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Physique – Mise à niveau

4. Énergie

• 4.2 Énergie cinétique et travail

• 4.3 Puissance
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• On multiplie la relation (4.8)  par l’intervalle de temps infinitésimal :

cin,CM   (4.9)dE d ext
CMF r

• La variation de l’énergie cinétique est due aux forces extérieures.
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W d
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
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• Le travail des forces extérieures sur le CM pour un déplacement d’une position initiale 

r1 = r(t1) à une position finale r2 = r(t2) est la somme des travaux infinitésimaux :
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• Le travail des forces extérieures sur le CM pour un déplacement d’une position initiale 

r1 = r(t1) à une position finale r2 = r(t2) est la somme des travaux infinitésimaux :
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1 2 1

ext   (4.11)W d   ext
CMF r

Remarque :
Une somme continue est une intégrale. Cette intégrale est calculée par rapport à la 
position qui est fonction du temps.
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• Le travail effectué par les forces extérieures entre t1 et t2 s’écrit :

   
2 2

1 2 1 1
2 1

(4.11) (4.9)
ext

cin,CM cin,CM cin,CMW d dE E E      ext
CMF r
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• Le travail effectué par les forces extérieures entre t1 et t2 s’écrit :

   
2 2

1 2 1 1
2 1

(4.11) (4.9)
ext

cin,CM cin,CM cin,CMW d dE E E      ext
CMF r

• Le théorème de l’énergie cinétique affirme que la variation d’énergie cinétique du CM 
est due au travail des forces extérieures :

    1 22 1 ext
cin,CM cin,CM   (4.12)E E W 
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soumis à une force de frottement f constante opposée à la 

vitesse. Sa vitesse initiale est v1 = v(t1) et on cherche sa vitesse 

finale v(t2) après avoir parcouru une distance l = x2-x1.
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• Un objet de masse m glisse le long d’un plan horizontal. Il est 

soumis à une force de frottement f constante opposée à la 

vitesse. Sa vitesse initiale est v1 = v(t1) et on cherche sa vitesse 

finale v(t2) après avoir parcouru une distance l = x2-x1.

• Objet : masse m
• Forces : poids mg , soutien S, frottement f
• Newton : mg + S + f = ma

1. Newton :

Selon ex : -f = -ma

   

     

   

 

0

0 1 1

2
0 1 1 1 1

2
2 1 0 2 1 1 2 1

2 0 2 1 1

1
2

1
2

cste

v

Ainsi,   

et 

f
a a

m
t a t t v

x t a t t v t t x

l x x a t t v t t

v a t t v

   

    

      

      

   
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Ainsi,   

et 

f
a a

m
t a t t v

x t a t t v t t x

l x x a t t v t t

v a t t v

   

    

      

      

   
   2
2 1 1 2 1 2 2

2 1 0
0 0

22
2

Donc,  et   (4.13)
v v v v v fl

l v v a l
a a m
 

       
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2. Théorème de l’énergie cinétique :

    2 2
2 1

1 12 1
2 2cin,CM cin,CM cin,CME E E mv mv     

Remarque :
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2. Théorème de l’énergie cinétique :

• Objet : masse m
• Forces : poids mg, soutien S, frottement f

    2 2
2 1

1 12 1
2 2cin,CM cin,CM cin,CME E E mv mv     

• Travaux :

   

   

     

     

1 2

1 2

2 2

1 2 2 11 1

1
0 0

2
0 0

3

:

:

:

 car  = cste

.

.

.

x x

m d

W m m d W m

d

W d W

d

W d f dx fdx

W fdx f dx f x x fl f















    



    

      

          

CM

CM

CM

CM

CM

CM

g r

g g r g

S r

S S r S

f r

f f r e e

f



Remarque :
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• Objet : masse m
• Forces : poids mg, soutien S, frottement f

    2 2
2 1

1 12 1
2 2cin,CM cin,CM cin,CME E E mv mv     

• Travaux :

   

   

     

     

1 2

1 2

2 2

1 2 2 11 1

1
0 0

2
0 0

3

:

:

:

 car  = cste

.

.

