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Corrigé 2

Exercice 1

Donner une représentation soignée.
Un vecteur est constant ssi sa direction, son sens et sa norme le sont. Que peut-on dire
de la trajectoire d’un objet de vitesse constante ?

Γ

π
3

La vitesse étant constante, le mouvement de la voi-
ture est rectiligne et uniforme (MRU) : la trajec-
toire est une droite.

Le mouvement est régulier : comment est l’espacement entre les points atteints par la
voiture à des intervalles réguliers ?

Γ
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Le déplacement est proportionnel à sa durée,

∆r⃗ = v⃗0∆t .

Sur une durée ∆t = 2 s ,
� le déplacement est

∆r⃗ = v⃗0∆t = r⃗2 − r⃗0 = r⃗3 − r⃗1

� la distance parcourue, mesurée le long de la
trajectoire, est

∆s = v0∆t = 1m s−1 · 2 s = 2m.

Remarque : ||∆r⃗|| = ∆s .

Exercice 2

Donner une représentation soignée.
Que peut-on dire de la distance parcourue par un objet de vitesse de norme constante ?
Comment est l’espacement entre les points sur le cercle atteints par la voiture à des
intervalles réguliers ?
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Prenons pour origine le centre du
cercle.
Comme la norme de la vitesse est
constante, la distance parcourue est
proportionnelle à l’intervalle de temps,

∆s = v0∆t .

Il en est donc de même pour l’angle φ
parcouru :

∆s = R∆φ ⇒ ∆φ =
∆s

R
=

v0
R
∆t .

Sur une durée ∆t = 1 s ,

γ = ∆φ =
1ms−1

1m
·1 s = 1 rad ≃ 57.30◦ .

Sur une durée ∆t = 2 s ,
� le déplacement est

∆r⃗ = r⃗2 − r⃗0

(rem. : r⃗2 − r⃗0 ̸= r⃗3 − r⃗1).
� la distance parcourue, mesurée le long de la trajectoire, est

∆s = v0∆t = 1m s−1 · 2 s = 2m.

Remarque : ||∆r⃗|| < ∆s .

Exercice 3

Reprendre les définitions, intuitives et exactes, des vecteurs position, vitesse et accélération.
Le vecteur position (grandeur vectorielle) indique la position de l’objet à partir de l’origine
choisie.

La vitesse (grandeur vectorielle) donne le sens du mouvement et indique le taux de varia-
tion de la position par rapport au temps. Elle est tangente à la trajectoire.

L’accélération (grandeur vectorielle) donne le taux de variation de la vitesse par rapport
au temps. Elle est ainsi toujours dirigée vers l’intérieur du virage.
Les vecteurs v⃗, a⃗1 et v⃗2 ne sont pas réalistes :

� La vitesse v⃗ doit être tangente à la trajectoire ;
� l’accélération a⃗1 doit être dirigée vers l’intérieur du virage ;
� la vitesse v⃗2 doit être tangente à la trajectoire.

Exercice 4

Utiliser la définition du vecteur position.
Choisir une origine.
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Imaginer le mouvement de l’objet.
Se rappeler la définition intuitive de la vitesse (grandeur vectorielle) : elle est tangente à
la trajectoire, donne le sens du mouvement et indique le taux de variation de la position
par rapport au temps.
On peut comparer les normes des différents vecteurs vitesse en se basant sur les distances
parcourues en 1 seconde par l’objet. On en déduit par exemple que la norme de la vitesse
est plus grande à l’instant t = 4 s qu’à l’instant t = 6 s.
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Imaginer le mouvement de l’objet.
Se rappeler la définition intuitive de l’accélération (grandeur vectorielle) : elle indique le
taux de variation de la vitesse par rapport au temps (et est ainsi toujours dirigée vers
l’intérieur du virage).
Les changements dans la norme de la vitesse permettent alors d’approximer la com-
posante de l’accélération tangente à la trajectoire. On obtient ainsi par exemple que
l’accélération tangentielle doit être dirigée vers l’arrière à l’instant t = 5 s. La composante
de l’accélération normale à la trajectoire est absente (lorsque l’objet se déplace en ligne
droite) ou dirigée vers l’intérieur du virage.
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Exercice 5

On choisit un repère horizontal e⃗x dirigé selon la vitesse initiale de la luge.

