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Physique – Mise à niveau

3. Dynamique

• 3.10 Repère lié au mouvement

4. Énergie

• 4.1 Conservation de l’énergie

• 4.2 Énergie cinétique et travail
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• Une masse m suspendue à un fil décrit un cercle horizontal 

avec une vitesse angulaire  constante et un angle 

d’inclinaison  constant.
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• Une masse m suspendue à un fil décrit un cercle horizontal 

avec une vitesse angulaire  constante et un angle 

d’inclinaison  constant.

• Objet : boule de masse m
• Forces : poids mg, tension T 
• Newton : mg + T = ma
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• Une masse m suspendue à un fil décrit un cercle horizontal 

avec une vitesse angulaire  constante et un angle 

d’inclinaison  constant.

• Objet : boule de masse m
• Forces : poids mg, tension T 
• Newton : mg + T = ma

À l’équilibre, l’angle  est constant.

Selon ez : -mg + Tcos = 0

Selon en : Tsin = man = mr 2 = mLsin 2
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• Une masse m suspendue à un fil décrit un cercle horizontal 

avec une vitesse angulaire  constante et un angle 

d’inclinaison  constant.

• Objet : boule de masse m
• Forces : poids mg, tension T 
• Newton : mg + T = ma

À l’équilibre, l’angle  est constant.

Selon ez : -mg + Tcos = 0

Selon en : Tsin = man = mr 2 = mLsin 2

2sin sin
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• Une masse m suspendue à un fil décrit un cercle horizontal 

avec une vitesse angulaire  constante et un angle 

d’inclinaison  constant.

• Objet : boule de masse m
• Forces : poids mg, tension T 
• Newton : mg + T = ma

À l’équilibre, l’angle  est constant.

Selon ez : -mg + Tcos = 0

Selon en : Tsin = man = mr 2 = mLsin 2

2sin sin
cos

T mL
T mg

 


 
21 0sin   (3.68)
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• À l’équilibre, l’angle  doit satisfaire la relation :
21 0sin   (3.68)

cos
L

g



 

   
 



3.10.8 Pendule conique

10Physique – Mise à niveau

• À l’équilibre, l’angle  doit satisfaire la relation :
21 0sin   (3.68)

cos
L

g



 

   
 

• Il existe deux solutions possibles :
1) sin = 0  = 0  est toujours solution.

2)                     est solution si2cos
g

L



 2

2 1g g
L L




  



3.10.8 Pendule conique

11Physique – Mise à niveau

• À l’équilibre, l’angle  doit satisfaire la relation :
21 0sin   (3.68)

cos
L

g



 

   
 

• Il existe deux solutions possibles :
1) sin = 0  = 0  est toujours solution.

2)                     est solution si2cos
g

L



 2

2 1g g
L L




  

Ainsi,

• Si ,  = 0  est la seule solution : à faible vitesse angulaire , le pendule est 
vertical.

• Si              ,                               est la solution stable : à partir d’une vitesse angulaire seuil,      

, le pendule commence à s’incliner et la masse m remonte. Si , alors 

 /2 .

2 g
L

 

2 g
L

  2arccos
g

L



   
 g

L
 
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Mouvement rectiligne :

Mouvement circulaire :
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Mouvement rectiligne : Mouvement rectiligne uniformément accéléré (MRUA)

Mouvement circulaire :
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x v a0 x

R


P

O

an
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at

v

s

Mouvement rectiligne : Mouvement rectiligne uniformément accéléré (MRUA)
• a = a0 = cste

    0 0   (3.69)v t x t a t v  

  2
0 0 0

1
2

  (3.70)x t a t v t x  

Mouvement circulaire :
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x v a0 x
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Mouvement rectiligne : Mouvement rectiligne uniformément accéléré (MRUA)
• a = a0 = cste

    0 0   (3.69)v t x t a t v  

  2
0 0 0

1
2

  (3.70)x t a t v t x  

Mouvement circulaire : Mouvement circulaire uniformément accéléré (MCUA)
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Mouvement rectiligne : Mouvement rectiligne uniformément accéléré (MRUA)
• a = a0 = cste

