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Indication : dans cette série, utilisez le théorème de l’énergie cinétique et non

la conservation ( ?) de l’énergie mécanique

]Exercice 1

Comme on suppose qu’il n’y a pas de frottement, les seules forces agissant sur la luge de
masse m (l’objet) pendant la descente sont la force de gravitation et le soutien du sol.
Le théorème de l’énergie cinétique s’écrit donc

Ecin,bas − Ecin,haut = Whaut→bas(mg⃗) +Whaut→bas(S⃗) .

Le travail du poids est positif, car mg⃗ ·dr⃗CM > 0 . Il est donné par la différence de hauteur :

Whaut→bas(mg⃗) = mg(hhaut − hbas) = mgh .

Le travail du soutien est nul, car S⃗ ⊥ dr⃗CM .
Ainsi

1

2
mv2bas = mgh ⇒ vbas = ||v⃗bas|| =

√
2gh ≈

√
2 · 10m s−2 · 20m = 20m s−1 ,

où l’on a pris g = 10m s−2.

Alternativement, on peut utiliser la conservation de l’énergie mécanique. En effet, en ab-
sence de frottement, la luge est soumise à la force de gravitation (qui est une force conser-
vative) et au soutien (qui est toujours perpendiculaire à la vitesse). L’énergie mécanique
est donc conservée :

Eméc. = Ecin. + Epot. = constante .

En choisissant comme niveau de référence le bas de la piste, l’énergie mécanique s’écrit . . .

. . . en haut de la piste (avec une vitesse initiale nulle et une hauteur h) :

Eméc.(1) = Epot. = mgh ;

. . . en bas de la piste (avec une vitesse finale de norme v et une hauteur nulle) :

Eméc.(2) = Ecin. =
1

2
mv2 .

La conservation de l’énergie mécanique fournit alors

Eméc.(1) = Eméc.(2) ⇔ mgh =
1

2
mv2 ⇒ v =

√
2gh ≈

√
2 · 10m s−2 · 20m = 20m s−1 .

où l’on a pris g = 10m s−2.

Exercice 2

Le wagonnet gagne en vitesse et finit par décrocher.
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Exploitons la condition de décrochement pour l’endroit où m quitte la boule et déterminer
une relation entre vitesse et position du wagonnet.

Considérer d’abord une position quelconque pour le wagonnet.

R α

mg⃗

S⃗

e⃗t

e⃗n

Objet : wagonnet

Forces : poids, soutien

mg⃗ + S⃗ = ma⃗ .

Le décrochement du wagonnet de la surface
de la boule est caractérisé par la disparition
du soutien : S⃗ = 0⃗ .

La condition de décrochement s’exprime le mieux selon la normale e⃗n . Effectuer donc la
projection selon le repère (e⃗t, e⃗n) .
Selon e⃗t :

mg sinα = mat .

Selon e⃗n :

mg cosα− S = man = m
v2

R
.

Au point D du décrochement repéré par l’angle αD , S = 0 :

mg cosαD = m
v2D
R

⇒ Rg cosαD = v2D .

La projection selon e⃗t est exploitée à travers le théorème de l’énergie cinétique :

Ecin,décroch. − Ecin,dép. = Wdép.→décroch.(mg⃗) +Wdép.→décroch.(S⃗) .

Le travail du poids est positif, car mg⃗ ·dr⃗CM > 0 . Il est donné par la différence de hauteur :

Whaut→bas(mg⃗) = mg(hhaut − hbas) = mgR(1− cosαD) .

Le travail du soutien est nul, car S⃗ ⊥ dr⃗CM .
Ainsi

1

2
mv2D = mgR(1− cosαD) ⇒ v2D = 2gR(1− cosαD) .

C’est une relation entre la vitesse et la position du wagonnet lors du décrochement.

Alternativement, on peut utiliser la conservation de l’énergie mécanique. En effet toutes les
forces exercées sur le wagonnet sont conservatives (poids) ou ne travaillent pas (soutien).
Par conséquent, l’énergie mécanique du wagonnet est conservée.
En choisissant l’origine des hauteurs au niveau du centre du cercle, on a

� Au point de départ (1) (à α = 0), la vitesse du wagonnet est nulle et sa hauteur
R :

Eméc(1) = mgR .

� Au point de dérochement (2) (à αD), le wagonnet une vitesse de norme vD et se
trouve à la hauteur hD = R cosαD :

Eméc(2) =
1

2
mv2D +mgR cosαD .
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La conservation de l’énergie mécanique donne donc

mgR =
1

2
mv2D +mgR cosαD ⇒ v2D = 2gR(1− cosαD) .

C’est une relation entre la vitesse et la position du wagonnet lors du décrochement.

Des deux équations, on déduit αD .
On a v2D = Rg cosαD et v2D = 2gR(1− cosαD) . Alors

Rg cosαD = 2gR(1− cosαD) ⇔ 3 cosαD = 2 ⇔ cosαD =
2

3
⇒ αD ≈ 48.2◦.

