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Exercice 1

(a) Nous allons considérer deux instants t1 et t2 :

i) instant t1

e⃗y

O

α

h

m
v⃗0

ii) instant t2

e⃗y

O

α

h

m
v⃗0

En choisissant l’origine comme sur le dessin, les énergies mécaniques en t1 et t2
s’écrivent :

Eméc.(1) =
1

2
mv20 +mgh et Eméc.(2) =

1

2
mv20 .

Ainsi, la variation d’énergie mécanique de m sur une dénivellation h est donnée
par

∆Eméc. = Eméc.(2)− Eméc.(1) = −mgh .

Remarque

L’énergie mécanique diminue. Il doit donc exister un frottement exercé par le plan
incliné qui freine la masse m.

(b)

e⃗x

α

v⃗0

f⃗
S⃗

mg⃗

Le plan incliné exerce deux forces sur la masse m : une force de frottement f⃗ et une
force de soutien S⃗. Comme cette dernière ne travaille pas (le soutien est toujours
perpendiculaire au plan incliné, et donc à la trajectoire de la masse m), le théorème
de l’énergie cinétique s’écrit

Ecin.(2)− Ecin.(1) = W1→2(mg⃗) +W1→2(f⃗)

0 = W1→2(mg⃗) +W1→2(f⃗)
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et le travail sur m fourni par le plan incliné est donc

W1→2(f⃗) = −W1→2(mg⃗) = −mgh

= Eméc.(2)− Eméc.(1) .

Remarque

Le travail des forces non conservatives (ou dissipatives) est égal à la variation de
l’énergie mécanique.

(c)

e⃗x

α

v⃗0

f⃗
S⃗

mg⃗

La deuxième loi de Newton appliquée à
la masse m s’écrit

mg⃗ + S⃗ + f⃗ = ma⃗ = 0⃗ .

En projetant selon e⃗x, le long de la
pente, il vient

f = mg sinα = constante.

La force de frottement f⃗ est donc constante.

Remarque

Comme f = constante, il est possible de calculer aisément le travail de la force de
frottement à partir de la définition :

W1→2(f⃗) =

∫ 2

1

f⃗ · dr⃗ = −
∫ 2

1

f ds = −f

∫ 2

1

ds = −f
h

sinα

= −mg sinα
h

sinα
= −mgh .

Nous retrouvons bien le résultat obtenu au point (b).

(d) Pendant un intervalle de temps dt, la masse m descend d’une hauteur dh et le
travail sur m fourni par le plan incliné s’écrit

dW = −mg dh = −f
dh

sinα
= −f ds ,

où ds est le déplacement le long du plan. La puissance a donc pour expression

P =
dW

dt
= −f

ds

dt
= −f v0 .

Exercice 2

Plus la hauteur du lâcher h0 est grande, plus la bille va vite dans l’anneau. Plus la hauteur
est petite, plus la bille va lentement et risque de quitter l’anneau.
La bille doit rester en contact avec le rail en tout point : on exploite la condition de
non-décrochement.

Considérer d’abord une position quelconque pour la bille
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R

(2)

φ
mg⃗

S⃗

e⃗t

e⃗n

m à t = 0
(1)

h0 =?

Objet : bille

Forces : poids, soutien

mg⃗ + S⃗ = ma⃗ .

Le non-décrochement de la
bille du rail est caractérisé
par la condition ||S⃗|| > 0 .

La condition de décrochement s’exprime le mieux selon la normale e⃗n . Effectuer donc la
projection selon le repère (e⃗t, e⃗n) .
Selon e⃗t :

−mg sinφ = mat .

Selon e⃗n :

S −mg cosφ = man = m
v2

R
.

La condition de non-décrochement en tout point s’écrit

S = m
v2

R
+mg cosφ > 0 ∀φ .

