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Exercice 1

Il n’est pas judicieux de choisir comme objet cylindre et contrepoids, ces deux parties ne
bougeant pas de la même manière. Ainsi,

� on considère tour à tour le cylindre et la masse

� on établit la liaison géométrique entre leurs mouvements.

a) Cylindre

CMrR

T⃗
m1g⃗

T⃗ ′

⊗ e⃗z

e⃗y

Objet : cylindre

Forces : poids, tensions

Le CM est accéléré :

m1g⃗ + T⃗ + T⃗ ′ = m1a⃗1 .

Selon e⃗y ,
m1g + T − T ′ = m1a1 .

Rotation autour du CM :

M⃗CM = M⃗CM(m1g⃗)︸ ︷︷ ︸
0⃗

+ M⃗CM(T⃗ )︸ ︷︷ ︸
⊗

+ M⃗CM(T⃗
′)︸ ︷︷ ︸

⊗

= ICM
˙⃗ωCM

Selon e⃗z :
rT +RT ′ = ICMω̇CM .

b) Masse (contrepoids)

−T⃗

m2g⃗

e⃗y

Objet : contrepoids

Forces : poids, tension

m2g⃗ − T⃗ = m2a⃗2

Selon e⃗y :

m2g − T = m2a2 .

c) Liaison géométrique

Pour établir les équations de liaison, on peut considérer un petit angle de rotation du
cylindre et déterminer le mouvement correspondant du CM du cylindre et celui du contre-
poids.
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�

CM

R

⊗ e⃗z e⃗y

∆y1 = ∆s = R∆θ ∆θ

Si, pendant ∆t , le cylindre tourne d’un
angle ∆θ dans le sens donné par e⃗z , le
fil à gauche se déroule de

∆s = R∆θ

et le CM du cylindre se déplace de

∆y1 = ∆s = R∆θ

dans le sens donné par e⃗y .

Les variations temporelles (dérivées) donnent alors

lim
∆t→0

∆y1
∆t

= R lim
∆t→0

∆θ

∆t
⇔ v1 = RωCM ⇒ a1 = Rω̇CM .

�

CM

r
⊗ e⃗z

e⃗y

∆s

∆θ
∆s

Si, pendant ∆t , le cylindre tourne d’un angle ∆θ
dans le sens donné par e⃗z , le fil se déroule et le
contrepoids se déplace de ∆s = r∆θ par rapport
au cylindre dans le sens donné par e⃗y .
Donc par rapport au plafond, m2 se déplace de

∆y2 = ∆y1 +∆s = (R + r)∆θ

dans le sens donné par e⃗y .

Les variations temporelles (dérivées) donnent alors

lim
∆t→0

∆y2
∆t

= (R + r) lim
∆t→0

∆θ

∆t
⇔ v2 = (R + r)ωCM ⇒ a2 = (R + r)ω̇CM .

d) Résolution du système
m1g + T − T ′ = m1a1

rT +RT ′ = ICMω̇CM

m2g − T = m2a2
a1 = Rω̇CM

a2 = (R + r)ω̇CM .

Il est souvent plus simple de d’abord exprimer les accélérations en fonction de ω̇CM et de
résoudre le système

m1g + T − T ′ = m1Rω̇CM ·R
rT +RT ′ = ICMω̇CM · 1
m2g − T = m2(R + r)ω̇CM · (R + r)

en amplifiant les équations respectivement par R , 1 et R + r , de sorte que l’addition
membre à membre fasse tomber les termes en T et T ′, inconnues non recherchées. On
obtient alors

m1gR +m2g(R + r) = (m1R
2 + ICM +m2(R + r)2)ω̇CM .

Il vient alors (avec ICM = 1
2
m1R

2 pour un cylindre plein)

ω̇CM =
m1gR +m2g(R + r)
3
2
m1R2 +m2(R + r)2

=
2m1 + 2m2(1 + p)

3m1 + 2m2(1 + p)2
g

R
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et donc

a1 = Rω̇CM =
2m1 + 2m2(1 + p)

3m1 + 2m2(1 + p)2
g

a2 = R(1 + p)ω̇CM =
2m1(1 + p) + 2m2(1 + p)2

3m1 + 2m2(1 + p)2
g .

Discussion
� Comme 2m1 < 3m1 et 2m2(1 + p) < 2m2(1 + p)2, on a 0 < a1 < g. Le CM du
cylindre accélère vers le bas et moins fortement qu’en chute libre.

