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Exercice 1

Nous allons étudier la situation où les deux masses sont à l’équilibre. Il convient donc de
faire un dessin, choisir un objet, inventorier les forces extérieures s’exerçant sur cet objet,
avant d’écrire la deuxième loi de Newton dans le cas d’une situation statique.

Nous allons nous intéresser à la masse de gauche (objet considéré).

q q

mg⃗

F⃗él.

T⃗

En supposant que la force de gravitation due à la masse de droite est négligeable, les
forces s’exerçant sur la masse de gauche sont le poids mg⃗, la force électrique répulsive F⃗él.

due à la présence de l’autre masse et la traction T⃗ dans le fil.
La deuxième loi de Newton s’écrit

mg⃗ + F⃗él. + T⃗ = 0⃗ .

Nous allons choisir un repère et projeter cette relation vectorielle en supposant que le
rayon des sphères est négligeable vis-à-vis de la longueur l des fils.

l

d

α

e⃗x

e⃗y

mg⃗

F⃗él.

T⃗

� selon e⃗x :

T sinα− Fél. = T sinα− q2

4πϵ0(2d)2
= 0 ⇒ T sinα =

q2

16πϵ0d2
;

� selon e⃗y :
T cosα−mg = 0 ⇒ T cosα = mg .
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Nous avons obtenu le système d’équations suivant :{
T sinα = q2

16πϵ0d2

T cosα = mg .

En éliminant la tension T (en faisant par exemple le rapport de ces deux relations), il
vient

d2 tanα =
q2

16πϵ0mg
,

Finalement, la relation géométrique d = l sinα permet d’écrire

sin2α tanα =
q2

16πϵ0l2mg
.

Exercice 2

Nous allons exploiter le lien entre la force exercée par une charge Q sur une autre charge
q et le champ électrique produit par la charge Q à l’endroit où se trouve q.
La charge q1 = 4µC est séparée de la charge q2 = 6µC par une certaine distance. Comme
les deux charges sont de même signe, elles se repoussent. Plus précisément, la charge q2
exerce une force électrique répulsive F⃗ 2→1 sur la charge q1. Par la troisième loi de Newton
(“action=réaction”), la charge q1 exerce une force F⃗ 1→2 = −F⃗ 2→1 sur la charge q2 :

q1 q2F⃗ 2→1 F⃗ 1→2

Selon l’énoncé, les forces F⃗ 1→2 et F⃗ 2→1 ont une intensité de 0.4N :

||F⃗ 1→2|| = ||F⃗ 2→1|| = F = 0.4N .

(a) L’intensité du champ électrique de la première charge q1 à l’endroit où se trouve
la seconde charge est donc

E1 = ||E⃗1|| =
F

q2
=

0.4

6 · 10−6
∼= 6.67 · 104Vm−1.

Le champ électrique E⃗1 est parallèle à la force F⃗ 1→2 (et de même sens) :

q1 q2 F⃗ 1→2

E⃗1 =
1

q2
F⃗ 1→2

(b) De même, l’intensité du champ électrique de la seconde charge q2 à l’endroit où se
trouve la première charge q1 est donnée par

E2 = ||E⃗2|| =
F

q1
=

0.4

4 · 10−6
= 105Vm−1.

Le champ électrique E⃗2 est parallèle à la force F⃗ 2→1 (et de même sens) :

q1 q2F⃗ 2→1

E⃗2=
1

q1
F⃗ 2→1
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Exercice 3

Il convient de se remémorer les notions de force conservative, d’énergie potentielle et de
potentiel (par exemple en faisant l’analogie avec la force de gravitation).
Tout comme la force gravitationnelle, la force électrique est une force conservative en
électrostatique. Ainsi, le travail de la force électrique sur une particule de charge q, entre
deux points A et B, s’écrit

WA→B(F⃗él.) = q

∫ B

A

E⃗ · dr⃗ = Epot(A)− Epot(B) = qUAB ,

où la tension électrique UAB ne dépend que des points A et B (et non pas du chemin suivi
par la particule). On introduit alors la notion de potentiel électrique :

UAB = ΦA − ΦB ,

telle que
WA→B(F⃗él.) = Epot(A)− Epot(B) = qΦA − qΦB .