    0 0   (3.69)v t x t a t v  

  2
0 0 0

1
2

  (3.70)x t a t v t x  

Mouvement circulaire : Mouvement circulaire uniformément accéléré (MCUA)
• at = cste

    0   (3.71)tv t s t a t v  

  2
0 0

1
2

  (3.72)ts t a t v t s  
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• Abscisse curviligne :

      (3.73)s t R t
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• Abscisse curviligne :

      (3.73)s t R t

• Vitesse scalaire :

          (3.74)v t s t R t R t    
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• Abscisse curviligne :

      (3.73)s t R t

• Vitesse scalaire :

          (3.74)v t s t R t R t    

• Accélération tangentielle :

        (3.75)ta v t R t R t R       
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• Abscisse curviligne :

      (3.73)s t R t

• Vitesse scalaire :

          (3.74)v t s t R t R t    

• Accélération tangentielle :
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   

 
0

2
0 0

1
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R t R t R t R

R t R t R t R

   

   

  



   


On divise par le rayon R.
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• Abscisse curviligne :

      (3.73)s t R t

• Vitesse scalaire :
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• Accélération tangentielle :
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On divise par le rayon R.

• Vitesse angulaire :

    0   (3.76)t t t     
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• Abscisse curviligne :

      (3.73)s t R t

• Vitesse scalaire :

          (3.74)v t s t R t R t    

• Accélération tangentielle :

        (3.75)ta v t R t R t R       
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
On divise par le rayon R.

• Vitesse angulaire :

    0   (3.76)t t t     

• Position angulaire :

  2
0 0

1
2

  (3.77)t t t     
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L’énergie E est une grandeur physique scalaire et extensive qui est définie à une constante 
près.

1. Si l’objet est isolé, l’énergie est conservée et ainsi, la variation d’énergie E au cours 
du temps est nulle :

2. Si l’objet n’est pas isolé, il peut y avoir un échange d’énergie entre l’objet et 
l’environnement. Ainsi, l’énergie n’est pas conservée. Auquel cas,

   2 1 2 10   (4.1)E E t E t t t     

   2 1 0  (4.2)E E t E t   
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L’énergie E est une grandeur physique scalaire et extensive qui est définie à une constante 
près.

1. Si l’objet est isolé, l’énergie est conservée et ainsi, la variation d’énergie E au cours 
du temps est nulle :

2. Si l’objet n’est pas isolé, il peut y avoir un échange d’énergie entre l’objet et 
l’environnement. Ainsi, l’énergie n’est pas conservée. Auquel cas,

   2 1 2 10   (4.1)E E t E t t t     

   2 1 0  (4.2)E E t E t   

• E>0 : l’objet gagne de l’énergie.

• E<0 : l’objet perd de l’énergie.
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Pendule simple

Pendule simple
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Formes d’énergie :
Cinétique, potentielle de gravitation, potentielle élastique, nucléaire, 
électromagnétique (lumineuse), thermique, chimique, …

Énergie élastique

Pendule simple

Pendule simple



4.1 Conservation de l’énergie et 4.1.1 pendule simple

32Physique – Mise à niveau

Formes d’énergie :
Cinétique, potentielle de gravitation, potentielle élastique, nucléaire, 
électromagnétique (lumineuse), thermique, chimique, …

Énergie élastique

Pendule simple

• L’énergie d’un objet peut changer de forme au cours du temps.

Pendule simple
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Formes d’énergie :
Cinétique, potentielle de gravitation, potentielle élastique, nucléaire, 
électromagnétique (lumineuse), thermique, chimique, …

Énergie élastique

Pendule simple

• L’énergie d’un objet peut changer de forme au cours du temps.

Pendule simple
Pour un pendule simple, l’énergie potentielle de gravitation se transforme en 
énergie cinétique et vice versa.
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Formes d’énergie :
Cinétique, potentielle de gravitation, potentielle élastique, nucléaire, 
électromagnétique (lumineuse), thermique, chimique, …

Énergie élastique

Pendule simple

• L’énergie d’un objet peut changer de forme au cours du temps.

Pendule simple
Pour un pendule simple, l’énergie potentielle de gravitation se transforme en 
énergie cinétique et vice versa.

• Lorsque la masse se trouve à une extrémité de son mouvement oscillatoire, 
l’énergie potentielle est maximale et l’énergie cinétique est nulle.

