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Exercice 1

Une spire étant formé d’un fil, on peut adapter la situation du fil rectiligne à celle d’un
fil courbé.

Considérons la spire comme formée de petits bouts de fils traversés par le courant. Le
champ magnétique est la superposition des champs dus à chacun de ces petits bouts. Son
sens est déterminé en appliquant la règle du tire-bouchon.

Dans la spire, tous les champs individuels sont de même sens : selon la règle du tire-
bouchon, pour le cas où la partie gauche de la spire est en avant, les lignes de champ
traversent la spire de la droite vers la gauche (voir esquisse en page suivante).

B⃗I

Hors de la spire, les champs individuels se compensent partiellement. Le champ dû aux
bouts de fil les plus proches est dominant.
Selon la règle du tire-bouchon, pour le cas où la partie gauche de la spire est en avant, les
lignes de champ se referment hors de la spire, de gauche à droite dans le plan de la spire.

Exercice 2

Comme d’habitude, il convient de faire un dessin et de répertorier les forces s’exerçant
sur l’électron ainsi que les caractéristiques de ces dernières.
Nous allons négliger la force de la gravitation.

Supposons que le champ électrique est dirigé vers le haut. La force électrique que ressent
l’électron pousse ce dernier vers le bas (un électron est chargé négativement : q = −e).
La force magnétique doit donc être dirigée vers le haut :

E⃗

e− v⃗

F⃗électrique = qE⃗

F⃗magnétique
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L’électron suit alors une trajectoire rectiligne (mouvement rectiligne uniforme à vitesse
constante v⃗).

La force magnétique (force de Lorentz) que ressent l’électron a pour expression :

F⃗magnétique = q v⃗ ∧ B⃗ .

Par conséquent, si la vitesse v⃗ de l’électron est dirigée vers la droite, le champ magnétique
B⃗ doit être perpendiculaire au plan de la feuille et sortant : ⊙B⃗

⊙

⊙

⊙

⊙

⊙

⊙

⊙

⊙

⊙

⊙

B⃗

E⃗

e−

v⃗

F⃗électrique = qE⃗

F⃗magnétique

e⃗z

L’intensité B = ||B⃗|| du champ magnétique est donnée par la deuxième loi de Newton
projetée selon la verticale e⃗z :

q(E⃗ + v⃗ ∧ B⃗) = 0⃗ ⇒ B =
E

v
.

Exercice 3

Nous allons considérer la particule et les forces qu’elle subit.

Il est important de choisir un point de vue adéquat pour faire le dessin.

Considérons la particule chargée dans le champ magnétique : la seule force qu’elle subit
est la force de Lorentz

F⃗ = q v⃗ × B⃗ .

Cette force est toujours normale et à la vitesse et au champ magnétique.

Vue normale au champ B⃗ :

B⃗

v⃗0

q > 0⊙F⃗

Lorsque la vitesse de la particule est dans ce
plan, la force de Lorentz est normale au plan
et la particule sort du plan. Ce point de vue
n’est donc pas très pratique . . .

Vue parallèle au champ B⃗ :

⊙B⃗

v⃗0
F⃗

q > 0

e⃗t

e⃗n
La vitesse de la particule, tout comme la
force de Lorentz, reste dans ce plan. Le mou-
vement de la particule a lieu dans ce plan.

Appliquons la deuxième loi de Newton à la particule chargée :
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Vue parallèle au champ B⃗ :

⊙B⃗

v⃗0
F⃗

q > 0

e⃗t

e⃗n

Objet : particule

Force : Lorentz

q v⃗ × B⃗ = ma⃗ .

Selon e⃗t : 0 = mat ⇒ v = cte = v0.
La norme de la vitesse de la particule est conservée (mouvement uniforme).

Selon e⃗n : |q|vB = man = m
v2

R

⇒ R =
mv

|q|B
=

mv0
|q|B

= cte .

Le rayon de courbure est donc également constant.

Vue parallèle au champ B⃗ :

⊙B⃗

v⃗0
F⃗

q > 0

e⃗t

e⃗n

Γ

R

Le mouvement est circulaire et uniforme !

Exercice 4

Nous allons étudier le mouvement d’un électron de conduction du barreau métallique.

Les électrons de conduction du barreau métallique se déplacent avec ce dernier à la vitesse
v⃗0, subissent la force de Lorentz et migrent vers une extrémité du barreau, créant un champ
électrique. Ils ressentent dès lors également une force électrique. La migration prend fin
lorsque les forces électrique et de Lorentz se compensent :

Vue de dessus

v⃗0

e−
v⃗0

F⃗élec.

