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Exercice 1

(a) Nous allons considérer deux instants t; et to :

i) instant ¢, ii) instant to

En choisissant 'origine comme sur le dessin, les énergies mécaniques en t; et t,
s’écrivent : ] ]
Emé0~(1) = imvg + mgh’ et Eméc.(z) = §mv§

Ainsi, la variation d’énergie mécanique de m sur une dénivellation h est donnée
par
AEﬂméc. = Eméc.(2) - EmécA(1> = —mgh .

Remarque

L’énergie mécanique diminue. Il doit donc exister un frottement exercé par le plan
incliné qui freine la masse m.

Le plan incliné exerce deux forces sur la masse m : une force de frottement f et une
force de soutien S. Comme cette derniére ne travaille pas (le soutien est toujours
perpendiculaire au plan incliné, et donc a la trajectoire de la masse m), le théoreme
de I’énergie cinétique s’écrit

Een(2) = Ean(1) = Wi_o(mg) + Wia(f)

0 = Wisa(mg) + Wisa(f)
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et le travail sur m fourni par le plan incliné est donc

—

Wl*)Q( ) = _Wla2<m§> = —mgh
= Eméc.(2) - Eméc.(1> .

Remarque

Le travail des forces non conservatives (ou dissipatives) est égal a la variation de
I’énergie mécanique.

La deuxieme loi de Newton appliquée a
la masse m s’écrit
mi+S+f=ma=0.

En projetant selon €, le long de la
pente, il vient

f = mgsin a = constante.
La force de frottement f est donc constante.

Remarque

Comme f = constante, il est possible de calculer aisément le travail de la force de
frottement a partir de la définition :

. 2 2 2 h
Wisa(f) = /f-dF:—/ fds=—f [ ds=—f—
1 1
= —mgsina—— = —mgh.
sin o
Nous retrouvons bien le résultat obtenu au point (b).

(d) Pendant un intervalle de temps dt, la masse m descend d’une hauteur dh et le
travail sur m fourni par le plan incliné s’écrit

dh
dW = —mgdh = —f =—fds,

sin «v

ou ds est le déplacement le long du plan. La puissance a donc pour expression

AW ds
p="" e
dt Fap = 1w

Exercice 2

Plus la hauteur du lacher hq est grande, plus la bille va vite dans I’anneau. Plus la hauteur
est petite, plus la bille va lentement et risque de quitter ’anneau.

La bille doit rester en contact avec le rail en tout point : on exploite la condition de
non-décrochement.

Considérer d’abord une position quelconque pour la bille



Objet : bille
Forces : poids, soutien
mg + S =ma.

Le non-décrochement de la
bille du rail est caractérisé
par la condition ||S]| > 0.

La condition de décrochement s’exprime le mieux selon la normale ¢, . Effectuer donc la
projection selon le repere (€, ¢€),) .
Selon ¢é; :

—mgsin e = may .

Selon €, :

’02

S —mgcosp =ma, =m—.

R
La condition de non-décrochement en tout point s’écrit

2

S:m%+mgcos<p>0 V.

La projection selon €; est exploitée a travers le théoreme de 1'énergie cinétique.
Toutes les forces exercées sur la bille sont conservatives (poids) ou ne travaillent pas
(soutien). Par conséquent, I’énergie mécanique de la bille est conservée.
En choisissant 1'origine des hauteurs au niveau du point le plus bas du cercle, on a
e Au point de départ (1) (a t = 0), la vitesse de la bille est nulle et sa hauteur hy :

Ensc(1) = mghy .

e Au point (2) (a t quelconque), la bille a une vitesse de norme v et se trouve a la
hauteur h = R(1 — cos p) :

1
Frne(2) = §mv2 +mgR(1 — cos ).

La conservation de I’énergie mécanique donne donc
Lo
mghy = gmv +mgR(1 — cos ).