.

x x

m d

W m m d W m

d

W d W

d

W d f dx fdx

W fdx f dx f x x fl f















    



    

      

          

CM

CM

CM

CM

CM

CM

g r

g g r g

S r

S S r S

f r

f f r e e

f



Ainsi,

Remarque :

  2 2
1 2 1 2 2 1 2 1

2ext
cin,CM   (4.13)

fl
E W W v v v v

m         f
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








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    



    
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CM

CM

CM

CM

CM
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g r

g g r g

S r

S S r S

f r

f f r e e

f



Ainsi,

Remarque : La deuxième méthode est plus efficace.

  2 2
1 2 1 2 2 1 2 1

2ext
cin,CM   (4.13)

fl
E W W v v v v

m         f



4.2.4 Application du théorème de l’énergie cinétique

27Physique – Mise à niveau

Remarques :



4.2.4 Application du théorème de l’énergie cinétique

28Physique – Mise à niveau

• On cherche la distance de freinage df. À l’arrêt, v2 = 0. Ainsi,


2

2 2 1
2 1
0

2 0
2

  (4.14)
mvf

v v df df
m f



     

Remarques :
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• On cherche la distance de freinage df. À l’arrêt, v2 = 0. Ainsi,


2

2 2 1
2 1
0

2 0
2

  (4.14)
mvf

v v df df
m f



     

Remarques :
1. Le travail d’une force est sa contribution à la variation d’énergie cinétique du CM. 

L’énergie cinétique augmente si la force est (partiellement) dans le sens du 
mouvement et elle diminue si la force est (partiellement) opposée.

2. Une force normale au déplacement ne travaille pas.

3. En général, le travail d’une force dépend du chemin suivi par l’objet de la position 

initiale r1 à la position finale r2.
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Forces conservatives
Une force est dite conservative si son travail sur l’objet considéré ne dépend que des
extrémités du chemin que l’objet parcourt, et non du chemin lui-même.

Énergie potentielle de gravitation
• En tout point, le poids de l’objet est identique (champ gravitationnel uniforme). À la

montée, le travail du poids est négatif et à la descente, il est positif.

• Entre les positions r1 = r(t1) et r2 = r(t2), le travail du poids est :



4.2.5 Forces conservatives et 4.2.6 énergie potentielle de gravitation 

33Physique – Mise à niveau

Forces conservatives
Une force est dite conservative si son travail sur l’objet considéré ne dépend que des
extrémités du chemin que l’objet parcourt, et non du chemin lui-même.

Énergie potentielle de gravitation
• En tout point, le poids de l’objet est identique (champ gravitationnel uniforme). À la

montée, le travail du poids est négatif et à la descente, il est positif.

• Entre les positions r1 = r(t1) et r2 = r(t2), le travail du poids est :

 
     

2 2

1 2 1 1
.



   

        

 
  (4.15)

m

W m m d m d

m m m

g cste

CM CM

2 1 1 2

g g r g r

g r r g r g r
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• Le travail du poids mg s’exprime comme une différence de termes associés aux
extrémités du chemin.

• L’énergie potentielle de gravitation est définie comme

à une constante près (choix de référence).

• Selon l’axe vertical, avec gr = (-gey)(hey) = -gh

 pot cste  (4.16)E m   r g r

 pot cste  (4.17)E h mgh 

Remarque :



4.2.6 Énergie potentielle de gravitation 

36Physique – Mise à niveau

• Le travail du poids mg s’exprime comme une différence de termes associés aux
extrémités du chemin.

• L’énergie potentielle de gravitation est définie comme

à une constante près (choix de référence).

• Selon l’axe vertical, avec gr = (-gey)(hey) = -gh

 pot cste  (4.16)E m   r g r

 pot cste  (4.17)E h mgh 

Remarque :
En prenant la référence de potentiel au niveau du sol (passant par O), la constante
s’annule.
• Le travail effectué par le poids W12(mg) devient :

 
 

       
4 15

1 2 1 2 1 2pot pot   (4.18)
.

W m m m mgh mgh E E          1 2g g r g r où le travail W12(mg) est 
indépendant du choix de la cste.
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Énergie potentielle élastique

Énergie potentielle électrique
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• Dans le cas général, pour la force de gravitation , l’énergie 
potentielle correspondante est :

2 r
GMm

r
 F e

 pot cste  (4.19)
GMm

E r
r

  

Énergie potentielle élastique

Énergie potentielle électrique



4.2.7 Énergie pot. élastique et 4.2.8 énergie pot. électrique

39Physique – Mise à niveau

• Dans le cas général, pour la force de gravitation , l’énergie 
potentielle correspondante est :