Les potentiels aux points A et B, ΦA et ΦB, sont définis à une constante arbitraire près,
mais la tension UAB = ΦA − ΦB ne dépend pas du choix de cette constante.

La seule connaissance de la tension UAB entre deux points A et B ne permet donc pas de
connâıtre les potentiels ΦA et ΦB.

Exercice 4

Nous allons exploiter la définition de la tension entre deux points, ainsi que celle du
potentiel en un point.

Tout d’abord, il est possible d’indiquer le sens du champ électrique :

−1 −0.5 0 0.5 1

A

H

B

F
D

E
I

C

G La tension entre A et B étant positive, en allant
de A à B, on “descend” le champ électrique E⃗.

Esquissons maintenant les équipotentielles passant par les points donnés :
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Les points A et H se trouvent sur une même
équipotentielle (normale aux lignes de champ).
De même pour

� B et F ,
� D , E et I ,
� C et G .

La différence de potentiel entre B et D est environ
UBD = 2V. Donc par rapport à D ,

ΦA = 4V, ΦB = 2V, ΦD = 0V, ΦC = −2V.

Exercice 5

Nous allons appliquer la deuxième loi de Newton à l’électron en tenant compte de l’ex-
pression de la force électrique.

(a) A l’intérieur d’un condensateur plan, le champ électrique peut être supposé uniforme

(E⃗ =
−−−−−−→
constante) et de direction perpendiculaire aux plaques. Ainsi, si les plaques sont

horizontales, une particule de charge q va subir une force verticale constante F⃗él. = qE⃗.

Un électron de masse m et de charge q (objet choisi) à l’équilibre entre les deux plaques
va donc subir deux forces :

plaque supérieure

plaque inférieure

5 cme−

mg⃗

F⃗él. = qE⃗

La deuxième équation de Newton s’écrit alors

mg⃗ + qE⃗ = 0⃗ ,

avec q = −e. Par conséquent,

E⃗ =
m

e
g⃗ .

Le champ électrique E⃗ est donc de même sens que le champ de gravitation g⃗, et la plaque
supérieure est chargée positivement, la plaque inférieure étant chargée négativement :
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plaque supérieure

⊕

plaque inférieure

⊖

5 cme−

mg⃗

F⃗él. = qE⃗

E⃗ E⃗ E⃗ E⃗ E⃗ E⃗

La tension entre les deux plaques est donnée par

U = ||E⃗||d ,

où d = 5 cm est la distance entre les plaques. Ainsi, En utilisant l’expression du champ
électrique obtenue à l’étape précédente, il vient

U =
mgd

e
∼= 2.79 · 10−12V.

où nous avons utilisé g = 9.81m/s2, m = 9.11 · 10−31 kg et q = 1.602 · 10−19C.

Remarque
Il suffit donc d’une très faible tension pour compenser le poids d’un électron et nous
pourrons négliger le poids des électrons dans la plupart des calculs.

(b) Une tension de 6V est bien supérieure à la tension nécessaire pour compenser le poids
de l’électron. Nous allons donc ne considérer que la force électrique. La deuxième équation
de Newton s’écrit alors

−eE⃗ = ma⃗ .

En projetant selon un repère vertical dirigé dans le sens opposé au champ électrique E⃗ et
en utilisant la relation U = ||E⃗|| d entre la tension et le champ électrique, il vient

a =
e||E⃗||
m

=
eU

md
=

1.602 · 10−19 · 6
9.11 · 10−31 · 0.05

∼= 2.11 · 1013ms−2.

Exercice 6

Il convient, comme d’habitude, de commencer par faire un dessin. Ensuite, nous allons
exploiter la définition de la tension.
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A

B

C

10
cm

E⃗

E⃗

20◦

40◦

Par définition, la tension UAB entre un point A et un point B est donnée par

UAB =

∫ B

A

E⃗ · dr⃗ .

On cherche à déterminer la tension entre le point A et le point B :

UAB =

∫ B

A

E⃗ · dr⃗ .