� Comme a2 > 0, m2 accélère bien vers le bas. Mais elle ne peut pas le faire aussi
fortement qu’en chute libre (la tension ne peut pas pousser m2 vers le bas). La
relation est donc correcte seulement si a2 < g, soit si 1 + p < 1 ⇔ p < 1

2
!

Si p > 1
2
, le fil est détendu et m2 est en chute libre. En effet, le calcul de T donne

T = m2(g − a2) =

(
1− 2m1(1 + p) + 2m2(1 + p)2

3m1 + 2m2(1 + p)2

)
m2g

=

(
3m1 + 2m2(1 + p)2 − 2m1(1 + p)− 2m2(1 + p)2

3m1 + 2m2(1 + p)2

)
m2g

=

(
m1(1− 2p)

3m1 + 2m2(1 + p)2

)
m2g

d’où la condition T > 0 ⇔ p < 1
2
.

Exercice 2

Comme dans l’exercice 1,

� on considère tour à tour le cylindre et la masse

� on établit la liaison géométrique entre leurs mouvements.

a) Cylindre

m

T⃗

f⃗
Mg⃗

S⃗

⊙ e⃗z

e⃗y

e⃗x

Objet : cylindre

Forces : poids, soutien, tension, frottement

Le CM est accéléré :

Mg⃗ + S⃗ + T⃗ + f⃗ = Ma⃗M .

Selon e⃗x ,
T − f = MaM (aM,y = 0) .

Rotation autour du CM :

M⃗CM = M⃗CM(Mg⃗)︸ ︷︷ ︸
0⃗

+ M⃗CM(S⃗)︸ ︷︷ ︸
0⃗

+ M⃗CM(T⃗ )︸ ︷︷ ︸
⊙

+ M⃗CM(f⃗)︸ ︷︷ ︸
⊙

= ICM
˙⃗ωCM

Selon e⃗z :
RT +Rf = ICMω̇CM .

b) Masse (contrepoids)
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m

T⃗ ′

mg⃗

⊙ e⃗z

e⃗y

e⃗x

Objet : contrepoids

Forces : poids, tension

mg⃗ + T⃗ ′ = ma⃗m

Selon e⃗y :

mg − T = mam .

c) Liaison géométrique

Pour établir les équations de liaison, on peut considérer un petit angle de rotation du
cylindre et déterminer le mouvement correspondant du CM du cylindre et celui du contre-
poids.

�

CM

R

∆xM = ∆s = R∆θ

∆θ

⊙ e⃗z

e⃗y

e⃗x

Si, pendant ∆t , le cylindre tourne d’un
angle ∆θ dans le sens donné par e⃗z , il
“enroule” sur le sol une longueur

∆s = R∆θ

et le CM du cylindre se déplace de

∆xM = ∆s = R∆θ

dans le sens donné par e⃗x .

Les variations temporelles (dérivées) donnent alors

lim
∆t→0

∆xM

∆t
= R lim

∆t→0

∆θ

∆t
⇔ vM = RωCM ⇒ aM = Rω̇CM .

�

CM

R

∆s = R∆θ

∆θ

⊙ e⃗z

e⃗y

e⃗x

Si, pendant ∆t , le cylindre tourne d’un
angle ∆θ dans le sens donné par e⃗z ,
le fil se déroule et le contrepoids se
déplace de ∆s = R∆θ par rapport au
cylindre dans le sens donné par e⃗y .
Comme le cylindre avance de ∆xM , m
se déplace de

∆ym = ∆xM +∆s = 2R∆θ

dans le sens donné par e⃗y .

Les variations temporelles (dérivées) donnent alors

lim
∆t→0

∆ym
∆t

= 2R lim
∆t→0

∆θ

∆t
⇔ vm = 2RωCM ⇒ am = 2Rω̇CM .

d) Résolution du système 
T − f = MaM

RT +Rf = ICMω̇CM

mg − T = mam
aM = Rω̇CM

am = 2Rω̇CM .
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Il est souvent plus simple de d’abord exprimer les accélérations en fonction de ω̇CM et de
résoudre le système 

T − f = MRω̇CM ·R
RT +Rf = ICMω̇CM · 1
mg − T = m2Rω̇CM · 2R

en amplifiant les équations respectivement par R , 1 et 2R , de sorte que l’addition membre
à membre fasse tomber les termes en T et f , inconnues non recherchées. On obtient alors

2mgR = (MR2 + ICM + 4mR2)ω̇CM .