C’est une relation entre la vitesse et la position de la bille.
Introduire la relation entre vitesse et position dans la condition de non-décrochement.
Avec

1
mghy = imv2 +mgR(1 — cos ) < v? = 2ghg — 2gR(1 — cos p),
la condition de non-décrochement devient

SR
~— =v? + gRcosp =2ghy — gR(2 —3cosp) >0 V.
m



L’angle pour lequel I'expression est minimale est ¢ = 7 : la position critique est le haut
du cercle. Si la bille y passe sans décoller du rail, elle ne décolle nulle part.
Pour ¢ = 7, cosp = —1 et la condition de non-décrochement doit étre vérifiée :

SR 5R

Remarque : cette hauteur minimale est supérieure a celle du point le plus haut du cercle.

Exercice 3

(a) La dénivellation est la différence de hauteur entre le point de départ et le point
ou la masse m s’arréte : utiliser le théoreme de ’énergie cinétique pour m (comme
il n’y a pas de frottements, on peut méme penser que I’énergie mécanique de la
masse m est conservée).

Faire un dessin.

(2)

Considérer 'objet de masse m .

Uy

Objet : masse m

—kd Force : poids (conservatif), force élastique (conservative),
soutien du plan (de travail nul).

Newton :
mg mqg—kd+ S =ma.

Toutes les forces étant effectivement conservatives (ou ne travaillant pas), I’énergie
mécanique est conservée entre tous points (1) et (2) du parcours de m :

Ernee(1) = Fiec(2) .

Exprimer I'énergie mécanique aux points (1) et (2).
Prenons comme origine des hauteurs le point de départ de m .

Choisissons le point (1) au départ de m (7, = 0) :

1
Eméc(1> — Ekdg .

-,

Choisissons le point (2) au point le plus haut atteint par m (v, = 0)
Eméc(2) = mgh .
Ainsi,

1 kd?
Eoce(1) = Epee(2 “kd?> =mgh & h=—% =28.8m.
(1) = Eunie(2)  5hdy = mgh & h= 5 7% = 28 8m



(b) La dénivellation est la différence de hauteur entre le point de départ et le point ou
la masse m s’arréte : utiliser le théoreme de 1’énergie cinétique pour m (comme il
y a des frottements, I’énergie mécanique de la masse m n’est pas conservée.).
Faire un dessin.

(2)

Objet : masse m

Force : poids (conservatif), force élastique (conserva-
tive), soutien du plan (de travail nul), frottement (non
conservatif).

Newton : . .
mg—kd+ S+ f=ma.
La norme du frottement vaut 60% de celle du soutien. Selon la normale au plan,

S =mgcosa. Alors
f=0.6mgcos .

L’énergie mécanique n’est pas conservée entre les points (1) et (2) : la différence
est égale au travail des forces non conservatives, a savoir celui du frottement :

Buce(2) — Emec(1) = Wisa(f).

Prenons comme origine des hauteurs le point de départ de m .

Choisissons le point (1) au départ de m (v; = 0)
1
Enec(1) = skdj .
2
Choisissons le point (2) au point le plus haut atteint par m (7, = 0) :

Eméc(Q) = mgh .

Le frottement f étant de norme constante, son travail vaut

Wl_,g(f):/jf-do?:—/12fds:—f/12ds:—fL,

L étant la longueur du parcours avec

h=Lsna& L=

sina
Ainsi,

1
E 4 2 — E 4 1 == —_ = 2 = —U.
méc(2) mec(1) = WiLa(f) < mgh 2k;do 0.6mg cos a—

kd?

2mg(1+ 0.6 cot av) o

< h
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Exercice 4

(a) Comme on considere la masse M dans deux situations différentes, on peut essayer
de lui appliquer le théoreme de I’énergie cinétique (ou, le cas échéant, la conserva-
tion de I’énergie mécanique).

Faire un dessin.

M

Y

sans compression avec compression

Considérer I'objet de masse M .

Objet : masse M
Force : poids (conservatif), force élastique (conservative).

Newton : .
Mg—kd= Ma.

Toutes les forces étant effectivement conservatives (ou ne travaillant pas), I’énergie
mécanique est conservée entre tous points (1) et (2) du parcours de M :

Fuse(l) = Enee(2) .

Exprimer I'énergie mécanique aux points (1) et (2).

Prenons comme origine des hauteurs le point de départ de M , lorsque le ressort
est non déformé.