La condition initiale est x(0) = 0m (choix de l’origine) et v(0) = v0 = 5m s−1.

L’accélération de la luge est constante : a(t) = a0 = −0.5m s−2.

La vitesse et la position de la luge sont donc données par (MUA)

v(t) = a0t+ v0 ,

x(t) =
1

2
a0t

2 + v0t .

(a) Après t1 = 1 s, la vitesse vaut donc

v(t1) = a0t1 + v0 = −0.5m s−2 · 1 s + 5m s−1 = 4.5m s−1.

(b) La distance de freinage est parcourue pendant le temps de freinage tf défini par la
condition d’arrêt de la luge (v(tf ) = 0m s−1) :

v(tf ) = a0tf + v0 = 0 ⇒ tf = −v0
a0

= − 5m s−1

−0.5m s−2
= 10 s .

La distance de freinage df est alors donnée par

df = x(tf ) =
1

2
a0t

2
f + v0tf = 25m.

(c) La distance d = 1m a été parcourue au temps td :

x(td) =
1

2
a0t

2
d + v0td = d .

Cette équation possède deux solutions positives. Seule la plus petite a un sens :

td =
−v0 +

√
v20 + 2a0d

a0
∼= 0.202 s.

On note que ce temps td est bien légèrement supérieur à celui que l’on aurait en
absence de freinage (t = 0.2 s).

La vitesse au temps td vaut alors v(td) ∼= 4.899m s−1.
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Exercice 6

Sur un dessin muni d’un repère, on esquisse la trajectoire de la bille : le mouvement de la
bille est rectiligne et uniforme (MRU).

O

e⃗x

e⃗y

L

I

yIr⃗b(t)

α

Le point I où la bille quitte la table est aisément décrit par rapport à une origine O au
point de départ de la bille et avec un repère (e⃗x, e⃗y) parallèle aux bords de la table :

I = (L, yI) .

La composante yI est donnée par la trigonométrie :

tanα =
yI
L

=⇒ yI = L tanα =
L√
3
.

Approche plus générale

La connaissance de la position (vectorielle !) de la bille à chaque instant r⃗b(t) permet de
résoudre toutes les questions relatives à sa cinématique.
En choisissant l’instant de départ t0 = 0, l’horaire est donné par

r⃗b(t) = v⃗0 t .

En projetant cette équation vectorielle selon e⃗x et e⃗y, on obtient les deux équations sca-
laires suivantes :

xb(t) = v0x t = v0 cosα t ,

yb(t) = v0y t = v0 sinα t .

Dans cette description, le temps de séjour ts est égal à l’instant où la bille quitte la table
au point I :

r⃗b(ts) =
−→
OI .

En projetant cette équation vectorielle selon e⃗x et e⃗y, on obtient les deux équations sca-
laires suivantes :

xb(ts) = v0 cosα ts = L ,

yb(ts) = v0 sinα ts = yI .

La première de ces équations donne le temps nécessaire à la bille pour parcourir une
distance L (selon e⃗x) :

ts =
L

v0 cosα
=

2L

v0
√
3
.
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La seconde équation permet alors de déterminer yI . Plus simplement encore, le quotient
membre à membre des deux équations permet d’éliminer ts :

yb(ts)

xb(ts)
=

v0 sinα ts
v0 cosα ts

= tanα =
yI
L

=⇒ yI = L tanα =
L√
3
.

Remarque : si la trajectoire et le sens du mouvement sont connus, la connaissance de la dis-
tance parcourue à chaque instant permet de résoudre certains problèmes de cinématique.
Notons sb(t) cette distance :

sb(t) = v0 t .

Exploiter le critère caractérisant le temps de séjour de la bille sur la table.
Dans cette description, le temps de séjour ts est égal à l’instant où la bille quitte la table
au point I :

sb(ts) = ||
−→
OI|| ,

la distance entre O et I étant donnée par le théorème de Pythagore.
Alors

sb(ts) = v0 ts =
√
L2 + y2I = L

√
1 +

1

3
=

2L√
3
=⇒ ts =

2L

v0
√
3
.

Cette méthode est certes tout à fait valable. Cependant, elle n’est de loin pas aussi générale
que la première méthode proposée.

