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Corrigé 6

Exercice 1

On exploite la deuxième loi de Newton ainsi que l’expression de l’accélération normale.
Les forces exercées sur le pendule sont son poids et la traction dans le fil, de sorte que la
deuxième loi de Newton s’écrit

mg⃗ + T⃗ = ma⃗ .

Lorsque le fil est vertical, le poids et la traction sont parallèles et normales à la trajectoire
circulaire du pendule :

trajectoireObjet : bille L

mg⃗

T⃗

v⃗0
e⃗z

A cet instant l’accélération tangentielle est donc nulle, la norme de la vitesse ne varie plus.
Soit v⃗0 la vitesse à cet instant, la projection de la deuxième loi de Newton selon un repère
vertical vers le haut fournit (en tenant compte de l’expression de l’accélération normale)

T −mg = man = m
v20
L

⇒ v0 =

√
T −mg

m
L .

Exercice 2

Exploiter la condition de décrochement pour l’endroit où m quitte la boule.
Considérer d’abord une position quelconque pour le wagonnet.

R α

mg⃗

S⃗

e⃗t

e⃗n

Objet : wagonnet

Forces : poids, soutien

mg⃗ + S⃗ = ma⃗ .

Le décrochement du wagonnet de la surface
de la boule est caractérisé par la disparition
du soutien : S⃗ = 0⃗ .

La condition de décrochement s’exprime le mieux selon la normale e⃗n . Effectuer donc la
projection selon le repère (e⃗t, e⃗n) .
Selon e⃗t :

mg sinα = mat .

Selon e⃗n :

mg cosα− S = man = m
v2

R
.
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Au point D du décrochement repéré par l’angle αD , S = 0 :

mg cosαD = m
v2D
R

⇒ Rg cosαD = v2D .

Exercice 3

Exploiter la condition de non-décrochement au sommet de la trajectoire (au-dessus du
centre du cercle).
Considérer d’abord une position quelconque pour la bille.

R

φ
mg⃗

S⃗

e⃗t

e⃗n

Objet : bille

Forces : poids, soutien

mg⃗ + S⃗ = ma⃗ .

Le non-décrochement de la
bille du rail est caractérisé
par la condition ||S⃗|| > 0 .

La condition de décrochement s’exprime le mieux selon la normale e⃗n . Effectuer donc la
projection selon le repère (e⃗t, e⃗n) .
Selon e⃗t :

−mg sinφ = mat .

Selon e⃗n :

S −mg cosφ = man = m
v2

R
.

Au sommet, repéré par l’angle φ = π , la condition S > 0 s’écrit

S = m
v2

R
+mg cosφ = m

v2

R
−mg > 0 =⇒ v2 > Rg

ou encore
v >

√
Rg .

Exercice 4

On exploite la nature circulaire du mouvement et l’expression des accélérations tangen-
tielle et normale.
La voiture fait un virage à angle droit en 2 secondes :

5m

v⃗0

v⃗1

||v⃗0|| = ||v⃗1|| = v
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Comme la norme de la vitesse indiquée par le tachymètre est constante, la distance par-
courue dans le virage en t = 2 s est

L =
2πR

4
= vt ⇒ v =

πR

2t
.

De plus,

at = v̇ = 0 et an =
v2

R
=

π2R

4t2
∼= 3.08m s−2 .

Exercice 5

Esquisser la situation en 3 dimensions, puis à deux dimensions.

O

m
e⃗t

R

e⃗n

e⃗zS⃗

mg⃗

Objet : voiture

Forces : poids, soutien

mg⃗ + S⃗ = ma⃗ .

De dessus :

O
R

m
e⃗n

S⃗∥

e⃗t

De côté :

O
R

α

m
e⃗n

S⃗

mg⃗

e⃗z

La trajectoire de la voiture est circulaire : le rayon de courbure R est constant.
Comme R apparâıt dans la projection selon la normale, on effectue les projections selon
le repère (e⃗t, e⃗n, e⃗z) .
Selon e⃗t :

0 = mat ⇒ at = v̇ = 0 ⇒ v = cte.

Le mouvement est bien uniforme.

Selon e⃗n :

S sinα = man = m
v2

R
.

Selon e⃗z :
S cosα−mg = maz = 0 ,

par absence de mouvement selon e⃗z .