• Lorsque la masse passe par la verticale, l’énergie potentielle est minimale et 
l’énergie cinétique est maximale. 
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Expérience : Pendule de Wilberforce

• Il y a conservation de l’énergie mécanique.

• L’énergie potentielle élastique est convertie en énergie cinétique de translation 
et de rotation.
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Rebonds (basket)Remarque :
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Rebonds (tennis)

Rebonds (basket)

• Une balle lâchée à vitesse nulle rebondit sur le sol.

• Lors de la chute, l’énergie potentielle gravitationnelle est transformée 
en énergie cinétique.

Remarque :
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Rebonds (tennis)

Rebonds (basket)

• Une balle lâchée à vitesse nulle rebondit sur le sol.

• Lors de la chute, l’énergie potentielle gravitationnelle est transformée 
en énergie cinétique.

1. Le choc est élastique si l’énergie cinétique est conservée lors du 
choc.

2. Le choc est inélastique si une partie ou toute l’énergie cinétique est 
convertie en énergie thermique (chaleur) ou en énergie mécanique 
de déformation.

Remarque :
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Rebonds (tennis)

Rebonds (basket)

• Une balle lâchée à vitesse nulle rebondit sur le sol.

• Lors de la chute, l’énergie potentielle gravitationnelle est transformée 
en énergie cinétique.

1. Le choc est élastique si l’énergie cinétique est conservée lors du 
choc.

2. Le choc est inélastique si une partie ou toute l’énergie cinétique est 
convertie en énergie thermique (chaleur) ou en énergie mécanique 
de déformation.

Remarque :
Le choc d’une balle de tennis ou d’un ballon de basket sont des chocs 
inélastiques (perte d’énergie entre deux rebonds). 
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Expérience :
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Expérience : Choc élastique et choc mou de deux glisseurs

1. Choc élastique
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Expérience : Choc élastique et choc mou de deux glisseurs

1. Choc élastique 2. Choc mou (parfaitement inélastique)
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Expérience : Choc élastique et choc mou de deux glisseurs

1. Choc élastique 2. Choc mou (parfaitement inélastique)

1. Lors d’un choc élastique, l’énergie cinétique est conservée. Si les deux 
glisseurs ont la même masse, le glisseur en mouvement s’arrête et l’autre 
glisseur se met en mouvement à la même vitesse que le premier.

2. Lors d’un choc mou, l’énergie cinétique est partiellement transformée en 
énergie mécanique de déformation lorsque la pointe du glisseur s’enfonce 
dans la pâte à modeler. 
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Expérience :
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Expérience : Coefficient de restitution d’une balle

Coefficient de restitution

f

i

v
e

v

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Expérience : Coefficient de restitution d’une balle

Coefficient de restitution

f

i

v
e

v


• Le coefficient de restitution e d’une balle permet de quantifier l’élasticité d’un 
choc contre un objet de masse « infinie » (le sol).

• Il existe trois types de choc :
1) Élastique : e = 1 , 2) inélastique : 0 < e < 1 , 3) mou : e = 0

• Plus le matériau est dur, moins il se déformera durant le choc. Donc plus le 
coefficient de restitution sera grand, i.e., proche de 1. 
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4.2 Énergie cinétique et 
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• On considère un objet en mouvement. L’évolution du CM de cet objet est régie par la 
2ème loi de Newton.   (4.3)m t ext

CMa F
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• On considère un objet en mouvement. L’évolution du CM de cet objet est régie par la 
2ème loi de Newton.   (4.3)m t ext

CMa F

• Le produit scalaire de (4.3) avec vCM s’écrit :

  (4.4)m   ext
CM CM CMv a F v

où   21 1
2 2 CM   (4.5)

d d
dt dt

d d d
v

dt dt dt
   

     

CM CM
CM CM

CM
CM CM CM CM CM

v v
v v

v
v a v v v


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• On considère un objet en mouvement. L’évolution du CM de cet objet est régie par la 
2ème loi de Newton.   (4.3)m t ext

CMa F

• Le produit scalaire de (4.3) avec vCM s’écrit :