Avec ICM = 1
2
MR2 pour un cylindre plein, il vient

ω̇CM =
2mgR

MR2 + ICM + 4mR2
=

4mg

(3M + 8m)R

et donc
aM = Rω̇CM =

4m

3M + 8m
g > 0

am = 2Rω̇CM =
8m

3M + 8m
g > 0 .

Le cylindre accélère vers la gauche et la masse vers le bas.

Exercice 3

On considère l’objet “haltère” pour la translation (deuxième loi de Newton) et pour
la rotation (théorème du moment cinétique).

Commençons par faire un dessin de l’haltère en trois dimensions :

F⃗

α

On peut également représenter l’haltère telle qu’elle apparâıt perpendiculairement à son
axe de rotation :

sol

F⃗

α

5



On note que le point de contact avec le support est plus éloigné du centre que le point de
contact avec le fil.

Nous allons appliquer la deuxième loi de Newton à l’objet “haltère” :

sol

CM

F⃗

α

f⃗

mg⃗

S⃗

e⃗x

Objet : haltère
F⃗ + f⃗ +mg⃗ + S⃗ = ma⃗CM .

Selon e⃗x :
F cosα + f = maCM .

Il convient de remarquer que le sens de la force de frottement f⃗ n’est pas connu a priori.
Dans l’équation ci-dessus, sa composante f selon e⃗x peut donc être positive ou négative.

Nous allons maintenant considérer le théorème du moment cinétique appliqué à l’ob-
jet “haltère” :

sol

CM

F⃗

f⃗

mg⃗

S⃗

e⃗z
⊗

Rotation par rapport au CM :
M⃗CM = ICM

˙⃗ω .

Selon e⃗z :
−rF −Rf = ICMω̇ .

Comme on suppose que le cylindre roule sans glisser, l’équation de liaison s’écrit :

aCM = Rω̇ .
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On obtient le sytème suivant :

F cosα + f = mRω̇
−rF −Rf = ICMω̇

}
⇒ FR cosα− rF = mR2ω̇ + ICMω̇ .

Ainsi,
F (R cosα− r) = (mR2 + ICM)ω̇ ,

de sorte que l’accélération angulaire et l’accélération s’écrivent :

ω̇ =
R cosα− r

mR2 + ICM

F et aCM = Rω̇ =
R cosα− r

mR2 + ICM

RF .

On peut alors trouver l’expression de la force de frottement :

f = −rF

R
− ICMF

R

R cosα− r

mR2 + ICM

= −rmR + rICM/R + ICM cosα− rICM/R

mR2 + ICM

F

= −rmR + ICM cosα

mR2 + ICM

F .

Il est intéressant de discuter le signe de l’accélération de manière à caractériser complètement
le mouvement de l’haltère :

• Si R cosα − r > 0 ⇔ cosα > r
R

(situation où |α| est petit), l’accélération est
dirigée vers la droite et la force de frottement vers la gauche (f < 0).

• Si R cosα− r = 0 ⇔ cosα = r
R
, l’haltère est immobile et la force de frottement

est vers la gauche (f = − r
R
F ).

• Si R cosα − r < 0 ⇔ cosα < r
R
(situation où |α| est grand), l’accélération est

dirigée vers la gauche et la force de frottement est vers la gauche ou la droite selon
le moment d’inertie.

On se convainc facilement de l’existence de ces trois situations en considérant le moment
des forces extérieures par rapport au point de contact O avec le support.

sol O

f⃗

mg⃗

S⃗

e⃗z
⊗

r

F⃗

R

α
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Le moment des forces S⃗, mg⃗ et f⃗ est toujours nul par rapport à ce point. A l’équilibre, le
moment de F⃗ doit donc être nul, ce qui signifie que le support de F⃗ (tangent au cylindre
intérieur) passe par O, d’où cosα = r

R
.

Exercice 4 (facultatif)

Nous allons appliquer le théorème du moment cinétique à la masse en rotation m1. Il sera
également nécessaire de décrire le mouvement de translation horizontal des deux masses
m1 et m2.

Dynamique de l’objet “roue”
Appelons T⃗ la tension dans le fil entre la roue et la masse m2.

axe
m1

F⃗

T⃗ e⃗x
e⃗z⊙

R

Avec le choix de e⃗x dirigé vers la gauche et e⃗z sortant, la deuxième équation de Newton
appliquée à la roue s’écrit

F + T = m1a1 .