2 r
GMm

r
 F e

 pot cste  (4.19)
GMm

E r
r

  

Énergie potentielle élastique
• L’énergie potentielle élastique associée à la force élastique F = -kd est :

  21
2pot cste  (4.20)E d kd 

Énergie potentielle électrique
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• Dans le cas général, pour la force de gravitation , l’énergie 
potentielle correspondante est :

2 r
GMm

r
 F e

 pot cste  (4.19)
GMm

E r
r

  

Énergie potentielle élastique
• L’énergie potentielle élastique associée à la force élastique F = -kd est :

  21
2pot cste  (4.20)E d kd 

Énergie potentielle électrique
• L’énergie potentielle électrique associée à la force électrique est :

 
0

1
4pot cste  (4.21)

Qq
E r

r
 

2
0

1
4 r

Qq
r

F e
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• Le travail d’une force conservative Fcons (poids, force de gravitation, force élastique,
force électrique) s’écrit comme une différence d’énergie potentielle :

     1 2 1 2pot pot   (4.22)W E E  consF

Remarque :
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• Le travail d’une force conservative Fcons (poids, force de gravitation, force élastique,
force électrique) s’écrit comme une différence d’énergie potentielle :

     1 2 1 2pot pot   (4.22)W E E  consF

• Si toutes les forces sont conservatives, le théorème de l’énergie cinétique devient :

       1 22 1 1 2cin cin pot potE E W E E   

ou encore

       1 1 2 2cin pot cin pot   (4.23)E E E E  

Remarque :
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• Le travail d’une force conservative Fcons (poids, force de gravitation, force élastique,
force électrique) s’écrit comme une différence d’énergie potentielle :

     1 2 1 2pot pot   (4.22)W E E  consF

• Si toutes les forces sont conservatives, le théorème de l’énergie cinétique devient :

       1 22 1 1 2cin cin pot potE E W E E   

ou encore

       1 1 2 2cin pot cin pot   (4.23)E E E E  

Remarque :
Si les forces sont conservatives, la somme de l’énergie cinétique et de l’énergie potentielle
est une constante.
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• L’énergie mécanique est la somme de l’énergie cinétique et de l’énergie potentielle :

méc cin pot   (4.24)E E E 
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• L’énergie mécanique est la somme de l’énergie cinétique et de l’énergie potentielle :

méc cin pot   (4.24)E E E 

• Une force est conservative si elle conserve l’énergie mécanique, et elle est dissipative
dans le cas contraire.
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• L’énergie mécanique est la somme de l’énergie cinétique et de l’énergie potentielle :

méc cin pot   (4.24)E E E 

• Une force est conservative si elle conserve l’énergie mécanique, et elle est dissipative
dans le cas contraire.

• Si ttes les forces sont conservatives, l’énergie mécan. est conservée, Eméc = cste.
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• L’énergie mécanique est la somme de l’énergie cinétique et de l’énergie potentielle :

méc cin pot   (4.24)E E E 

• Une force est conservative si elle conserve l’énergie mécanique, et elle est dissipative
dans le cas contraire.

• Si ttes les forces sont conservatives, l’énergie mécan. est conservée, Eméc = cste.

• Équivalences
1. F est conservative.
2. W12(F) ne dépend que des positions initiale r1 et finale r2.
3. W12(F) = Epot(r1)-Epot(r2).
4. Le travail de F sur un chemin fermé, i.e., r2 = r1, est nul.
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Expérience : Yo-yo

• En négligeant les frottements, l’énergie mécanique du yo-yo est conservée.

• Lorsque le yo-yo se trouve à la hauteur maximale, l’énergie potentielle de
gravitation est maximale et l’énergie cinétique est minimale.

• Lorsqu’il se trouve à la hauteur minimale, c’est le contraire!
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La vitesse de libération est la vitesse minimale qu’il faut donner à un objet pour qu’il
s’échappe définitivement du champ d’attraction de la terre et s’en éloigne indéfiniment.
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La vitesse de libération est la vitesse minimale qu’il faut donner à un objet pour qu’il
s’échappe définitivement du champ d’attraction de la terre et s’en éloigne indéfiniment.

• L’énergie mécanique de l’objet est constante car la force de gravitation est
conservative :

21
2méc cin pot cste  (4.25)

GMm
E E E mv

r
    
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La vitesse de libération est la vitesse minimale qu’il faut donner à un objet pour qu’il
s’échappe définitivement du champ d’attraction de la terre et s’en éloigne indéfiniment.

