0 = 0, d’une position x0 par rapport à la position au repos à l’origine du repère.
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Exemple :
Objet de masse m fixé à un ressort de constante élastique k lâché sans vitesse initiale, i.e.,

v0 = 0, d’une position x0 par rapport à la position au repos à l’origine du repère.

• Conditions initiales :

• Équation horaire :

• Période :

0 00 0et,A x t  

   0 0 0cos   où  
k

x t x t
m

  

0

2 2   (5.11)
m

T
k

 


 
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Exemple :
Objet de masse m fixé à un ressort de constante élastique k lâché sans vitesse initiale, i.e.,

v0 = 0, d’une position x0 par rapport à la position au repos à l’origine du repère.

• Conditions initiales :

• Équation horaire :

• Période :

Ainsi, plus la masse m est grande, plus la période d’oscillation est longue. Plus la constante

du ressort k est grande (grande rigidité), plus la période d’oscillation est courte.

0 00 0et,A x t  

   0 0 0cos   où  
k

x t x t
m

  

0

2 2   (5.11)
m

T
k

 


 
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• Objet : masse m
• Loi du mouvement : mg + T = ma

Selon et : sin   (5.12)mg ms mL     où s L
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• Objet : masse m
• Loi du mouvement : mg + T = ma

Selon en :

Selon et : sin   (5.12)mg ms mL     où s L
2

2cos   (5.13)
mv

mg T mL
L

     

 5 12
2 2sin   où    (5.14)

. g
L

      
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• Objet : masse m
• Loi du mouvement : mg + T = ma

Selon en :

Selon et : sin   (5.12)mg ms mL     où s L
2

2cos   (5.13)
mv

mg T mL
L

     

 5 12
2 2sin   où    (5.14)

. g
L

      

• Il n’y a pas de solution analytique à l’équation (5.14) puisqu’il s’agit d’une équation

transcendante. Dans la limite des petits angles (i.e.,  << 1) alors sin   : (5.14)
  oscillateur harmonique2   (5.15)   
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• Objet : masse m
• Loi du mouvement : mg + T = ma

Selon en :

Selon et : sin   (5.12)mg ms mL     où s L
2

2cos   (5.13)
mv

mg T mL
L

     

 5 12
2 2sin   où    (5.14)

. g
L

      

• Il n’y a pas de solution analytique à l’équation (5.14) puisqu’il s’agit d’une équation

transcendante. Dans la limite des petits angles (i.e.,  << 1) alors sin   : (5.14)
  oscillateur harmonique2   (5.15)   

• Période d’oscillation : 2 2   (5.16)
L

T
g

 


 
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Expérience : Pendule simple

• Si l’angle du fil du pendule avec la verticale reste
suffisamment petit, le mouvement du pendule est un
mouvement oscillatoire harmonique.

• Si l’angle est plus petit qu’environ 10-20°, alors cette
approximation est bonne.
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Expérience : Pendule de torsion avec amortissement

• Un pendule de torsion est constitué d’une barre métallique fixée sur un fil
vertical. Un miroir est fixé sur la barre et un rayon laser est réfléchi par le
miroir sur un écran.

• En donnant un mouvement de torsion à la barre, la réflexion du rayon laser sur
l’écran suit un mouvement harmonique oscillatoire avec amortissement.
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Conservation d’énergie par unité de masse :

 

2 2 2
0 0

1 1
2 2

  (5.17)

U x

x x t   

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Conservation d’énergie par unité de masse :

 

2 2 2
0 0

1 1
2 2

  (5.17)

U x

x x t   


où U(x) est l’énergie potentielle élastique et 0

l’énergie mécanique par unité de masse.

• Pour 0 fixée, l’oscillation a lieu autour de xéq = 
0 et l’amplitude est égale à           .

• Dans le plan             (espace des phases), la 
conservation de l’énergie décrit une ellipse dont 
l’orbite passe par les points                   et  

0

0

2


 ,x x

 00 2, 

0

0

2
0, .




 
  
 
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L’approximation harmonique de l’énergie potentielle U(x) par unité de masse autour d’un
minimum local permet de donner le comportement oscillatoire d’un objet autour d’une

position d’équilibre stable xéq . Le minimum local satisfait la relation . Ainsi,  0éq
dU

x
dx


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L’approximation harmonique de l’énergie potentielle U(x) par unité de masse autour d’un
minimum local permet de donner le comportement oscillatoire d’un objet autour d’une

position d’équilibre stable xéq . Le minimum local satisfait la relation . Ainsi,  0éq
dU

x
dx



       
2

2

2

1
2

éq
éq éq   (5.18)

d U x
U x U x x x

dx
 
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L’approximation harmonique de l’énergie potentielle U(x) par unité de masse autour d’un
minimum local permet de donner le comportement oscillatoire d’un objet autour d’une

position d’équilibre stable xéq . Le minimum local satisfait la relation . Ainsi,  0éq
dU

x
dx



       
2

2

2

1
2

éq
éq éq   (5.18)

d U x
U x U x x x

dx
 

La pulsation de l’oscillateur est donc donnée par  2
2
0 2

éq   (5.19)
d U x

dx
 
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L’approximation harmonique de l’énergie potentielle U(x) par unité de masse autour d’un
minimum local permet de donner le comportement oscillatoire d’un objet autour d’une

position d’équilibre stable xéq . Le minimum local satisfait la relation . Ainsi,  0éq
dU

x
dx



       
2

2

2

1
2

éq
éq éq   (5.18)

d U x
U x U x x x

dx
 

La pulsation de l’oscillateur est donc donnée par  2
2
0 2

éq   (5.19)
d U x

dx
 

Au voisinage de xéq, le graphe de U(x) a un comportement 

parabolique. Dans le plan (espace des phases), les orbites 
sont approximées par des ellipses.

 ,x x
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Expérience : Projection d’un mouvement circulaire uniforme

• La projection du mouvement oscillatoire d’un pendule est superposée à la
projection d’un mouvement circulaire uniforme.

• Un mouvement circulaire uniforme est la combinaison linéaire de deux
mouvements oscillatoires orthogonaux déphasés de 90° (i.e., /2).
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Expérience :
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Expérience : Résonance acoustique – trombone de Koenig

• Lorsqu’on excite acoustiquement le trombone à certaines fréquences, on
obtient une amplification du signal sonore appelée résonance acoustique.
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1. Pont de Tacoma (1940) 2. Modèle mécanique du pont
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Expérience : Résonance mécanique – Pont de Tacoma (1940)

1. Pont de Tacoma (1940) 2. Modèle mécanique du pont

Le pont sur le fleuve Tacoma (USA) s’est effondré en 1940 quand un vent a généré
une résonance du mouvement oscillatoire en torsion dont l’amplitude est devenue
si grande que la structure n’a pas pu résister.
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Expérience :

A B
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Expérience : Synchronisation des métronomes

A B

Six métronomes de même fréquence d’oscillation oscillent sur une même plaque
de bois. Lorsque la plaque peut rouler sur deux cylindres de plexiglas, les
métronomes se synchronisent (A). Sinon, ils se désynchronisent.
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Expérience :
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Expérience : Destruction d’un verre par résonance acoustique

Lorsque le verre est excité acoustiquement à l’aide d’un haut-parleur à sa
fréquence de résonance, il est d’abord déformé, puis il se casse.