Lorsque l’on se déplace de A à B en suivant le côté AB du triangle, le vecteur E⃗ est
constant, de même que le vecteur dr⃗ :

A

B

C

10
cm

E⃗

dr⃗

20◦

Ainsi, la tension s’écrit

UAB =

∫ B

A

E⃗ · dr⃗ =
∫ B

A

||E⃗|| cos (20◦) dr = ||E⃗|| cos (20◦)
∫ B

A

dr

= ||E⃗|| cos (20◦) ||−−→AB|| = 15 · cos (20◦) · 0.1 ∼= 1.41V.
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Remarque :
On aboutit à la même conclusion en considérant n’importe quel chemin entre les points
A et B. On peut par exemple choisir le chemin ADB suivant :

A

B

C

10
cm

D

E⃗

dr⃗

20◦

La tension est alors donnée par

UAB =

∫ B

A

E⃗ · dr⃗ =
∫ D

A

E⃗ · dr⃗ +
∫ B

D

E⃗ · dr⃗ = 0 +

∫ B

D

||E⃗|| dr = ||E⃗||
∫ B

D

dr

= ||E⃗|| ||−−→AB|| cos (20◦) = 15 · 0.1 · cos (20◦) ∼= 1.41V.

Sur le chemin AD, la tension est nulle car le vecteur E⃗ est perpendiculaire au vecteur dr⃗.
On cherche maintenant à déterminer la tension entre le point B et le point C :

UBC =

∫ C

B

E⃗ · dr⃗ .

Lorsque l’on se déplace de B à C en suivant le côté BC du triangle, le vecteur E⃗ est
constant, de même que le vecteur dr⃗ :

A

B

C

10
cm

E⃗dr⃗

100◦

Ainsi, la tension s’écrit

UBC =

∫ C

B

E⃗ · dr⃗ =
∫ C

B

||E⃗|| cos (100◦) dr = ||E⃗|| cos (100◦)
∫ C

B

dr

= ||E⃗|| cos (100◦) ||−−→BC|| = 15 · cos (100◦) · 0.1 ∼= −0.26V.

Finalement, nous allons déterminer la tension entre le point C et le point A :

UCA =

∫ A

C

E⃗ · dr⃗ .
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Lorsque l’on se déplace de C à A en suivant le côté CA du triangle, le vecteur E⃗ est
constant, de même que le vecteur dr⃗ :

A

B

C

10
cm

E⃗dr⃗

140◦

Ainsi, la tension s’écrit

UCA =

∫ A

C

E⃗ · dr⃗ =
∫ A

C

||E⃗|| cos (140◦) dr = ||E⃗|| cos (140◦)
∫ A

C

dr

= ||E⃗|| cos (140◦) ||−−→CA|| = 15 · cos (140◦) · 0.1 ∼= −1.15V.

Remarque :
Les valeurs que nous avons obtenues vérifient bien l’annulation de la tension le long d’un
chemin fermé :

UAA =

∫ A

A

E⃗ · dr⃗ = 0V.

En effet,

UAA = UAB + UBC + UCA

= ||E⃗|| cos (20◦) ||−−→AB||+ ||E⃗|| cos (100◦) ||−−→BC||+ ||E⃗|| cos (140◦) ||−−→CA||
= ||E⃗|| ||−−→AB||

(
cos (20◦) + cos (100◦) + cos (140◦)

)
= ||E⃗|| ||−−→AB||

(
2 cos (60◦) cos (40◦) + cos (140◦)

)
= ||E⃗|| ||−−→AB||

(
2 cos (60◦) cos (40◦)− cos (40◦)

)
= ||E⃗|| ||−−→AB|| cos (40◦)

(
2 cos (60◦)− 1

)
= ||E⃗|| ||−−→AB|| cos (40◦)

(
2
1

2
− 1

)
= 0V.

Exercice 7

(a) En un point P quelconque de l’espace (mis à part C1 et C2), le champ électrique
dû aux charges q1 et q2 aux points C1 et C2 est la somme des champs électriques
dus aux charges individuelles (principe de superposition).

Nous allons calculer les champs électriques E⃗1 et E⃗2 en quelques points et effectuer
leur somme graphiquement.

En un point P choisi par exemple à r1 = 2.5 cm de C1 et à r2 = 4.3 cm de C2 , nous
déterminons le champ dû à q1 :
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� la direction est définie par P et C1 ,
� le sens est “à l’opposé” de q1 (car q1 > 0) ,
� la norme vaut

E1 =
1

4πε0

q1
r21

∼= 9.21 · 10−6NC−1

et le champ dû à q2 :

� la direction est définie par P et C2 ,
� le sens est “vers” q2 (car q2 < 0) ,
� la norme vaut

E2 =
1

4πε0

|q2|
r22

∼= 3.12 · 10−6NC−1.