• L’énergie mécanique de l’objet est constante car la force de gravitation est
conservative :

21
2méc cin pot cste  (4.25)

GMm
E E E mv

r
    

• À l’infini, i.e., r  et v  0. Ainsi,

21 20
2

  (4.26)
GMm GM

mv v
r r

   
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La vitesse de libération est la vitesse minimale qu’il faut donner à un objet pour qu’il
s’échappe définitivement du champ d’attraction de la terre et s’en éloigne indéfiniment.

• L’énergie mécanique de l’objet est constante car la force de gravitation est
conservative :

21
2méc cin pot cste  (4.25)

GMm
E E E mv

r
    

• À l’infini, i.e., r  et v  0. Ainsi,

21 20
2

  (4.26)
GMm GM

mv v
r r

   

• Terre : r = 6371 km, M = 5,971024 kg, G = 6,6710-11 m3.kg-1.s-2

v = 1,12104 m.s-1 = 11,2 km.s-1 = 40,32103 km.h-1
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Une balle de fusil de masse m est tirée horizontalement dans un bloc de bois de masse M
suspendu à un fil. La balle se loge dans le bloc et le fil s’incline d’un angle . On cherche à
déterminer la vitesse initiale de la balle (connaissant L et ).
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Une balle de fusil de masse m est tirée horizontalement dans un bloc de bois de masse M
suspendu à un fil. La balle se loge dans le bloc et le fil s’incline d’un angle . On cherche à
déterminer la vitesse initiale de la balle (connaissant L et ).

• Il y a conservation de la quantité de 
mouvement de l’objet (balle + bloc) lors du 

choc. Selon ex :     (4.27)mv M m V 
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Une balle de fusil de masse m est tirée horizontalement dans un bloc de bois de masse M
suspendu à un fil. La balle se loge dans le bloc et le fil s’incline d’un angle . On cherche à
déterminer la vitesse initiale de la balle (connaissant L et ).

• Il y a conservation de la quantité de 
mouvement de l’objet (balle + bloc) lors du 

choc. Selon ex :     (4.27)mv M m V 

• La tension dans le fil T ne travaille pas. Ainsi, il y a conservation de 
l’énergie mécanique après le choc. 

L
L

h

     21 1
2

cos   (4.28)M m V M m gL    

h = L(1-cos)
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Une balle de fusil de masse m est tirée horizontalement dans un bloc de bois de masse M
suspendu à un fil. La balle se loge dans le bloc et le fil s’incline d’un angle . On cherche à
déterminer la vitesse initiale de la balle (connaissant L et ).

• Il y a conservation de la quantité de 
mouvement de l’objet (balle + bloc) lors du 

choc. Selon ex :     (4.27)mv M m V 

• La tension dans le fil T ne travaille pas. Ainsi, il y a conservation de 
l’énergie mécanique après le choc. 

L
L

h

     21 1
2

cos   (4.28)M m V M m gL    

• Ainsi, (4.27) et (4.28)  h = L(1-cos) 2 1 cos   (4.29)
M m M m

v V gL
m m

 
  
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• Objet : masse m
• Forces : poids mg, soutien S
• Newton : mg + S = ma

Selon en :

Selon et :

2

cos   (4.30)n
v

mg S ma m
R

   

sin tmg ma 
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• Objet : masse m
• Forces : poids mg, soutien S
• Newton : mg + S = ma

Selon en :

Selon et :

2

cos   (4.30)n
v

mg S ma m
R

   

sin tmg ma 

Théorème de l’énergie cinétique :

   2 2
2 1 2 1

1 1 1
2 2

cos   (4.31)mv mv mg h h mgR       
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• Objet : masse m
• Forces : poids mg, soutien S
• Newton : mg + S = ma

Selon en :

Selon et :

2

cos   (4.30)n
v

mg S ma m
R

   

sin tmg ma 

Théorème de l’énergie cinétique :

   2 2
2 1 2 1

1 1 1
2 2

cos   (4.31)mv mv mg h h mgR       

• Au point de décrochement D (où /2  D  ) : 0  (4.32)S 
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• Objet : masse m
• Forces : poids mg, soutien S
• Newton : mg + S = ma

Selon en :

Selon et :

2

cos   (4.30)n
v

mg S ma m
R

   

sin tmg ma 

Théorème de l’énergie cinétique :