D’autre part, dans le référentiel du CM et par rapport à un axe passant par le CM, le
théorème du moment cinétique fournit

R(F − T ) = Iω̇ ,

où R est le rayon de la roue.

Dynamique de la masse m2

La masse ne tourne pas, mais subit une accélération dont l’expression est donnée par la
deuxième loi de Newton projetée selon e⃗x :

m2

−T⃗ e⃗x

−T = m2a2 .

(a) Nous avons obtenu un système de trois équations :
F + T = m1a1 ,

R(F − T ) = Iω̇ ,
−T = m2a2 .

Nous devons maintenant établir le lien entre a1, a2 et ω̇.
Si ℓ est la longueur du fil entre la roue et l’extrémité du fil et d la longueur du fil entre la
roue et la masse, on a

ℓ

d

πRR

8



ℓ+ πR + d = L .

Cela implique que
ℓ̇+ ḋ = 0

(toute longueur prise sur l’un des morceaux se retrouve sur l’autre).

De plus, lorsque la roue tourne d’un angle φ, la longueur ℓ gagne Rφ. Ainsi ℓ̇ = Rω.

Comme d = x2 − x1, x2 et x1 étant les positions respectives de m2 et m1, il vient

ℓ̈+ d̈ = Rω̇ + a2 − a1 = 0 .

Notre système d’équations est donc finalement, avec I = m1R
2,

F + T = m1a1 ,
F − T = m1Rω̇ ,

−T = m2a2 ,
0 = Rω̇ + a2 − a1 .

Résolution : variante I En éliminant T dans les deux premières équations, il vient

2F = m1a1 +m1Rω̇ = m1(a1 +Rω̇) .

D’autre part, en réécrivant la deuxième équation à l’aide des deux dernières relations du
système, on obtient

F +m2a1 = (m1R +m2R) ω̇ .

Les accélérations de translation et angulaire de la roue ont donc pour expression

a1 =
F

m1

et ω̇ =
F

m1R
.

On remarque que a1 = Rω̇, ce qui traduit bien le fait que la roue est entrâınée par le fil
lorsque ce dernier ne glisse pas sur celle-ci.
Finalement, l’accélération de la massem2 et la tension dans le fil sont quant à elles données
par

a2 = 0 et T = 0 .

Résolution : variante II Eliminons pour commencer a1, ω̇ et a2 : multiplions l’éq. 1
par 1

m1
, l’éq. 2 par − 1

m1
, l’éq. 3 par − 1

m2
et additionnons les 4 équations. Il vient

1

m1

(F + T )− 1

m1

(F − T ) +
1

m2

T = 0 ⇒ T = 0 .

Ainsi

a2 = 0 a1 = Rω̇ a1 =
F

m1

ω̇ =
F

Rm1

.

(b) Nous avons obtenu un système de trois équations :
F + T = m1a1 ,

R(F − T ) = Iω̇ ,
−T = m2a2 .

Lorsque le fil glisse sur la roue, cette dernière n’est pas entrâınée par le fil et ω̇ = 0. Ainsi,

T = F .
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Les accélérations de la roue m1 et de la masse m2 sont alors données par

a1 =
2F

m1

et a2 = − F

m2

.

Exercice 5

Le théorème de l’énergie cinétique s’applique à un objet choisi. Il convient donc de procéder
comme d’habitude : dessin, choix de l’objet, identification des forces, lois de la dynamique.

Nous allons considérer le cylindre :

CM
R

mg⃗

T⃗
Objet : cylindre

Forces : poids, tension

Appliquons le théorème de l’énergie cinétique au cylindre :

mR

à t1

mR

à t2

h

e⃗y

Théorème de l’énergie cinétique entre l’instant
initial t1 , la situation (1), et l’instant final t2 ,
la situation (2) :

Ecin(2)− Ecin(1) = W ext
1→2 ,

où l’énergie cinétique du solide (la somme de
l’énergie cinétique de toutes les parties) peut
s’écrire comme somme des énergies cinétiques
de translation du CM et de rotation autour du
CM :

Ecin = Ecin,CM + Ecin,rot .

Ecrivons l’énergie cinétique initiale et finale. Initialement (instant t1) le cylindre est im-
mobile. Après une descente d’une distance h , sa vitesse (celle de son CM) est v⃗2 et sa
vitesse angulaire autour du CM est ω⃗2 :

Ecin(1) = Ecin,CM(1) + Ecin,rot(1) =
1

2
mv21 +

1

2
Iω2

1 = 0

Ecin(2) = Ecin,CM(2) + Ecin,rot(2) =
1

2
mv22 +

1

2
Iω2

2 .