Exercice 3

Dans un premier temps, on caractérise la tension dans la corde. Puis, on détermine l’ex-
pression du travail de cette tension.
Les forces s’exerçant sur l’objet “masse M” sont le poids Mg⃗ et la tension T⃗ de la corde.
La deuxième loi de Newton s’écrit donc

Mg⃗ + T⃗ = Ma⃗ ≡ 0⃗ .

En effet, l’accélération de la masse est nulle car cette dernière s’élève à vitesse constante.
Ainsi, la tension est constante et vaut

T = Mg .

On exploite le fait que la tension est constante durant l’élévation pour calculer le travail
de cette dernière depuis le sol (position r⃗1) jusqu’à une hauteur de 10m (position r⃗2) :

W (T⃗ ) =

∫ r⃗2

r⃗1

T⃗ · dr⃗ =
∫ h

0

Tds = T

∫ h

0

ds = Th .

On peut alors donner l’expression de la tension :

T =
W (T⃗ )

h
=

5000

10
= 500N.

Remarque

Connaissant T , il est possible de déterminer la masse :

M =
T

g
∼=

500

10
= 50 kg ,

où l’on a posé g ∼= 10m/s2.

Exercice 4

Nous allons exploiter le théorème de l’énergie cinétique entre deux instants ti et tj :

Ecin(tj)− Ecin(ti) = W ext
ti→tj

.

(a) Nous allons considérer les deux instants suivants :
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i) temps t0 (lancer)

v⃗0

m

sol

e⃗h

O mg⃗

ii) temps t1 (sommet)

h

v⃗1 = 0⃗
m

sol O

mg⃗

En absence de frottements, la seule force exercée sur la masse est le poids :

Ecin(t1)− Ecin(t0) = W0→1(mg⃗) = mg(h0 − h1) .

Avec le choix de l’origine des hauteurs au sol, h0 = 0 et h1 = h. A la hauteur
maximale h, l’objet s’arrête : v1 = 0. Ainsi

0− 1

2
mv20 = 0−mgh ⇒ h =

v20
2g

.

Alternativement : l’énergie mécanique étant conservée,

1

2
mv20 = mgh ⇒ h =

v20
2g

.

(b) Nous allons considérer les deux instants suivants :

i) temps t0 (lancer)

v⃗0

m

sol

e⃗h

O mg⃗

ii) temps t2 (retour au sol)

v⃗2

m

sol O mg⃗

Nous supposons, comme au point (a), que le frottement avec l’air est négligeable :

Ecin(t2)− Ecin(t0) = W0→2(mg⃗) = mg(h0 − h2) .

Comme h2 = h0,
v2 = v0 .

Vectoriellement, la vitesse v⃗2 est opposée à la vitesse initiale :

v⃗2 = −v⃗0 .

Alternativement : l’énergie mécanique étant conservée,

1

2
mv20 =

1

2
mv22 ⇒ v2 = v0 .
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(c) Remarquons qu’en présence de frottements, l’énergie (mécanique) n’est pas conservée.
Nous allons considérer les deux instants suivants :

i) temps t0 (lancer)

v⃗0

m

sol

e⃗h

O mg⃗ + f⃗0

ii) temps t2 (retour au sol)

v⃗2

m

sol O mg⃗

f⃗1

Nous supposons cette fois que le frottement f⃗ = f⃗(t) avec l’air n’est pas négligeable.
L’énergie mécanique de la masse diminue donc entre l’instant t0 et l’instant t2, et

v2 =
v0
2

< v0 .

Le théorème de l’énergie cinétique appliqué entre les instants t0 et t2 permet
d’écrire :

Ecin(2)− Ecin(0) =
1

2
m

(v0
2

)2

− 1

2
mv20

= W ext
0→2 = W0→2(mg⃗) +W0→2(f⃗) = 0 +W0→2(f⃗) .

Le travail de la force de freinage est donc donné par

W0→2(f⃗) = −3

8
mv20 .

Exercice 5

Le surfeur gagne en vitesse et finit par décrocher. Remarquons qu’il décroche plus tard
que dans le cas d’une bosse parfaitement lisse : il y a des frottements.

A
α

mg⃗

S⃗f⃗

e⃗t

e⃗n

Objet : surfeur

Forces : poids, soutien, frottement

mg⃗ + S⃗ + f⃗ = ma⃗ .

Théorème de l’énergie cinétique entre le point de départ et le point de décrochement A :

Ecin(A)− Ecin(dép) = W ext
dép→A

= Wdép→A(mg⃗) +Wdép→A(S⃗) +Wdép→A(f⃗)

= mgr −mg
r

2
+Wdép→A(f⃗)

avec l’origine des hauteurs au niveau du centre de l’arc de cercle.

Le surfeur décroche au point A .
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Selon e⃗n , pour un point quelconque :

mg cosα− S = man = m
v2

r
.

Au point A du décrochement repéré par l’angle αA = π
3
, S = 0 :

mg cos
π

3
= m

v2A
r

⇒ gr = 2v2A .