F⃗Lorentz
B⃗⊗ B⃗⊗

B⃗⊗

E⃗

L

F⃗élec. + F⃗Lorentz = qE⃗ + q v⃗0 ∧ B⃗ = q(E⃗ + v⃗0 ∧ B⃗) = 0⃗ .
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Ainsi, le champ électrique créé est lié au champ magnétique et à la vitesse du barreau par
l’expression

E⃗ = −v⃗0 ∧ B⃗ .

Selon l’énoncé, la vitesse du barreau et le champ magnétique sont supposés constants. Par
conséquent, le champ électrique est uniforme.

Vue de dessus

v⃗0

A

B

E⃗ E⃗

L

La tension UAB entre les extrémités du barreau a donc pour expression :

UAB =

∫ B

A

E⃗ · dr⃗ = EL = v0BL ,

où v0 = ||v⃗0|| et B = ||B⃗|| .

Exercice 5

Nous allons commencer par faire un dessin avant de considérer l’équilibre du fil.

A l’équilibre, la situation peut être représentée de la manière suivante :

Vue de face

tige

a⃗

I
B⃗⃗B⃗B⃗B⃗B⃗B

Vue de côté

α

T⃗

mg⃗

F⃗Lap. a⃗
⊙B⃗⃗B⃗B

e⃗y

e⃗x

La tige est soumise à trois forces :

� son poids mg⃗,
� la tension T⃗ dans les fils souples,
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� la force de Laplace F⃗Lap..
La deuxième loi de Newton s’écrit :

mg⃗ + T⃗ + Ia⃗ ∧ B⃗ = 0⃗ .

On projette alors cette équation selon e⃗x

−IaB + T sinα = 0 ,

et selon e⃗y
T cosα−mg = 0 .

En faisant le rapport de ces deux dernières relations, il vient

tanα =
IaB

mg
.

L’angle cherché a donc pour expression

α = arctan
IaB

mg
∼= arctan

2 · 0.09 · 0.01
0.03 · 9.81

= arctan (6.12 · 10−3) ∼= 0.35◦ .

Exercice 6

Nous allons considérer la situation d’équilibre de la tige.

La tige, traversée par un courant électrique, se trouve à proximité d’un autre courant et
subit donc une force due à ce courant :

I

α
I0

I d =?

e⃗x
e⃗y

mg⃗

S⃗F⃗L

Objet : tige

Forces : poids, force de Laplace, soutien

mg⃗ + F⃗L + S⃗ = 0⃗ .

Selon e⃗x :
−mg sinα + FL = 0 .

Selon e⃗y :
−mg cosα + S = 0 .

Déterminons la norme de la force de Laplace :

I

α
I0

d =?

e⃗x
e⃗yF⃗L

B⃗0

L⃗

La tige se trouve dans le champ magnétique B⃗0 du
courant I0 :

F⃗L = I L⃗× B⃗0 ,

où L⃗ donne la longueur et le sens du courant dans
la tige.

Selon la règle du tire-bouchon, le champ B⃗0 à l’endroit où se trouve la tige est normal
aux rails. Sa norme vaut

B0 =
µ0I0
2πd

.

Les vecteurs L⃗ et B⃗0 étant orthogonaux,

FL = ||F⃗L|| = ILB0 .
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Ainsi,

−mg sinα + FL = −mg sinα + IL
µ0I0
2πd

= 0 ,

de sorte que la distance d a finalement pour expression

d =
µ0I0IL

2πmg sinα
.

Exercice 7

La tige, traversée par un courant électrique, se trouve dans un champ magnétique : elle
subit donc une force magnétique. Nous allons considérer la situation d’équilibre de cette
tige :

α

?

?

O

A

L
⊙B⃗

⊗ e⃗z

mg⃗

F⃗L

S⃗

Objet : tige

Forces : poids, force de Laplace, soutien

mg⃗ + F⃗L + S⃗ = 0⃗ .

Remarque : on ne connâıt ni le courant I, ni le
soutien (direction et norme). Cette équation est
insuffisante.

L’équilibre pour la rotation autour de O fournit par ailleurs :

M⃗O = M⃗O(mg⃗)︸ ︷︷ ︸
⊙

+ M⃗O(F⃗L)︸ ︷︷ ︸
⊗

+ M⃗O(S⃗)︸ ︷︷ ︸
= 0⃗

= 0⃗ .