Exercice 7

Le problème pose la question d’une rencontre éventuelle entre la bille et la paroi mobile :
se trouvent-elles au même endroit à un instant donné ?
Notons r⃗b(t) et r⃗p(t) les positions respectives de la bille et de la paroi mobile à l’instant t
par rapport à l’origine choisie en O .

O

e⃗x

e⃗y

I

r⃗b(t)

A

r⃗p(t)

Il y a rencontre entre ces deux objets ssi

∃ tr t.q. r⃗b(tr) = r⃗p(tr) ,

c’est-à-dire ssi il existe un instant tr auquel les posi-
tions (vectorielles !) cöıncident.

Donnons l’équation horaire de la bille r⃗b(t) d’une part et celle de la paroi mobile r⃗p(t)
d’autre part (par rapport à la même origine).
La bille est en MRU avec la vitesse v⃗0 et part de O à l’instant t = 0 :

r⃗b(t) = v⃗0 t .

La paroi mobile est en MRU avec la vitesse v⃗p et part de A à l’instant t = 0 :

r⃗p(t) = v⃗p t+ r⃗p0

avec r⃗p0 =
−−→
OA =

(
L
0

)
.

Le critère de rencontre devient

r⃗b(tr) = r⃗p(tr)

v⃗0 tr = v⃗p tr + r⃗p0 .
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Selon e⃗x :
v0 cosα tr = L

Selon e⃗y :
v0 sinα tr = v0 tr .

La seconde équation impose que sinα = 1 pour tr ̸= 0 , ce qui est faux.
Un tel temps de rencontre n’existe donc pas.

Modifions alors l’instant de départ tp0 de la paroi pour que la rencontre ait lieu : la bille
et la paroi mobile doivent se trouver au même endroit à un instant donné.
La bille est en MRU avec la vitesse v⃗0 et part de O à l’instant t = 0 :

r⃗b(t) = v⃗0 t .

La paroi mobile est en MRU avec la vitesse v⃗p et part de A à l’instant tp0 :

r⃗p(t) = v⃗p (t− tp0) + r⃗p0

avec r⃗p0 =
−−→
OA =

(
L
0

)
.

Le critère de rencontre devient

r⃗b(tr) = r⃗p(tr)

v⃗0 tr = v⃗p (tr − tp0) + r⃗p0 .

Selon e⃗x :
v0 cosα tr = L

Selon e⃗y :
v0 sinα tr = v0 (tr − tp0) .

La rencontre doit avoir lieu dans les deux composantes ! Autrement dit, l’instant de départ
tp0 de la paroi doit être tel que tr vérifie les deux équations simultanément.
La première équation donne

tr =
L

v0 cosα
=

2L

v0
√
3
.

La seconde équation donne finalement

tp0 = (1− sinα) tr =

(
1− 1

2

)
2L

v0
√
3
=

L

v0
√
3
.

Exercice 8

Tout d’abord, on détermine la (ou les) force(s) extérieure(s) qui s’exerce(nt) sur la boule.
Puis, on écrit les lois de la dynamique avant de les projeter selon un repère choisi.
Une fois lancée, la boule de masse m ne subit que son poids. Elle est donc en chute libre :

mg⃗ = ma⃗ .

Nous choississons par exemple
d’orienter le repère vers le haut et
de placer l’origine au sol :

a⃗ = g⃗ = −ge⃗x .

mg⃗

v⃗0

boule

h = 80me⃗x

O
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En tenant compte de la condition initiale v(0) = v0 = 2ms−1 et x(0) = h = 80m, nous
obtenons successivement, en projetant selon e⃗x,

a(t) = −g ,

v(t) = −gt+ v0 ,

x(t) = −1

2
gt2 + v0t+ h .

Le temps de chute tc correspond à une hauteur nulle (impact sur le sol) :

x(tc) = −1

2
gt2c + v0tc + h = 0 .

On en déduit
tc ∼= 4.25 s ,

où l’on a utilisé g ∼= 9.81m s−2.
La vitesse au moment de l’impact est la vitesse au temps de chute :

v(tc) = −gtc + v0 ∼= −39.67m s−1.