La projection selon e⃗t est exploitée à travers le théorème de l’énergie cinétique.
Toutes les forces exercées sur la bille sont conservatives (poids) ou ne travaillent pas
(soutien). Par conséquent, l’énergie mécanique de la bille est conservée.
En choisissant l’origine des hauteurs au niveau du point le plus bas du cercle, on a

� Au point de départ (1) (à t = 0), la vitesse de la bille est nulle et sa hauteur h0 :

Eméc(1) = mgh0 .

� Au point (2) (à t quelconque), la bille a une vitesse de norme v et se trouve à la
hauteur h = R(1− cosφ) :

Eméc(2) =
1

2
mv2 +mgR(1− cosφ) .

La conservation de l’énergie mécanique donne donc

mgh0 =
1

2
mv2 +mgR(1− cosφ) .

C’est une relation entre la vitesse et la position de la bille.
Introduire la relation entre vitesse et position dans la condition de non-décrochement.
Avec

mgh0 =
1

2
mv2 +mgR(1− cosφ) ⇔ v2 = 2gh0 − 2gR(1− cosφ) ,

la condition de non-décrochement devient

SR

m
= v2 + gR cosφ = 2gh0 − gR(2− 3 cosφ) > 0 ∀φ .
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L’angle pour lequel l’expression est minimale est φ = π : la position critique est le haut
du cercle. Si la bille y passe sans décoller du rail, elle ne décolle nulle part.
Pour φ = π , cosφ = −1 et la condition de non-décrochement doit être vérifiée :

SR

m
= 2gh0 − gR(2 + 3) = g(2h0 − 5R) > 0 ⇒ h0 >

5R

2
.

Remarque : cette hauteur minimale est supérieure à celle du point le plus haut du cercle.

Exercice 3

(a) La dénivellation est la différence de hauteur entre le point de départ et le point
où la masse m s’arrête : utiliser le théorème de l’énergie cinétique pour m (comme
il n’y a pas de frottements, on peut même penser que l’énergie mécanique de la
masse m est conservée).

Faire un dessin.

ℓ0
d⃗0

α
h = 0

e⃗h

(1)

(2)

Considérer l’objet de masse m .

−kd⃗

S⃗

mg⃗

m

Objet : masse m

Force : poids (conservatif), force élastique (conservative),
soutien du plan (de travail nul).

Newton :
mg⃗ − kd⃗+ S⃗ = ma⃗ .

Toutes les forces étant effectivement conservatives (ou ne travaillant pas), l’énergie
mécanique est conservée entre tous points (1) et (2) du parcours de m :

Eméc(1) = Eméc(2) .

Exprimer l’énergie mécanique aux points (1) et (2).

Prenons comme origine des hauteurs le point de départ de m .

Choisissons le point (1) au départ de m (v⃗1 = 0⃗) :

Eméc(1) =
1

2
kd20 .

Choisissons le point (2) au point le plus haut atteint par m (v⃗2 = 0⃗) :

Eméc(2) = mgh .

Ainsi,

Eméc(1) = Eméc(2) ⇔
1

2
kd20 = mgh ⇔ h =

kd20
2mg

= 28.8m.
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(b) La dénivellation est la différence de hauteur entre le point de départ et le point où
la masse m s’arrête : utiliser le théorème de l’énergie cinétique pour m (comme il
y a des frottements, l’énergie mécanique de la masse m n’est pas conservée.).

Faire un dessin.

ℓ0
d⃗0

α
h = 0

e⃗h

(1)

(2)

Considérer l’objet de masse m .

−kd⃗

f⃗

S⃗

mg⃗

m

Objet : masse m

Force : poids (conservatif), force élastique (conserva-
tive), soutien du plan (de travail nul), frottement (non
conservatif).

Newton :
mg⃗ − kd⃗+ S⃗ + f⃗ = ma⃗ .

La norme du frottement vaut 60% de celle du soutien. Selon la normale au plan,
S = mg cosα . Alors

f = 0.6mg cosα .