Nous reportons ces vecteurs à une certaine échelle sur le dessin et effectuons l’ad-
dition graphiquement :

~E1

~E2

~E = ~E1 + ~E2

q1
C1

q2
C2

1 cm ∼ 6 · 10−6 NC−1

P

P ∗

P ∗∗

Sur le dessin, nous avons également appliqué le principe de superposition à deux
autres points P ∗ et P ∗∗.

(b) Remarquons tout d’abord que la situation est invariante par rotation d’axe C1C2 .
Ensuite, en échangeant les charges, nous avons la même situation qu’initialement,
à la différence près que les champs sont inversés. Il existe donc une symétrie plane,
de plan médiateur du segment C1C2 . Nous déterminons les champs dus à q1 et à
q2 sur le plan médiateur : ils sont symétriques par rapport à la direction C1C2 . Le
champ résultant est donc parallèle à C1C2 . De plus, à proximité d’une charge, le
champ dû à cette charge est très important (la distance à la charge étant petite)
et le champ dû à l’autre charge est négligeable. Le champ résultant possède donc
à proximité des charges une symétrie centrale.
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En reliant les deux comportements établis ci-dessus, nous pouvons tracer approxi-
mativement les lignes du champ (résultant) dû aux deux charges :

Plus les lignes de champ s’écartent, plus l’intensité du champ électrique diminue.

(c) En électrostatique, les surfaces équipotentielles sont normales aux lignes de champ :
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Il est judicieux de représenter des équipotentielles par incrémentation régulière du
potentiel. En effet, on a alors que plus ces équipotentielles sont rapprochées, plus
le champ électrique est intense.

Exercice 8

Pour les deux cas, nous allons visualiser la situation sur un dessin et utiliser le théorème
de l’énergie cinétique.

Pour le cas de l’électron, comment est la force entre les points de départ et d’arrivée ?
Comment est le champ électrique ? Quel est le signe de la tension entre ces points ?
Notons A le point de départ et B le point d’arrivée :

A B

E⃗ e−

F⃗

La force accélérant l’électron est dirigée vers B .

Le champ électrique est opposé à F⃗ = qeE⃗ , car
qe = −e < 0 . Il est dirigé vers A .

La tension entre A et B est négative : de A vers B on “remonte” le champ E⃗ et

UAB =

∫ B

A

E⃗ · dr⃗ = −U0 , avec U0 = 1V .

Le théorème de l’énergie cinétique entre A et B permet alors de connâıtre la vitesse de
l’électron en B par rapport à celle en A . En négligeant le poids de l’électron devant la
force électrique,

Ecin(B)− Ecin(A) = W ext
A→B

1

2
mev

2
e − 0 = qeUAB .

La charge de l’électron étant négative,

1

2
mev

2
e − 0 = qeUAB = (−e)(−U0) = eU0 > 0
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⇒ ve =

√
2eU0

me

=

√
2 · 1.602 · 10−19C · 1V

9.11 · 10−31 kg
= 5.93 · 105ms−1.

Pour le cas du proton, comment est la force entre les points de départ et d’arrivée ?
Comment est le champ électrique ? Quel est le signe de la tension entre ces points ?
Notons à nouveau A le point de départ et B le point d’arrivée :

A B

E⃗e−

F⃗

La force accélérant le proton est dirigée vers B .

Le champ électrique est de même sens que F⃗ = qpE⃗ , car
qp = +e > 0 .

La tension entre A et B est positive : de A vers B on “descend” le champ E⃗ et

UAB =

∫ B

A

E⃗ · dr⃗ = +U0 , avec U0 = 1V .

Le théorème de l’énergie cinétique entre A et B permet alors de connâıtre la vitesse du
proton en B par rapport à celle en A . En négligeant le poids du proton devant la force
électrique,

Ecin(B)− Ecin(A) = W ext
A→B

1

2
mpv

2
p − 0 = qpUAB .

La charge du proton étant positive,

1

2
mpv

2
p − 0 = qpUAB = eU0 > 0

⇒ vp =

√
2eU0

mp

=

√
2 · 1.602 · 10−19C · 1V

1.67 · 10−27 kg
= 1.38 · 104ms−1.
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