Il vient alors
Wdép→A(f⃗) =

m

2
(v2A − gr) =

m

2

(gr
2

− gr
)
= −mgr

4
.

Ce travail est la variation de l’énergie “utile” (énergie mécanique). Le surfeur a donc
dissipé par frottement une énergie

Ediss =
mgr

4
.

Exercice 6

La question porte sur la masse m . On peut donc la considérer comme l’objet à étudier.

(a) La masse m gagne en vitesse et finit par décrocher au sommet.

Considérer d’abord une position quelconque pour la masse m.

R

?

α

mg⃗

S⃗T⃗ e⃗t

e⃗n

Objet : m

Forces : poids, soutien, tension

mg⃗ + S⃗ + T⃗ = ma⃗m .

Le décrochement de la masse de la surface de la
boule est caractérisé par la disparition du soutien :
S⃗ = 0⃗ .

La condition de décrochement s’exprime le mieux selon la normale e⃗n . Effectuer
donc la projection selon le repère (e⃗t, e⃗n) .

Selon e⃗t :
−mg sinα + T = mat .

Selon e⃗n :

mg cosα− S = man = m
v2

R
.

Au point D du décrochement repéré par l’angle αD = 0 , S = 0 :

mg cos 0 = m
v2D
R

⇒ vD =
√
Rg .

Remarque : si la seconde masse, notée M , est trop petite, la vitesse de m sera trop
faible pour qu’elle décolle au sommet. Si M est trop grande, m décolle avant.
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(b) Le lien entre m et la masse inconnue M est le fil tendu. La tension est une force
tangentielle, autant pour m que pour M . C’est donc une force qui travaille contri-
buant ainsi à la modification des énergies cinétiques de m et de M .

Le théorème de l’énergie cinétique (Newton intégré selon e⃗t) entre le point de départ
et le sommet s’écrit

Ecin(2)− Ecin(1) = W1→2(mg⃗) +W1→2(S⃗) +W1→2(T⃗ )

1

2
mv2D − 0 = −mgR + 0 +W1→2(T⃗ ) .

Le travail de la tension W1→2(T⃗ ) =
∫ 2

1
T⃗ · dr⃗m est positif, T⃗ et dr⃗m étant parallèles

et de même sens.

Remarque : la tension n’étant pas conservative, l’énergie mécanique n’est pas
conservée !

Considérer M comme second objet : il subit également la tension.

R

M

T⃗ ′

Mg⃗

α

Objet : M

Forces : poids, tension

Mg⃗ + T⃗ ′ = Ma⃗M .

Le théorème de l’énergie cinétique entre le point
de départ et le point atteint lorsque m passe au
sommet

1

2
MV 2

D − 0 = MgR
π

2
+W1→2(T⃗

′) ,

M étant descendue de Rπ
2
.

Le travail de la tension W1→2(T⃗
′) =

∫ 2

1
T⃗ ′ · dr⃗M

est négatif, T⃗ ′ et dr⃗M étant parallèles et de sens
opposé.

Considérer les liaisons entre les objets choisis.

Liaison : à chaque instant, les vitesses de m et M sont de même norme (||V⃗ || =
||v⃗||), tout comme les tensions (||T⃗ ′|| = ||T⃗ ||). Alors

T⃗ ′ · dr⃗M = −T⃗ · dr⃗m ⇒ W1→2(T⃗
′) = −W1→2(T⃗ ) .

En éliminant les travaux par addition des équations, nous obtenons (avec VD = vD)

1

2
(m+M)v2D = −mgR +MgR

π

2
,

d’où, avec v2D = Rg ,

M =
3

π − 1
m.

Exercice 7

Approche standard d’un problème de mécanique : dessin, . . .
Faire un dessin en ≪ 3D ≫.
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C

m

α

Considérer l’objet m .

C

e⃗z

e⃗n
e⃗t

α

mg⃗

T⃗

Objet : masse m

Forces : poids, tension du fil

Newton : mg⃗ + T⃗ = ma⃗ .

Exploiter les projections.
Selon e⃗z : T cosα−mg = 0 .

Selon e⃗t : 0 = mat ⇒ v = cte .

Selon e⃗n : T sinα = man = mv2

R
= mRω2 où R = L sinα .

Nous avons donc mg
cosα

sinα = mL sinαω2 , ou encore( g

cosα
− Lω2

)
sinα = 0 .

Discuter cette relation.
� sinα = 0 est toujours solution. α = 0 est une situation qui est toujours possible,
quoique éventuellement instable.

�

(
g

cosα
− Lω2

)
= 0 ⇔ cosα = g

Lω2 est une autre solution, à condition que

g

Lω2
≤ 1 ⇔ ω2 ≥ g

L
,

c’est-à-dire que la vitesse angulaire est suffisamment élevée. Si c’est le cas,

α = arccos
g

Lω2
.

Cas limite ω → ∞ : cosα → 0 ou encore α → π
2
.
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