L’énergie mécanique n’est pas conservée entre les points (1) et (2) : la différence
est égale au travail des forces non conservatives, à savoir celui du frottement :

Eméc(2)− Eméc(1) = W1→2(f⃗) .

Prenons comme origine des hauteurs le point de départ de m .

Choisissons le point (1) au départ de m (v⃗1 = 0⃗) :

Eméc(1) =
1

2
kd20 .

Choisissons le point (2) au point le plus haut atteint par m (v⃗2 = 0⃗) :

Eméc(2) = mgh .

Le frottement f⃗ étant de norme constante, son travail vaut

W1→2(f⃗) =

∫ 2

1

f⃗ · dr⃗ = −
∫ 2

1

fds = −f

∫ 2

1

ds = −fL ,

L étant la longueur du parcours avec

h = L sinα ⇔ L =
h

sinα
.

Ainsi,

Eméc(2)− Eméc(1) = W1→2(f⃗) ⇔ mgh− 1

2
kd20 = −0.6mg cosα

h

sinα

⇔ h =
kd20

2mg(1 + 0.6 cotα)
= 10.87m.
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Exercice 4

(a) Comme on considère la masse M dans deux situations différentes, on peut essayer
de lui appliquer le théorème de l’énergie cinétique (ou, le cas échéant, la conserva-
tion de l’énergie mécanique).

Faire un dessin.

M

ℓ0

sans compression

M

avec compression

Considérer l’objet de masse M .

−kd⃗

Mg⃗

M

Objet : masse M

Force : poids (conservatif), force élastique (conservative).

Newton :
Mg⃗ − kd⃗ = Ma⃗ .

Toutes les forces étant effectivement conservatives (ou ne travaillant pas), l’énergie
mécanique est conservée entre tous points (1) et (2) du parcours de M :

Eméc(1) = Eméc(2) .

Exprimer l’énergie mécanique aux points (1) et (2).

Prenons comme origine des hauteurs le point de départ de M , lorsque le ressort
est non déformé.

Au point (1) (vitesse, hauteur et déformation toutes nulles) :

Eméc(1) = 0 .

Au point (2) (point le plus bas atteint par m) (vitesse nulle, hauteur minimale −d,
déformation d) :

Eméc(2) = −Mgd+
1

2
kd2 .

Ainsi,

Eméc(1) = Eméc(2) ⇔
1

2
kd2 = Mgd ⇔ d = 0 ou d =

2Mg

k
.

La seconde solution donne la compression maximale du ressort.

(b) C’est une situation d’équilibre.

Faire un dessin et considérer M .
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−kd⃗éq

Mg⃗

M Objet : masse M

Force : poids, force élastique.

Newton :
Mg⃗ − kd⃗éq = 0⃗ .

Selon la verticale, la compression vaut déq =
Mg

k
.

(c) Considérer les forces en jeu pour ces deux compressions.

Au point d’équilibre (cas (b)), la résultante des forces est nulle. La force du ressort
est alors de même norme que le poids.

Au point le plus bas (cas (a)), la résultante des forces est vers le haut et la masse
M remonte, la force du ressort étant plus importante que le poids. La masse M va
alors osciller autour de la position d’équilibre, située au milieu des deux positions
extrêmes.

Exercice 5

La masse est en chute libre (depuis une hauteur élevée). Son énergie mécanique est
conservée.
Faire un dessin et considérer la masse qui tombe.

R

mp

(2)

(1)

h
m

F⃗grav

r

Référentiel d’inertie lié au centre de la planète.

Objet : la masse m.

Force : gravitation (conservative).

Toutes les forces étant effectivement conservatives (ou ne travaillant pas), l’énergie mécanique
est conservée entre tous points (1) et (2) du parcours de m :

Eméc(1) = Eméc(2) .

La force de gravitation n’est pas constante sur une grande distance.