   2 2
2 1 2 1

1 1 1
2 2

cos   (4.31)mv mv mg h h mgR       

• Au point de décrochement D (où /2  D  ) : 0  (4.32)S 

 

2
2

2 2
1

2
1

2

3 2

(4.30) : cos où  et  

(4.31) : 1-cos

cos

D D D D

D D

D

mv mgR v v v

mv mv mgR

mv mgR mgR

  





    

  

    
2
12

3
cos   (4.33)D

gR v
gR

 

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• Objet : masse m
• Forces : poids mg, soutien S
• Newton : mg + S = ma

Selon en :

Selon et :

2

cos   (4.30)n
v

mg S ma m
R

   

sin tmg ma 

Théorème de l’énergie cinétique :

   2 2
2 1 2 1

1 1 1
2 2

cos   (4.31)mv mv mg h h mgR       

• Au point de décrochement D (où /2  D  ) : 0  (4.32)S 

 

2
2

2 2
1

2
1

2

3 2

(4.30) : cos où  et  

(4.31) : 1-cos

cos

D D D D

D D

D

mv mgR v v v

mv mv mgR

mv mgR mgR

  





    

  

    

• Condition (vitesse initiale v1 ) : /2  D    -1  cosD  0

2
12

3
cos   (4.33)D

gR v
gR

 


2
12 5   (4.34)gR v gR 
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Expérience : Décrochement d’une bille sur un looping

• Au point de décrochement D de la bille sur la glissière, la force de soutien de la 
glissière s’annule : S = 0
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Expérience : Décrochement d’une bille sur un looping

• Au point de décrochement D de la bille sur la glissière, la force de soutien de la 
glissière s’annule : S = 0

• Pour que le point de décrochement D se trouve sur le demi-cercle supérieur de la 

glissière, la vitesse initiale vi doit être comprise entre où R est le 
rayon de courbure de la glissière.

2 5igR v gR 
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• Soit une force extérieure résultante: Fext = Fcons + Fdis où Fcons est une force 

conservative et Fdis une force dissipative.

   

   
 

2 2

1 1
2 2

1 1

1 2 1 2

1 2

2 1 ext
cin cin cin

pot

E E E W d

d d

W W

E W



 



     

   

 

  

 
 

ext
CM

cons dis
CM CM

cons dis

dis

F r

F r F r

F F

F
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• Soit une force extérieure résultante: Fext = Fcons + Fdis où Fcons est une force 

conservative et Fdis une force dissipative.

   

   
 

2 2

1 1
2 2

1 1

1 2 1 2

1 2

2 1 ext
cin cin cin

pot

E E E W d

d d

W W

E W



 



     

   

 

  

 
 

ext
CM

cons dis
CM CM

cons dis

dis

F r

F r F r

F F

F

Ainsi,

 1 2méc cin potE E E W      disF

 1 2mécE W  disF
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Quelques points essentiels 
concernant la dynamique
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• Une force de soutien est toujours orthogonale au support de l’objet considéré t.
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• Une force de soutien est toujours orthogonale au support de l’objet considéré t.

• La norme T de la tension d’un fil inextensible reste la même quelle que soit la portion
considérée du fil (vrai en l’absence de rotation, cf. cours 6 à venir) mais celle-ci est une
fonction du temps (car c’est une force non conservative).
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• Une force de soutien est toujours orthogonale au support de l’objet considéré t.

• La norme T de la tension d’un fil inextensible reste la même quelle que soit la portion
considérée du fil (vrai en l’absence de rotation, cf. cours 6 à venir) mais celle-ci est une
fonction du temps (car c’est une force non conservative).

• Si un système est composé de plusieurs objets, il existe une relation linéaire entre les
équations du mouvement (i.e., les 2èmes lois de Newton) établies pour chaque objet
pris individuellement. Leur somme sera égale à l’équation du mouvement obtenue
pour le système complet et les forces internes à ce système complet s’annuleront une
à une en vertu de la loi d’action-réaction.
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• Une force de soutien est toujours orthogonale au support de l’objet considéré t.

• La norme T de la tension d’un fil inextensible reste la même quelle que soit la portion
considérée du fil (vrai en l’absence de rotation, cf. cours 6 à venir) mais celle-ci est une
fonction du temps (car c’est une force non conservative).