Au point (1) (vitesse, hauteur et déformation toutes nulles) :

Ensc(1) =0.

Au point (2) (point le plus bas atteint par m) (vitesse nulle, hauteur minimale —d,
déformation d) :

1
Eméc(2) == _Mgd + §]€d2 .
Ainsi,
1 2M
Ernee(1) = Emee(2) & §kd2 =Mgd<d=0oud= Tg'

La seconde solution donne la compression maximale du ressort.

(b) C’est une situation d’équilibre.
Faire un dessin et considérer M .



Objet : masse M
Force : poids, force élastique.

Newton : .
Mg —kdeg =0.

Mg
Pt

Selon la verticale, la compression vaut d¢q =

(c) Considérer les forces en jeu pour ces deux compressions.

Au point d’équilibre (cas (b)), la résultante des forces est nulle. La force du ressort
est alors de méme norme que le poids.

Au point le plus bas (cas (a)), la résultante des forces est vers le haut et la masse
M remonte, la force du ressort étant plus importante que le poids. La masse M va
alors osciller autour de la position d’équilibre, située au milieu des deux positions
extréemes.

Exercice 5

La masse est en chute libre (depuis une hauteur élevée). Son énergie mécanique est
conservée.
Faire un dessin et considérer la masse qui tombe.

Référentiel d’inertie lié au centre de la plancte.

Objet : la masse m.

Force : gravitation (conservative).

Toutes les forces étant effectivement conservatives (ou ne travaillant pas), I’énergie mécanique
est conservée entre tous points (1) et (2) du parcours de m :

Eméc(l) = Eméc(2) .
La force de gravitation n’est pas constante sur une grande distance.

mm 1
P — —m? -G

R+h 2 R

1 1

Remarque : si h < R, on peut faire une approximation au premier ordre

FR4 ) = i = (R + f(R)h = 35—

Eméc(1> = EméC(Z) —0-d

et alors

et on obtient
h
v~ 2Gmpﬁ = +/2gh,

G , . . . Ny . .
avec g o~ Zz2 . Ce résultat est bien celui obtenu si on peut considérer la gravitation comme

constante.



Exercice 6

On suppose que la seule force appliquée a l'objet est la force de gravitation liée a la
présence de I'astre (de la Terre). Comme cette force est conservative, 1’énergie mécanique
de l'objet est conservée.
La vitesse de libération propre a un astre est la vitesse minimale que doit posséder un corps
au moment de quitter la surface de I’astre pour que le corps puisse échapper définitivement
a l'attraction (gravitationnelle) de I'astre. En d’autres termes, il s’agit de la vitesse initiale
nécessaire au corps pour atteindre un point a I'infini avec une vitesse finale nulle.
L’énergie mécanique du corps a un instant donné a pour expression :

Loy

mMastre
Eméc. - Ecin. + Egrav. = —mv° — ————

pot. 2 d + C )

ou m est la masse du corps, v est la vitesse de ce dernier, et d est la distance qui sépare le
corps du centre de masse de 'astre. L’énergie potentielle de gravitation est définie a une
constante arbitraire C' pres.

L’énergie mécanique du corps est conservée. Elle ne varie pas au cours du temps :
FE, ¢ = constante.

Nous écrivons ’énergie mécanique que possede le corps a deux instants :
e Au moment ou le corps quitte la surface de 'astre. Il possede alors une vitesse 7
(de norme vy = ||ti||) et se trouve a une distance d = R du centre de masse de
l'astre (R est le rayon de l'astre).
e Au moment ou le corps est tres éloigné de 'astre. Il possede alors une vitesse
Uno = 0 et se trouve & une distance d — oo du centre de masse de Dastre.
La conservation de I’énergie mécanique permet d’écrire :

1 mMast e 1 . mMast e
—mug —G—"2 4+ C = ok - lim G—F 4+ C
2 R 2 d—00 d
N 7 N >
TV '
FE¢c. & la surface de astre E¢c. tres loin de 'astre
= 0+0+C.
Ainsi,
1 2 mMastre
g — G =0,

et la vitesse initiale vy a pour expression :

2Mastre G
R .