  (4.4)m   ext
CM CM CMv a F v

où   21 1
2 2 CM   (4.5)

d d
dt dt

d d d
v

dt dt dt
   

     

CM CM
CM CM

CM
CM CM CM CM CM

v v
v v

v
v a v v v



• Ainsi, si la masse m est constante (i.e., ) :0dm
dt

 1
2

2
CM   (4.6)

d
mv

dt
    
 

ext
CMF v
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• On considère un objet en mouvement. L’évolution du CM de cet objet est régie par la 
2ème loi de Newton.   (4.3)m t ext

CMa F

• Le produit scalaire de (4.3) avec vCM s’écrit :

  (4.4)m   ext
CM CM CMv a F v

où   21 1
2 2 CM   (4.5)

d d
dt dt

d d d
v

dt dt dt
   

     

CM CM
CM CM

CM
CM CM CM CM CM

v v
v v

v
v a v v v



• Ainsi, si la masse m est constante (i.e., ) :0dm
dt

 1
2

2
CM   (4.6)

d
mv

dt
    
 

ext
CMF v

• La grandeur est l’intégrale du mouvement appelée l’énergie cinétique et 

notée Ecin,CM (définie à une constante près).

21
2 CMmv
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James Prescott Joule

• L’énergie cinétique Ecin,CM du centre de masse est définie comme :

21
2cin,CM CM   (4.7)E mv
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James Prescott Joule

• L’énergie cinétique Ecin,CM du centre de masse est définie comme :

21
2cin,CM CM   (4.7)E mv

C’est l’énergie liée au mouvement du CM.
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• L’énergie cinétique Ecin,CM du centre de masse est définie comme :

21
2cin,CM CM   (4.7)E mv

C’est l’énergie liée au mouvement du CM.

• Unité physique de l’énergie (SI) : le Joule [J] = [N.m] = [kg.m2.s-2]
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James Prescott Joule

• L’énergie cinétique Ecin,CM du centre de masse est définie comme :

21
2cin,CM CM   (4.7)E mv

C’est l’énergie liée au mouvement du CM.

• Unité physique de l’énergie (SI) : le Joule [J] = [N.m] = [kg.m2.s-2]

• Ainsi, la relation (4.6) devient :

cin,CM   (4.8)
dE d

dt dt
 ext CMr

F où d
dt

 CM
CM

r
v
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James Prescott Joule

• L’énergie cinétique Ecin,CM du centre de masse est définie comme :

21
2cin,CM CM   (4.7)E mv

C’est l’énergie liée au mouvement du CM.

• Unité physique de l’énergie (SI) : le Joule [J] = [N.m] = [kg.m2.s-2]

• Ainsi, la relation (4.6) devient :

cin,CM   (4.8)
dE d

dt dt
 ext CMr

F où d
dt

 CM
CM

r
v

• On multiplie la relation (4.8)  par l’intervalle de temps infinitésimal :

cin,CM   (4.9)dE d ext
CMF r
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James Prescott Joule

• L’énergie cinétique Ecin,CM du centre de masse est définie comme :

21
2cin,CM CM   (4.7)E mv

C’est l’énergie liée au mouvement du CM.

• Unité physique de l’énergie (SI) : le Joule [J] = [N.m] = [kg.m2.s-2]

• Ainsi, la relation (4.6) devient :

cin,CM   (4.8)
dE d

dt dt
 ext CMr

F où d
dt

 CM
CM

r
v

• On multiplie la relation (4.8)  par l’intervalle de temps infinitésimal :

cin,CM   (4.9)dE d ext
CMF r

• La variation de l’énergie cinétique est due aux forces extérieures.
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Remarque :
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• Le travail infinitésimal des forces extérieures sur le CM pour un déplacement 

infinitésimal drCM est défini comme :

ext

cos   (4.10)

W d

d





 



ext
CM

ext
CM

F r

F r

Remarque :
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• Le travail infinitésimal des forces extérieures sur le CM pour un déplacement 

infinitésimal drCM est défini comme :

ext

cos   (4.10)

W d

d





 



ext
CM

ext
CM

F r

F r

• Le travail des forces extérieures sur le CM pour un déplacement d’une position initiale 

r1 = r(t1) à une position finale r2 = r(t2) est la somme des travaux infinitésimaux :