• Si un système est composé de plusieurs objets, il existe une relation linéaire entre les
équations du mouvement (i.e., les 2èmes lois de Newton) établies pour chaque objet
pris individuellement. Leur somme sera égale à l’équation du mouvement obtenue
pour le système complet et les forces internes à ce système complet s’annuleront une
à une en vertu de la loi d’action-réaction.

• Dans le domaine élastique, l’élongation d’un ressort est proportionnelle à la force
appliquée. C’est la loi de Hooke.
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• La somme des forces extérieures agissant sur un objet et sa quantité de mouvement
sont reliées par l’expression générale :

 =   (3.11)
d

m m m
dt

    F a v v P F P   si  cste  (3.23)m m  ext
CMF P aet
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• La somme des forces extérieures agissant sur un objet et sa quantité de mouvement
sont reliées par l’expression générale :

 =   (3.11)
d

m m m
dt

    F a v v P F P   si  cste  (3.23)m m  ext
CMF P aet

• En l’absence de force extérieure résultante, la quantité de mouvement totale est
constante. On dit qu’elle est conservée.
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• La somme des forces extérieures agissant sur un objet et sa quantité de mouvement
sont reliées par l’expression générale :

 =   (3.11)
d

m m m
dt

    F a v v P F P   si  cste  (3.23)m m  ext
CMF P aet

• En l’absence de force extérieure résultante, la quantité de mouvement totale est
constante. On dit qu’elle est conservée.

• La pression moyenne est définie comme le rapport de la norme de la force normale et
de la surface :

moy   (3.33)p
S

 nF
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• La somme des forces extérieures agissant sur un objet et sa quantité de mouvement
sont reliées par l’expression générale :

 =   (3.11)
d

m m m
dt

    F a v v P F P   si  cste  (3.23)m m  ext
CMF P aet

• En l’absence de force extérieure résultante, la quantité de mouvement totale est
constante. On dit qu’elle est conservée.

• La pression moyenne est définie comme le rapport de la norme de la force normale et
de la surface :

moy   (3.33)p
S

 nF

 
0

  (3.35)lim n

S

dF
p

S dS 


 


nF

r• La pression locale est définie par la relation :
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• La somme des forces extérieures agissant sur un objet et sa quantité de mouvement
sont reliées par l’expression générale :

 =   (3.11)
d

m m m
dt

    F a v v P F P   si  cste  (3.23)m m  ext
CMF P aet

• En l’absence de force extérieure résultante, la quantité de mouvement totale est
constante. On dit qu’elle est conservée.

• La pression moyenne est définie comme le rapport de la norme de la force normale et
de la surface :

moy   (3.33)p
S

 nF

 
0

  (3.35)lim n

S

dF
p

S dS 


 


nF

r• La pression locale est définie par la relation :

• La pression est un scalaire positif, p  0
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• Loi de Pascal : L’intensité de la force exercée par un fluide sur une surface ne dépend
pas de l’orientation de cette surface. Elle ne dépend que de l’étendue de la surface et

de sa position r dans le fluide. Il suffit donc de connaître la pression (force par unité

de surface) du fluide p(r). Cette force est orthogonale à la surface.
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• Loi de Pascal : L’intensité de la force exercée par un fluide sur une surface ne dépend
pas de l’orientation de cette surface. Elle ne dépend que de l’étendue de la surface et

de sa position r dans le fluide. Il suffit donc de connaître la pression (force par unité

de surface) du fluide p(r). Cette force est orthogonale à la surface.

• Loi de l’hydrostatique : Pour un fluide homogène, la différence de pression entre deux
niveaux h1 et h2 est due au poids du fluide par unité de surface compris entre ces

niveaux (avec h2 – h1 > 0).

     1 2 2 1fl fl si cste  (3.39)p h p h g h h    
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• Loi de Pascal : L’intensité de la force exercée par un fluide sur une surface ne dépend
pas de l’orientation de cette surface. Elle ne dépend que de l’étendue de la surface et

de sa position r dans le fluide. Il suffit donc de connaître la pression (force par unité

de surface) du fluide p(r). Cette force est orthogonale à la surface.

• Loi de l’hydrostatique : Pour un fluide homogène, la différence de pression entre deux
niveaux h1 et h2 est due au poids du fluide par unité de surface compris entre ces

niveaux (avec h2 – h1 > 0).