Selon e⃗z, cette équation devient

−L

2
sinαmg +

L

2
FL = 0 ⇔ − sinαmg + ILB = 0

⇒ I =
sinαmg

LB
=

sin 2◦ · 10−2 kg · 9.81ms−2

10−1m · 0.4T
= 0.0856A .

Remarque : la tige étant en équilibre par rapport à tout point, le moment du soutien par
rapport au centre de masse est nul, les moments de mg⃗ et de F⃗L étant nuls tous les deux.
Par conséquent, S⃗ est parallèle à la tige :

α

?

?

O

A

L
⊙B⃗

⊗ e⃗z

mg⃗

F⃗L

S⃗
La deuxième loi de Newton donne alors

� selon e⃗⊥ normal à la tige, S⊥ = 0 et

FL = mg sinα ⇒ I =
sinαmg

LB
,

� selon e⃗∥ parallèle à la tige,

S∥ = S = mg cosα .
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Exercice 8

Nous allons considérer l’objet “électron” et étudier séparément les différents étapes du
parcours de cet objet.

(a) Nous commençons par appliquer le théorème de l’énergie cinétique entre la cathode
(où l’électron a une vitesse quasiment nulle) et la sortie de l’anode (l’électron a alors une
vitesse de norme v0 = ||v⃗0||). Si l’on néglige la force de gravitation, seule la force électrique
intervient et le travail des forces extérieures entre la cathode et la sortie de l’anode s’écrit

Wc→a(F⃗
ext) = Wc→a(F⃗élec.) = (−e)(−Uacc.) = eUacc. ,

où Uacc. > 0 est la tension d’accélération cherchée.

Ainsi, nous obtenons
1

2
mv20 = eUacc ,

et

Uacc. =
mv20
2e

.

(b) Si l’on néglige la gravitation, les électrons ne sont déviés que par la force de Lorentz

F⃗ = −e v⃗ ∧ B⃗ .

Pour obtenir la trajectoire représentée sur la figure, le champ magnétique B⃗ doit pointer
hors du plan (⊙B⃗), de manière à ce que la force de Lorentz soit dirigée vers l’intérieur du
virage :

B⃗⊙

e−v⃗0

F⃗Lorentz

(c) Dans la région où règne un champ magnétique B⃗, la trajectoire de l’électron est un
cercle de rayon R centré au point C :

B⃗⊙

e−v⃗0

C

e⃗n R

F⃗Lorentz
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Selon la deuxième loi de Newton,

F⃗Lorentz = −e v⃗ ∧ B⃗ = ma⃗ .

La force de Lorentz étant normale à la trajectoire, l’accélération tangentielle est nulle et
la projection de l’équation vectorielle ci-dessus selon un repère e⃗n dirigé vers le centre C
de la trajectoire fournit

e vB = man = m
v20
R

.

Le rayon de courbure a donc pour expression

R =
mv0
eB

.
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(d) Entre les plaques de déflexion, le champ est uniforme et la tension est donnée par

U = Ed .

L’électron entre dans le champ électrique avec une vitesse v⃗0 faisant un angle φ avec
l’horizontale :

éc
ra
n

plaque

plaque

L

d

U

−+ e−
v⃗0

φ

e⃗y

e⃗x

En négligeant la gravitation, la seule force s’exerçant sur l’électron est la force électrique.
Selon la deuxième loi de Newton,

F⃗élec. = −eE⃗ = ma⃗ .

En projetant cette relation vectorielle sur le vecteur horizontal e⃗x, il vient

0 = max ⇒ vx(t) = constante = v0 cosφ ⇒ x(t) = v0 cosφ t .

En particulier, le temps de séjour ts de l’électron entre les plaques est donné par

L = v0 cosφ ts ⇒ ts =
L

v0 cosφ
.

En projetant la deuxième loi de Newton sur le vecteur vertical e⃗y, on obtient

−eE = may ⇒ vy(t) = v0 sinφ− eE

m
t .

A la sortie des plaques, la vitesse verticale de l’électron doit être nulle. Autrement dit,

vy(ts) = 0 = v0 sinφ− eE

m
ts .

Le champ électrique a donc pour expression

E =
mv0 sinφ

e ts
=

mv20 cosφ sinφ

eL
.

Finalement, la tension entre les plaques est donnée par

U = Ed =
mv20d cosφ sinφ

eL
.
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