Eméc(1) = Eméc(2) ⇐⇒ 0−G
mmp

R + h
=

1

2
mv2 −G

mmp

R

et alors

v =

√
2Gmp

(
1

R
− 1

R + h

)
.

Remarque : si h ≪ R , on peut faire une approximation au premier ordre

f(R + h) =
1

R + h
≃ f(R) + f ′(R)h =

1

R
− h

R2

et on obtient

v ≃
√

2Gmp
h

R2
=

√
2gh ,

avec g ≃ Gmp

R2 . Ce résultat est bien celui obtenu si on peut considérer la gravitation comme
constante.
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Exercice 6

On suppose que la seule force appliquée à l’objet est la force de gravitation liée à la
présence de l’astre (de la Terre). Comme cette force est conservative, l’énergie mécanique
de l’objet est conservée.
La vitesse de libération propre à un astre est la vitesse minimale que doit posséder un corps
au moment de quitter la surface de l’astre pour que le corps puisse échapper définitivement
à l’attraction (gravitationnelle) de l’astre. En d’autres termes, il s’agit de la vitesse initiale
nécessaire au corps pour atteindre un point à l’infini avec une vitesse finale nulle.
L’énergie mécanique du corps à un instant donné a pour expression :

Eméc. = Ecin. + Egrav.
pot. =

1

2
mv2 −G

mMastre

d
+ C ,

où m est la masse du corps, v est la vitesse de ce dernier, et d est la distance qui sépare le
corps du centre de masse de l’astre. L’énergie potentielle de gravitation est définie à une
constante arbitraire C près.

L’énergie mécanique du corps est conservée. Elle ne varie pas au cours du temps :

Eméc. = constante .

Nous écrivons l’énergie mécanique que possède le corps à deux instants :
• Au moment où le corps quitte la surface de l’astre. Il possède alors une vitesse v⃗0
(de norme v0 = ||v⃗0||) et se trouve à une distance d = R du centre de masse de
l’astre (R est le rayon de l’astre).

• Au moment où le corps est très éloigné de l’astre. Il possède alors une vitesse
v⃗∞ ∼= 0⃗ et se trouve à une distance d → ∞ du centre de masse de l’astre.

La conservation de l’énergie mécanique permet d’écrire :

1

2
mv20 −G

mMastre

R
+ C︸ ︷︷ ︸

Eméc. à la surface de l’astre

=
1

2
mv2∞ − lim

d→∞
G
mMastre

d
+ C︸ ︷︷ ︸

Eméc. très loin de l’astre

= 0 + 0 + C .

Ainsi,
1

2
mv20 −G

mMastre

R
= 0 ,

et la vitesse initiale v0 a pour expression :

v0 =

√
2MastreG

R
.

Numériquement, nous obtenons, dans le cas de la Terre,

v0 =

√
2MastreG

R
∼=

√
2 · 5.9742 · 1024 · 6.6732 · 10−11

6.3710 · 106
∼= 1.1187 · 104ms−1 ∼= 11 km s−1 .

Remarque
Nous avons obtenu une vitesse de libération scalaire (et non pas vectorielle). Tout corps
possédant cette vitesse v0 est susceptible d’échapper à l’attraction gravitationnelle de
l’astre, et ce, quelle que soit la direction de sa vitesse initiale.
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Notons également que la vitesse de libération ne dépend pas de la masse du corps.

Exercice 7

Etudier la masse m .

m
mg⃗

−kd⃗

Objet : m . Forces : poids et rappel.

Newton :
mg⃗ − kd⃗ = ma⃗ .

(a) A l’équilibre,

mg⃗ − kd⃗ = 0⃗ .

Le ressort est en extension et de longueur

ℓéq = ℓ0 + d = ℓ0 +
mg

k
.

(b) Hors équilibre, mg⃗ − kd⃗ = ma⃗ .