2

1 2 1

ext   (4.11)W d   ext
CMF r

Remarque :
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• Le travail infinitésimal des forces extérieures sur le CM pour un déplacement 

infinitésimal drCM est défini comme :

ext

cos   (4.10)

W d

d





 



ext
CM

ext
CM

F r

F r

• Le travail des forces extérieures sur le CM pour un déplacement d’une position initiale 

r1 = r(t1) à une position finale r2 = r(t2) est la somme des travaux infinitésimaux :

2

1 2 1

ext   (4.11)W d   ext
CMF r

Remarque :
Une somme continue est une intégrale. Cette intégrale est calculée par rapport à la 
position qui est fonction du temps.
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• Le travail effectué par les forces extérieures entre t1 et t2 s’écrit :

   
2 2

1 2 1 1
2 1

(4.11) (4.9)
ext

cin,CM cin,CM cin,CMW d dE E E      ext
CMF r
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• Le travail effectué par les forces extérieures entre t1 et t2 s’écrit :

   
2 2

1 2 1 1
2 1

(4.11) (4.9)
ext

cin,CM cin,CM cin,CMW d dE E E      ext
CMF r

• Le théorème de l’énergie cinétique affirme que la variation d’énergie cinétique du CM 
est due au travail des forces extérieures :

    1 22 1 ext
cin,CM cin,CM   (4.12)E E W 
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• Un objet de masse m glisse le long d’un plan horizontal. Il est 

soumis à une force de frottement f constante opposée à la 

vitesse. Sa vitesse initiale est v1 = v(t1) et on cherche sa vitesse 

finale v(t2) après avoir parcouru une distance l = x2-x1.
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• Un objet de masse m glisse le long d’un plan horizontal. Il est 

soumis à une force de frottement f constante opposée à la 

vitesse. Sa vitesse initiale est v1 = v(t1) et on cherche sa vitesse 

finale v(t2) après avoir parcouru une distance l = x2-x1.

• Objet : masse m
• Forces : poids mg, soutien S, frottement f
• Newton : mg + S + f = ma
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• Un objet de masse m glisse le long d’un plan horizontal. Il est 

soumis à une force de frottement f constante opposée à la 

vitesse. Sa vitesse initiale est v1 = v(t1) et on cherche sa vitesse 

finale v(t2) après avoir parcouru une distance l = x2-x1.

• Objet : masse m
• Forces : poids mg, soutien S, frottement f
• Newton : mg + S + f = ma

1. Newton :

Selon ex : -f = -ma

   

     

   

 

0

0 1 1

2
0 1 1 1 1

2
2 1 0 2 1 1 2 1

2 0 2 1 1

1
2

1
2

cste

v

Ainsi,   

et 

f
a a

m
t a t t v

x t a t t v t t x

l x x a t t v t t

v a t t v

   

    

      

      

   
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• Un objet de masse m glisse le long d’un plan horizontal. Il est 

soumis à une force de frottement f constante opposée à la 

vitesse. Sa vitesse initiale est v1 = v(t1) et on cherche sa vitesse 

finale v(t2) après avoir parcouru une distance l = x2-x1.

• Objet : masse m
• Forces : poids mg, soutien S, frottement f
• Newton : mg + S + f = ma

1. Newton :

Selon ex : -f = -ma

   

     

   

 

0

0 1 1

2
0 1 1 1 1

2
2 1 0 2 1 1 2 1

2 0 2 1 1

1
2

1
2

cste

v

Ainsi,   

et 

f
a a

m
t a t t v

x t a t t v t t x

l x x a t t v t t

v a t t v

   

    

      

      

   
   2
2 1 1 2 1 2 2

2 1 0
0 0

22
2

Donc,  et   (4.13)
v v v v v fl

l v v a l
a a m
 

       
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2. Théorème de l’énergie cinétique :

    2 2
2 1

1 12 1
2 2cin,CM cin,CM cin,CME E E mv mv     

Remarque :
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2. Théorème de l’énergie cinétique :

• Objet : masse m
• Forces : poids mg, soutien S, frottement f

    2 2
2 1

1 12 1
2 2cin,CM cin,CM cin,CME E E mv mv     

Remarque :
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2. Théorème de l’énergie cinétique :

• Objet : masse m
• Forces : poids mg, soutien S, frottement f

    2 2
2 1

1 12 1
2 2cin,CM cin,CM cin,CME E E mv mv     

• Travaux :

   

   

     

     

1 2

1 2

2 2

1 2 2 11 1

1
0 0

2
0 0

3

:

:

:

 car  = cste

.