Exercice 9

On commence par visualiser et représenter la situation grâce à un dessin soigné. On choisit
ensuite, judicieusement, un repère pour la description des mouvements. Pour appliquer
le critère de rencontre, il convient de déterminer la position des deux objets à chaque
instant.
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Notons h0 la hauteur initiale de l’objet 1 et v⃗0 la vitesse initiale de l’objet 2 :

h0

v⃗0

objet 1

objet 2

e⃗y

O

Remarque : tous les mouvements se font selon la verticale.

(a) Critère de rencontre :
∃ tr, r⃗1(tr) = r⃗2(tr) .

L’objet 1 est en chute libre.

Ainsi,
a⃗1(t) = g⃗ ∀ t .

Selon e⃗y,
a1(t) = −g ∀ t .

Fixons l’origine au niveau du sol et l’instant t = 0 en début de chute.

La vitesse initiale est nulle. Alors,

v⃗1(t) = g⃗ t ∀ t .

Selon e⃗y,
v1(t) = −gt ∀ t .

La position initiale se situe à la hauteur h0 . Alors,

r⃗1(t) =
1

2
g⃗ t2 + r⃗10 ∀ t .

Selon e⃗y,

y1(t) = −1

2
gt2 + h0 ∀ t , avec h0 = +20m .

L’objet 2 est en chute libre.

Ainsi,
a⃗2(t) = g⃗ ∀ t .

Selon e⃗y,
a2(t) = −g ∀ t .

Remarque : pour pouvoir par la suite comparer les positions des deux objets, il
faut prendre les mêmes origines spatiale et temporelle !

La vitesse initiale est verticale. Alors,

v⃗2(t) = g⃗ t+ v⃗0 ∀ t .

Selon e⃗y,
v2(t) = −gt+ v0 ∀ t .
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La position initiale est nulle. Alors,

r⃗2(t) =
1

2
g⃗ t2 + v⃗0 t ∀ t .

Selon e⃗y,

y2(t) = −1

2
gt2 + v0t ∀ t , avec v0 = +16m s−1 .

On applique alors le critère (vectoriel) pour la rencontre des objets.

Selon e⃗y , la condition de rencontre est y1(tr) = y2(tr) :

−1

2
gt2r + h0 = −1

2
gt2r + v0tr ⇒ tr =

h0

v0
=

20m

16m s−1
= 1.25 s.

L’instant tr existe, la rencontre a lieu.

Connaissant le mouvement des objets et l’instant de leur rencontre, on calcule
l’endroit de la rencontre. Par exemple avec la position de l’objet 1 (égale à celle de
l’objet 2),

y1(tr) = −1

2
g

(
h0

v0

)2

+ h0 = −1

2
· 9.81m s−2 · (1.25 s)2 + 20m = 12.34m .

(b) Pour répondre à la question posée, on utlise un critère d’arrivée au sol : un
objet est au sol si sa hauteur est nulle.

Objet 1 : il touche le sol à l’instant t1 tel que

y1(t1) = 0 .

Alors

y1(t1) = −1

2
gt21 + h0 = 0 ⇒ t1 =

√
2h0

g
=

√
2 · 20m

9.81m s−2
= 2.02 s

Objet 2 : il touche le sol à l’instant t2 tel que

y2(t2) = 0 .

Alors

y2(t2) = −1

2
gt22 + v0t2 =

(
−1

2
gt2 + v0

)
t2 = 0 .

Les solutions sont

t2 = 0 (sans intérêt) ou t2 =
2v0
g

=
2 · 16m s−1

9.81m s−2
= 3.26 s.

L’intervalle entre les impacts avec le sol est donc

t2 − t1 = 1.24 s.

(c) On modifie les conditions initiales pour satisfaire à la nouvelle condition de ren-
contre. Les équations du mouvement restent les mêmes, à la différence que la vitesse
v⃗0 n’est pas connue. Toutes les expressions obtenues pour le temps de rencontre et
la hauteur de rencontre restent valables. En particulier, le temps de croisement est

donné par tr =
h0

v0
.

Nous cherchons v0 telle que, à cet instant tr, les objets se trouvent à mi-hauteur :

y1(tr) = y2(tr) = −1

2
g

(
h0

v0

)2

+ h0 =
h0

2

⇒ v0 =
√

gh0 =
√
9.81m s−2 · 20m = 14.01m s−1.
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