En éliminant S , nous avons

S sinα

S cosα
= tanα =

mv2

mgR
=

v2

Rg
⇔ α = arctan

v2

Rg
.

Exercice 6
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(a) En partant de la deuxième loi de Newton, on détermine les expressions de la vitesse
scalaire v = v(t) et de l’abscisse curviligne s = s(t). On peut alors en déduire la
force motrice de la voiture en exploitant les données de l’énoncé.

A tout point du virage, la deuxième loi de Newton, projetée selon la tangente e⃗t,
s’écrit

f = mat = mv̇ ,

où f est la force motrice du moteur. Selon l’énoncé, la norme de la vitesse augmente
régulièrement dans le temps. La force motrice est donc constante en norme :

f = f0 = constante .

Ainsi, le mouvement de la voiture le long de sa trajectoire circulaire est un mouve-
ment uniformément accéléré. On peut donc immédiatement écrire la vitesse scalaire
v(t) et l’abscisse curviligne s(t) dans le virage à chaque instant :

at(t) =
f0
m

= constante ,

v(t) = at (t− t0) + v0 =
f0
m

t+ v0 ,

s(t) =
1

2
at (t− t0)

2 + v0 (t− t0) + s0 =
1

2

f0
m

t2 + v0 t ,

où on a posé par commodité t0 = 0 s et s0 = 0m.

Connaissant la vitesse à l’entrée (v(t0) = v0) et à la sortie (v(t1) = v1) du virage,
on détermine alors le temps t1 :

v(t1) =
f0
m

t1 + v0 = v1 ⇒ t1 =
m(v1 − v0)

f0
.

En utilisant la distance parcourue depuis s(t0), s(t1) = πR/2 , on en tire finalement
la force f0 :

s(t1) =
1

2

f0
m

t1
2 + v0 t1

=
1

2

f0
m

m2(v1 − v0)
2

f0
2 + v0

m(v1 − v0)

f0

=
1

2

m(v1
2 + v0

2 − 2v0v1)

f0
+

mv0v1
f0

− mv0
2

f0

=
1

2

m(v1
2 − v0

2)

f0

=
πR

2
,

⇒ f0 =
m(v1

2 − v0
2)

πR
∼= 614 N.

Variante (plus efficace) : on pourra utiliser le théorème de l’énergie cinétique.

On applique le théorème de l’énergie cinétique :

1

2
mv1

2 − 1

2
mv0

2 = W0→1 = f0
πR

2
(car f⃗ ∥ e⃗t et f0 = constante) ,
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d’où
f0 =

m

πR
(v1

2 − v0
2) ∼= 614N.

On remarque que cette méthode est beaucoup plus rapide que la méthode ex-
ploitant la vitesse scalaire et l’abscisse curviligne à partir de la deuxième loi de
Newton.

(b) L’accélération tangentielle de la voiture de masse m est produite par la force mo-
trice du moteur, f = f0. La deuxième loi de Newton, projetée le long de la trajec-
toire, fournit

at =
f0
m

.

Quant à l’accélération normale, elle est donnée par

an =
v2

R
.

(c) • A t = t0,

at,0 =
f0
m

∼= 0.614m s−2

et

an,0 =
v20
R

∼= 1.543m s−2 .

• A t = t1,

at,1 =
f0
m

∼= 0.614m s−2

et

an,1 =
v21
R

∼= 3.472m s−2 .

Comme la force motrice ne varie pas, l’accélération tangentielle est constante. En
revanche, l’accélération normale augmente car la norme de la vitesse augmente.

L’accélération s’écrit
a⃗ = ate⃗t + ane⃗n .

ane⃗n

v⃗

ate⃗t
a⃗

α

Ainsi,

||⃗a|| =
√

at2 + an2 et cosα =
|at|
||⃗a||

.
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• A t = t0,
||⃗a0|| =

√
at,02 + an,02 ∼= 1.661m s−2

et

cosα0 =
|at,0|
||⃗a0||

∼= 0.370 ⇒ α0
∼= 68.303◦ .

• A t = t1,
||⃗a1|| =

√
at,12 + an,12 ∼= 3.526m s−2

et

cosα1 =
|at,1|
||⃗a1||

∼= 0.174 ⇒ α1
∼= 79.972◦ .