.

.

x x

m d

W m m d W m

d

W d W

d

W d f dx fdx

W fdx f dx f x x fl f















    



    

      

          

CM

CM

CM

CM

CM

CM

g r

g g r g

S r

S S r S

f r

f f r e e

f



Remarque :
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2. Théorème de l’énergie cinétique :

• Objet : masse m
• Forces : poids mg, soutien S, frottement f

    2 2
2 1

1 12 1
2 2cin,CM cin,CM cin,CME E E mv mv     

• Travaux :

   

   

     

     

1 2

1 2

2 2

1 2 2 11 1

1
0 0

2
0 0

3

:

:

:

 car  = cste

.

.

.

x x

m d

W m m d W m

d

W d W

d

W d f dx fdx

W fdx f dx f x x fl f















    



    

      

          

CM

CM

CM

CM

CM

CM

g r

g g r g

S r

S S r S

f r

f f r e e

f



Ainsi,

Remarque :

  2 2
1 2 1 2 2 1 2 1

2ext
cin,CM   (4.13)

fl
E W W v v v v

m         f
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2. Théorème de l’énergie cinétique :

• Objet : masse m
• Forces : poids mg, soutien S, frottement f

    2 2
2 1

1 12 1
2 2cin,CM cin,CM cin,CME E E mv mv     

• Travaux :

   

   

     

     

1 2

1 2

2 2

1 2 2 11 1

1
0 0

2
0 0

3

:

:

:

 car  = cste

.

.

.

x x

m d

W m m d W m

d

W d W

d

W d f dx fdx

W fdx f dx f x x fl f















    



    

      

          

CM

CM

CM

CM

CM

CM

g r

g g r g

S r

S S r S

f r

f f r e e

f



Ainsi,

Remarque : La deuxième méthode est plus efficace.

  2 2
1 2 1 2 2 1 2 1

2ext
cin,CM   (4.13)

fl
E W W v v v v

m         f
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• On cherche la distance de freinage df. À l’arrêt, v2 = 0. Ainsi,


2

2 2 1
2 1
0

2 0
2

  (4.14)
mvf

v v df df
m f



     

Remarques :
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• On cherche la distance de freinage df. À l’arrêt, v2 = 0. Ainsi,


2

2 2 1
2 1
0

2 0
2

  (4.14)
mvf

v v df df
m f



     

Remarques :
1. Le travail d’une force est sa contribution à la variation d’énergie cinétique du CM. 

L’énergie cinétique augmente si la force est (partiellement) dans le sens du 
mouvement et elle diminue si la force est (partiellement) opposée.

2. Une force normale au déplacement ne travaille pas.

3. En général, le travail d’une force dépend du chemin suivi par l’objet de la position 

initiale r1 à la position finale r2.



4.2.5 Forces conservatives et 4.2.6 énergie potentielle de gravitation 

85Physique – Mise à niveau

Forces conservatives

Énergie potentielle de gravitation



4.2.5 Forces conservatives et 4.2.6 énergie potentielle de gravitation 

86Physique – Mise à niveau

Forces conservatives
Une force est dite conservative si son travail sur l’objet considéré ne dépend que des 
extrémités du chemin que l’objet parcourt, et non du chemin lui-même.

Énergie potentielle de gravitation
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Forces conservatives
Une force est dite conservative si son travail sur l’objet considéré ne dépend que des 
extrémités du chemin que l’objet parcourt, et non du chemin lui-même.

Énergie potentielle de gravitation
• En tout point, le poids de l’objet est identique (champ gravitationnel uniforme). À la 

montée, le travail du poids est négatif et à la descente, il est positif.

• Entre les positions r1 = r(t1)  et r2 = r(t2), le travail du poids est :
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Forces conservatives
Une force est dite conservative si son travail sur l’objet considéré ne dépend que des 
extrémités du chemin que l’objet parcourt, et non du chemin lui-même.