     1 2 2 1fl fl si cste  (3.39)p h p h g h h    

• La pression augmentant avec la profondeur, un corps immergé subit une résultante
des forces de pression dirigée vers le haut, appelée poussée d’Archimède FA.

où Vim est le volume immergé du corps.Poussée d’Archimède V A fl im   (3.40)F g
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• En tout point de la trajectoire  d’un objet, la vitesse est toujours tangente à la

trajectoire et s’écrit : v = vet où v est la composante scalaire de la vitesse le long de

la trajectoire  et et est le vecteur unitaire tangent. La vitesse scalaire est définie

comme la dérivée temporelle de l’abscisse curviligne s.

0
lim   (3.50)
t

s
v s

t 


 



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• En tout point de la trajectoire  d’un objet, la vitesse est toujours tangente à la

trajectoire et s’écrit : v = vet où v est la composante scalaire de la vitesse le long de

la trajectoire  et et est le vecteur unitaire tangent. La vitesse scalaire est définie

comme la dérivée temporelle de l’abscisse curviligne s.

0
lim   (3.50)
t

s
v s

t 


 




• L’accélération tangentielle scalaire est l’accélération le long de la trajectoire et donc la
dérivée de la vitesse scalaire par rapport au temps.

0
lim   (3.52)t t

v
a v s

t 


  



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• L’accélération normale scalaire est la dérivée de la direction de la vitesse v par
rapport au temps.
2

  (3.53)n
v

a
R

 où R est le rayon de courbure de la trajectoire à un instant donné.



3.11 Dynamique : l’essentiel en quelques points

97Physique – Mise à niveau

• L’accélération normale scalaire est la dérivée de la direction de la vitesse v par
rapport au temps.
2

  (3.53)n
v

a
R

 où R est le rayon de courbure de la trajectoire à un instant donné.

• Condition de décrochement : Si l’objet quitte le support, le soutien S devient nul au
point de décrochement D :   (3.54)S 0
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James Watt

Pour un système donné, l’énergie sous une forme donnée E (mécanique, électrique,

thermique, …) peut changer au cours du temps. La puissance P mesure l’énergie échangée
avec l’extérieur par unité de temps :

0
lim   (4.35)
t

E dE
P E

t dt 


  



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James Watt

Pour un système donné, l’énergie sous une forme donnée E (mécanique, électrique,

thermique, …) peut changer au cours du temps. La puissance P mesure l’énergie échangée
avec l’extérieur par unité de temps :

0
lim   (4.35)
t

E dE
P E

t dt 


  




• Unité physique (SI) : le Watt [W] = [kg.m2.s-3]
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James Watt

Pour un système donné, l’énergie sous une forme donnée E (mécanique, électrique,

thermique, …) peut changer au cours du temps. La puissance P mesure l’énergie échangée
avec l’extérieur par unité de temps :

0
lim   (4.35)
t

E dE
P E

t dt 


  




• Unité physique (SI) : le Watt [W] = [kg.m2.s-3]

• La puissance due au travail infinitésimal W d’une force extérieure 
s’écrit :

  (4.36)
ddE W

P
dt dt dt


     ext extCM

CM
r

F F v
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James Watt

Pour un système donné, l’énergie sous une forme donnée E (mécanique, électrique,

thermique, …) peut changer au cours du temps. La puissance P mesure l’énergie échangée
avec l’extérieur par unité de temps :

0
lim   (4.35)
t

E dE
P E

t dt 


  




• Unité physique (SI) : le Watt [W] = [kg.m2.s-3]

• La puissance due au travail infinitésimal W d’une force extérieure 
s’écrit :

  (4.36)
ddE W

P
dt dt dt


     ext extCM

CM
r

F F v

1.

2.

FextvCM > 0  P > 0 (accélération)

FextvCM < 0  P < 0 (freinage)
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On considère un moteur électrique qui soulève une masse m à vitesse v0 = cste. L’énergie
potentielle gravitationnelle de la masse m augmente dû au travail effectué par le moteur
pour s’opposer au poids :

Remarque :
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On considère un moteur électrique qui soulève une masse m à vitesse v0 = cste. L’énergie
potentielle gravitationnelle de la masse m augmente dû au travail effectué par le moteur
pour s’opposer au poids :

     

0 0 0  (4.37)

W W m ddE
P m

dt dt dt dt
m mgv

  
     

    

CMT g r
g

g v

Remarque :
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On considère un moteur électrique qui soulève une masse m à vitesse v0 = cste. L’énergie
potentielle gravitationnelle de la masse m augmente dû au travail effectué par le moteur
pour s’opposer au poids :

     

0 0 0  (4.37)

W W m ddE
P m

dt dt dt dt
m mgv

  
     

    

CMT g r
g

g v

Remarque :
Comme le moteur fournit de l’énergie potentielle gravitationnelle au système, sa puissance 
est positive.
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Remarque :
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On considère l’action d’une force de frottement visqueux f = -vCM où  > 0 sur un
projectile dont le mouvement est rectiligne. On néglige son poids.