Pour le choix de l’origine au plafond et selon le repère e⃗z vers le bas,

mg − kd = mg − k(z − ℓ0) = ma = mz̈ .

Pour retrouver une forme plus habituelle du type −kx = ma , nous pouvons écrire

−k
(
z − ℓ0 −

mg

k

)
= −k(z − ℓéq) = mz̈ .

z − ℓéq étant l’écart par rapport à la position d’équilibre, nous pouvons choisir
l’origine sur la position d’équilibre. Cela revient à faire le changement de variable

x = z − ℓéq ẍ = z̈

et l’équation de Newton devient

−kx = mẍ .

Posant ω2
0 = k

m
, nous retrouvons l’équation de l’oscillateur harmonique

−ω2
0 x = ẍ

aux solutions connues. La pulsation et la période sont

ω0 =

√
k

m
T =

2π

ω0

= 2π

√
m

k
.

Exercice 8

Considérer la masse m .
Travailler avec le repère (e⃗t, e⃗n) et bien définir l’abscisse curviligne et sa relation avec
l’angle que fait le fil avec la verticale.
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Γ
sm

plafond

e⃗t

e⃗n

O

α

+mg⃗

T⃗

Objet : m

Forces : poids et tension.

mg⃗ + T⃗ = ma⃗ .

Selon e⃗n :

−mg cosα + T = man = m
v2

L

Selon e⃗t :

−mg sinα = mat = ms̈ = mLα̈ .

(a) Au point le plus bas, m est en virage.

A la verticale α = 0 :

−mg + T = m
v20
L

=⇒ T = m

(
g +

v20
L

)
.

(b) Comparer le point le plus bas et le point le plus haut.

Toutes les forces étant conservatives (ou ne travaillant pas), l’énergie mécanique
est conservée : Eméc,bas = Eméc,haut :

1

2
mv20 = mghmax =⇒ hmax =

v20
2g

.

(c) Faire l’approximation des petits angles.

Pour de petits angles, sinα ≃ α : −mgα = mLα̈ . Posant

ω2
0 =

g

L
,

nous retrouvons l’équation de l’oscillateur harmonique −ω2
0 α = α̈ de solution

α(t) = A sin(ω0t+ φ)

avec les conditions initiales

α(0) = A sin(0 + φ) = 0 α̇(0) = ω0A cos(0 + φ) =
v0
L

.

Nous avons donc φ = 0 et A = v0
Lω0

= v0√
gL

d’où

α(t) =
v0√
gL

sin(ω0t) .

(d) Utiliser la définition de la fréquence.

Elle est donnée par

ν =
ω0

2π
=

1

2π

√
g

L
.

Exercice 9

Considérer l’objet et la force qu’il subit.
A l’intérieur d’une boule homogène, la gravitation exercée sur l’objet à une distance r du
centre est celle due uniquement à la boule ≪ intérieure ≫ de rayon r .
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La force de gravitation exercée sur un objet de masse m
à une distance r du centre de l’astre est

F⃗ = −G
M(r)m

r2
e⃗r ,

où

M(r) = ϱ
4

3
πr3

est la masse de la boule ≪ intérieure ≫ de rayon r . Ainsi

F⃗ = −m
4

3
πGϱ r e⃗r .

R

r

m
F⃗

e⃗r

Pour l’objet m soumis à la gravitation,

F⃗ = ma⃗ .

Selon e⃗r ,

−m
4

3
πGρ r = mr̈ ∀ t

et les conditions initiales sont données par le lâcher à vitesse nulle. Pour t0 = 0 ,

r(0) = R v(0) = ṙ(0) = 0 .

En posant

ω2
0 =

4

3
πGρ ,

nous avons l’évolution d’un OH :

r̈ = −ω2
0 r r(0) = R v(0) = 0 .

La solution est
r(t) = R cos(ω0t) ∀ t .

L’objet va faire une oscillation dans le couloir creusé à travers l’astre.
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