Vo =

Numériquement, nous obtenons, dans le cas de la Terre,

~ 11187 -10*ms ' = 11kms™'.

\/ 2MostreG \/ 2.5.9742 - 1024 - 6.6732 - 1011
Vg =4 — =
0 R 6.3710 - 106

Remarque

Nous avons obtenu une vitesse de libération scalaire (et non pas vectorielle). Tout corps
possédant cette vitesse vy est susceptible d’échapper a l'attraction gravitationnelle de
I’astre, et ce, quelle que soit la direction de sa vitesse initiale.



Notons également que la vitesse de libération ne dépend pas de la masse du corps.

Exercice 7
Etudier la masse m .
Objet : m . Forces : poids et rappel.

Newton :
mg — kd = ma.

(a) A Déquilibre,
mg—kd=0.

Le ressort est en extension et de longueur

mg

lig=to+d= Lo+

(b) Hors équilibre, mg — kd = ma.
Pour le choix de l'origine au plafond et selon le repere €, vers le bas,
mg — kd =mg — k(z — ly) = ma =mZ.

Pour retrouver une forme plus habituelle du type —kx = ma, nous pouvons écrire

—k (2—50—%) = k(2 — le) = mZ.

2 — lgq étant I'écart par rapport a la position d’équilibre, nous pouvons choisir
I’origine sur la position d’équilibre. Cela revient a faire le changement de variable

x =2z — lgg =2z

et I’équation de Newton devient
—kx =mz.

Posant wj = % , nous retrouvons 1’équation de l'oscillateur harmonique

2 .
—Wy T =T

aux solutions connues. La pulsation et la période sont

Wy = ﬁ T:2—7T:27T m
V m wo V Kk

Exercice 8

Considérer la masse m .

Travailler avec le repere (€, €,) et bien définir I'abscisse curviligne et sa relation avec
I’angle que fait le fil avec la verticale.



Objet : m

plafond

Forces : poids et tension.
mg + T =ma.
Selon ¢é,, :

U2

—mgcosa + 1T = ma, :mf

Selon ¢é; :

—mgsina = ma; = m§ = mLd.
(a) Au point le plus bas, m est en virage.
A la verticale a = 0 :

v v
—mg+T:mf:>T:m g—i-f .

(b) Comparer le point le plus bas et le point le plus haut.

Toutes les forces étant conservatives (ou ne travaillant pas), ’énergie mécanique

est conservée : Epgcbas = Pméchaut
I Vg
—mv2 = MGhmax = Pmax = ~~ .
2 0 g aj al 29

(c) Faire 'approximation des petits angles.
Pour de petits angles, sina >~ « : —mga = mLda . Posant
g
wg = Z s

nous retrouvons 1’équation de l'oscillateur harmonique —w3 o = & de solution
a(t) = Asin(wot + @)

avec les conditions initiales

a(0) = Asin(0+¢) =0 a(0) = wpAcos(0+ ¢) = U_LO .
Nous avons donc p =0 et A = L”_Utj() - \});T: d’ou
at) = o sin(wot) .

VgL

(d) Utiliser la définition de la fréquence.
Elle est donnée par
Wo 1 g

V_QW_% L’

Exercice 9

Considérer 'objet et la force qu’il subit.
A Tintérieur d’une boule homogene, la gravitation exercée sur 'objet a une distance r du
centre est celle due uniquement a la boule « intérieure > de rayon r.
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La force de gravitation exercée sur un objet de masse m
a une distance r du centre de 'astre est

= M
F - —G (Z)m _»1"7
r
ou
4 3
M(r)= 037

est la masse de la boule < intérieure > de rayon r. Ainsi

- 4
F=—-m-nGore,.
Pour I'objet m soumis a la gravitation,
F=ma.
Selon €, ,

—mngpr =mi Vt

et les conditions initiales sont données par le lacher a vitesse nulle. Pour ¢ty =0,

En posant

nous avons 1’évolution d’'un OH :
i=—wir r(0)=R v(0)=0.

La solution est
r(t) = Rcos(wot) Vt.

L’objet va faire une oscillation dans le couloir creusé a travers 'astre.
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