Remarque :
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On considère l’action d’une force de frottement visqueux f = -vCM où  > 0 sur un
projectile dont le mouvement est rectiligne. On néglige son poids.

• La puissance due à l’action de la force de frottement est :

  2 0CM

W ddE
P v

dt dt dt


          CM
CM CM

f r
f v v

Remarque :
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On considère l’action d’une force de frottement visqueux f = -vCM où  > 0 sur un
projectile dont le mouvement est rectiligne. On néglige son poids.

• La puissance due à l’action de la force de frottement est :

  2 0CM

W ddE
P v

dt dt dt


          CM
CM CM

f r
f v v

Remarque :
Comme la force de frottement dissipe l’énergie cinétique du projectile, sa puissance est
négative.
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• Le rendement  est une grandeur sans unité physique définie comme le rapport entre
la puissance utile (puissance que la machine délivre) et la puissance fournie (puissance
que la machine reçoit initialement).

utile

fournie

P
P

 

Exemple :
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• Le rendement  est une grandeur sans unité physique définie comme le rapport entre
la puissance utile (puissance que la machine délivre) et la puissance fournie (puissance
que la machine reçoit initialement).

utile

fournie

P
P

 

Exemple : Moteur électrique
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• Le rendement  est une grandeur sans unité physique définie comme le rapport entre
la puissance utile (puissance que la machine délivre) et la puissance fournie (puissance
que la machine reçoit initialement).

utile

fournie

P
P

 

Exemple : Moteur électrique

Le moteur reçoit une puissance électrique Pél de la prise murale et il

la convertit en puissance mécanique Pméc (mouvement de rotation
de l’axe).

méc

él

P
P

 
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• Le rendement  est une grandeur sans unité physique définie comme le rapport entre
la puissance utile (puissance que la machine délivre) et la puissance fournie (puissance
que la machine reçoit initialement).

utile

fournie

P
P

 

Exemple : Moteur électrique

Le moteur reçoit une puissance électrique Pél de la prise murale et il

la convertit en puissance mécanique Pméc (mouvement de rotation
de l’axe).

méc

él

P
P

  Le second principe de la thermodynamique requiert que 0    1.



4.3.3 Rendement

117Physique – Mise à niveau

Expérience :
1. 2.

Robert Stirling



4.3.3 Rendement

118Physique – Mise à niveau

Expérience : Moteur de Stirling
1. 2.

Robert Stirling



4.3.3 Rendement

119Physique – Mise à niveau

Expérience : Moteur de Stirling
1. 2.

Robert Stirling

1. Un brûleur rempli d’alcool échauffe l’air contenu dans un cylindre,
fournissant ainsi de la chaleur au moteur qui est activé par le lancement de la
roue.

2. Une lampe qui se situe au foyer gauche d’un système de miroirs paraboliques
éclaire et chauffe un corps noir qui se trouve au foyer droit. La différence de
température de part et d’autre de la roue à droite entraîne son mouvement.
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Expérience : Moteur à dépression

• Le moteur à dépression est un moteur à air chaud qui aspire une flamme au
moyen d’un clapet entraîné par le mouvement de la roue. La flamme réchauffe
l’air contenu dans un cylindre ce qui provoque le déplacement de la bielle et
entraîne le mouvement de rotation de la roue.
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Expérience : Oiseaux buveurs (exemple de machine thermique)

• L’oiseau est constitué de deux réservoirs reliés par un tube. Un liquide volatile
est enfermé dans l’oiseau.

• Lorsque le bec de l’oiseau est en contact avec de l’eau froide, le liquide
redescend dans le tube ce qui fait basculer l’oiseau en position verticale.

• L’évaporation de l’eau sur le bec provoque une contraction de l’air dans le
tube, ce qui fait monter le liquide et basculer l’oiseau.