Énergie potentielle de gravitation
• En tout point, le poids de l’objet est identique (champ gravitationnel uniforme). À la 

montée, le travail du poids est négatif et à la descente, il est positif.

• Entre les positions r1 = r(t1)  et r2 = r(t2), le travail du poids est :

 
     

2 2

1 2 1 1
.



   

        

 
  (4.15)

m

W m m d m d

m m m

g cste

CM CM

2 1 1 2

g g r g r

g r r g r g r
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Remarque :
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• Le travail du poids mg s’exprime comme une différence de termes associés aux 
extrémités du chemin.

• L’énergie potentielle de gravitation est définie comme

à une constante près (choix de référence).

• Selon l’axe vertical, avec gr = (-gey)(hey) = -gh

 pot cste  (4.16)E m   r g r

 pot cste  (4.17)E h mgh 

Remarque :
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• Le travail du poids mg s’exprime comme une différence de termes associés aux 
extrémités du chemin.

• L’énergie potentielle de gravitation est définie comme

à une constante près (choix de référence).

• Selon l’axe vertical, avec gr = (-gey)(hey) = -gh

 pot cste  (4.16)E m   r g r

 pot cste  (4.17)E h mgh 

Remarque :
En prenant la référence de potentiel au niveau du sol (passant par O), la constante 
s’annule.
• Le travail effectué par le poids W12(mg) devient :

 
 

       
4 15

1 2 1 2 1 2pot pot   (4.18)
.

W m m m mgh mgh E E          1 2g g r g r où le travail W12(mg) est 
indépendant du choix de la cste.
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Énergie potentielle élastique

Énergie potentielle électrique
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• Dans le cas général, pour la force de gravitation , l’énergie 
potentielle correspondante est :

2 r
GMm

r
 F e

 pot cste  (4.19)
GMm

E r
r

  

Énergie potentielle élastique

Énergie potentielle électrique
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• Dans le cas général, pour la force de gravitation , l’énergie 
potentielle correspondante est :

2 r
GMm

r
 F e

 pot cste  (4.19)
GMm

E r
r

  

Énergie potentielle élastique
• L’énergie potentielle élastique associée à la force élastique F = -kd est :

  21
2pot cste  (4.20)E d kd 

Énergie potentielle électrique
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• Dans le cas général, pour la force de gravitation , l’énergie 
potentielle correspondante est :

2 r
GMm

r
 F e

 pot cste  (4.19)
GMm

E r
r

  

Énergie potentielle élastique
• L’énergie potentielle élastique associée à la force élastique F = -kd est :

  21
2pot cste  (4.20)E d kd 

Énergie potentielle électrique
• L’énergie potentielle électrique associée à la force électrique est :

 
0

1
4pot cste  (4.21)

Qq
E r

r
 

2
0

1
4 r

Qq
r

F e
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Remarque :
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• Le travail d’une force conservative Fcons (poids, force de gravitation, force élastique, 
force électrique) s’écrit comme une différence d’énergie potentielle :

     1 2 1 2pot pot   (4.22)W E E  consF

Remarque :
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• Le travail d’une force conservative Fcons (poids, force de gravitation, force élastique, 
force électrique) s’écrit comme une différence d’énergie potentielle :

     1 2 1 2pot pot   (4.22)W E E  consF

• Si toutes les forces sont conservatives, le théorème de l’énergie cinétique devient :

       1 22 1 1 2cin cin pot potE E W E E   

ou encore

       1 1 2 2cin pot cin pot   (4.23)E E E E  

Remarque :
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• Le travail d’une force conservative Fcons (poids, force de gravitation, force élastique, 
force électrique) s’écrit comme une différence d’énergie potentielle :

     1 2 1 2pot pot   (4.22)W E E  consF

• Si toutes les forces sont conservatives, le théorème de l’énergie cinétique devient :

       1 22 1 1 2cin cin pot potE E W E E   

ou encore

       1 1 2 2cin pot cin pot   (4.23)E E E E  

Remarque :
Si les forces sont conservatives, la somme de l’énergie cinétique et de l’énergie potentielle 
est une constante.