Exercice 7

On exploite la deuxième loi de Newton en tenant compte du fait qu’un satellite géostationnaire
doit rester en permanence au-dessus du même point de la Terre.
On choisit un référentiel (supposé d’inertie) lié au centre O de la Terre.
Dans ce référentiel, le satellite a un mouvement circulaire uniforme. Il subit une seule
force : la force de gravitation due à la présence de la Terre.

O

Terre

m

h

v⃗

F⃗gravitation

La force de gravitation étant centrale, on a

||F⃗gravitation|| = G
mTm

(RT + h)2
= man = m

v2

RT + h
.

La norme v de la vitesse du satellite doit être telle que ce dernier reste toujours au-
dessus du même point de la Terre. Les vitesses angulaires du satellite et de la Terre
doivent donc être égales. Or, la vitesse angulaire de la Terre est donnée par ω = 2π/T où
T = 24 h = 24 · 3600 s est la période de rotation de la Terre. Ainsi,

v = ω(RT + h) =
2π(RT + h)

T

et l’altitude du satellite a pour expression

h =
3

√
GmTT 2

4π2
−RT

∼= 3.58 · 107m .

Exercice 8

Il s’agit d’un problème de rencontre sur un cercle.
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Pour un bon choix de l’origine du temps, noter α(t) l’angle parcouru par A et β(t) celui
parcouru par B .
En prenant t = 0 lorsque A passe devant B , la condition de rencontre sur le cercle s’écrit

∃ tr ∈ R, k ∈ Z t.q. α(tr) = β(tr) + k2π .

Interprétation :
� k = 0 : A et B ont parcouru la même angle (premier dépassement)
� k = +1 : A a un tour d’avance sur B (deuxième dépassement)
� k = −1 : A a un tour de retard sur B (deuxième dépassement)
� etc...

Que peut-on dire de l’angle α(t) parcouru par A à vitesse de norme constante ?

C

Γ

O
à t = 0

v⃗0

O

à t

v⃗A(t)

α(t)

sA(t)
La vitesse de A est de norme constante,
la vitesse angulaire est donc aussi
constante :

v0 = RωA ⇔ ωA =
v0
R

= cte .

L’angle parcouru est ainsi linéaire dans
le temps :

α(t) = ωAt .

Que peut-on dire de l’angle β(t) parcouru par B d’accélération tangentielle de norme
constante ?

C

Γ

O
à t = 0

O

à t

v⃗B(t)

β(t)

sB(t)

L’accélération tangentielle de B est de
norme constante, l’accélération angu-
laire γB = ω̇B est donc aussi constante

a0 = RγB ⇔ γB =
a0
R

=
6ω2

A

π
= cte .

La vitesse angulaire et l’angle parcouru
sont alors donnés par

ωB(t) = γBt

β(t) =
1

2
γBt

2 =
3ω2

A

π
t2 .

Exploiter la condition de rencontre.
Cherchons tr ∈ R et k ∈ Z tels que

α(tr) = β(tr) + k2π

ωAtr =
3ω2

A

π
t2r + k2π .

Voyons pour quels k cette équation en tr a des solutions :

3ω2
A

π
t2r − ωAtr + k2π = 0 .
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� k = 0 : A et B ont parcouru la même angle (premier dépassement)

3ω2
A

π
t2r − ωAtr = 0 ⇔ tr = 0 ou tr =

π

3ωA

.

tr = 0 est bien sûr l’instant initial : A passe devant B .
Remarque : B a rattrapé A .

� k = +1 : A a un tour d’avance sur B (cette situation n’arrive pas)

3ω2
A

π
t2r − ωAtr + 2π = 0 .

∆ = ω2
A − 4

3ω2
A

π
2π = −23ω2

A < 0 .

� k = −1 : A a un tour de retard sur B (deuxième dépassement)

3ω2
A

π
t2r − ωAtr − 2π = 0 .

∆ = ω2
A + 4

3ω2
A

π
2π = 25ω2

A ,

d’où

tr = − 2π

3ωA

ou tr =
π

ωA

.

tr < 0 est bien sûr à rejeter.
Finalement :

� premier dépassement de A par B à tr =
π

3ωA

=
πR

3v0

� deuxième dépassement de A par B à tr =
π

ωA

=
πR

v0
.
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