Déterminons maintenant le travail de chacune des forces, en se souvenant que, par définition,
le travail d’une force F⃗ est

W1→2 =

∫ 2

1

F⃗ · dr⃗ ,

où dr⃗ est le déplacement du point du solide sur lequel la force F⃗ est appliquée.

� Pour le poids, appliqué au CM,

W1→2(mg⃗) =

∫ 2

1

mg⃗ · dr⃗CM .
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Le poids étant constant et le CM en mouvement vertical vers le bas,

W1→2(mg⃗) = mg

∫ 2

1

dyCM = mgh .

Remarque : ce travail est positif.
� Pour la tension, appliquée au morceau mi du cylindre lorsqu’il atteint le fil vertical
(point C)

W1→2(T⃗ ) =

∫ 2

1

T⃗ · dr⃗i .

Dans le référentiel du CM, tout mi sur le cylindre est en rotation autour du CM.

⊗ ω⃗CMr⃗ ′
i

v⃗ ′
i

v⃗CM

v⃗ ′
i = ω⃗CM × r⃗ ′

i .

Dans le référentiel d’inertie, la vitesse
de mi est alors

v⃗i = v⃗CM + v⃗ ′
i = v⃗CM + ω⃗CM × r⃗ ′

i .

En particulier, lorsque mi atteint le le point C , d’une part v⃗CM est dirigée vers le
bas et de norme RωCM (si le fil se déroule de ∆s = R∆θ , le CM descend d’autant)
et d’autre part ω⃗CM × r⃗ ′

i est vers le haut et de norme RωCM ,

v⃗i = 0⃗ en C .

On dit que C est le centre instantané de rotation.
Pendant une durée infinitésimale dt , le déplacement dr⃗i de mi est donc nul et le
travail de la tension également :

W1→2(T⃗ ) =

∫ 2

1

T⃗ · dr⃗i = 0 .

Revenons au théorème de l’énergie cinétique. Ce dernier s’écrit ainsi

Ecin(2)− Ecin(1) = W ext
1→2

1

2
mv22 +

1

2
Iω2

2 = mgh .

De plus, comme déjà indiqué, le mouvement du CM et la rotation autour du CM sont liés
par le déroulement du fil. A l’instant t2 ,

v2 = Rω2 .

Finalement,
1

2
mv22 +

1

2
Iω2

2 =
1

2
mv22 +

1

2
I
v22
R2

=
mR2 + I

2R2
v22 = mgh ,

d’où

v2 =

√
2ghmR2

mR2 + I
=

√
2gh

1 + I
mR2

<
√

2gh .

L’inertie de rotation fait que la descente est plus lente qu’en chute libre.

Exercice 6
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Sous l’effet du poids, la bille gagne en vitesse et finit par décrocher.
Exploiter la condition de décrochement pour l’endroit où la bille quitte la boule.
Déterminer ensuite une seconde relation entre vitesse et position de la bille.
Considérer d’abord une position quelconque pour la bille.

R

r

mg⃗

S⃗

f⃗ CM

α

Objet : bille

Forces : poids, soutien, frottement

mg⃗ + S⃗ + f⃗ = ma⃗ .

Le décrochement de la bille de la surface de
la boule est caractérisé par la disparition du
soutien : S⃗ = 0⃗ .

La condition de décrochement s’exprime le mieux selon la normale e⃗n . Il faut donc ca-
ractériser la trajectoire du centre de masse de la bille.

mg⃗

S⃗

f⃗

α

Γ

e⃗t

e⃗n

La trajectoire du CM de la bille est un arc
de cercle de rayon R + r .

Selon e⃗t :

mg sinα− f = mat .

Selon e⃗n :

mg cosα− S = man = m
v2CM

R + r
.

Au décrochement repéré par l’angle αD , S = 0 :

mg cosαD = m
v2D

R + r
⇒ (R + r)g cosαD = v2D .

Une seconde relation entre αD et vD est fournie par le théorème de l’énergie cinétique du
solide qu’est la bille.
Notons (1) le départ et (2) le décrochement. Plus précisément, t1 est l’instant du départ
et t2 l’instant du décrochement.
Pour le choix de l’origine des hauteurs au niveau du centre de la boule et bien sûr e⃗h vers
le haut, le théorème de l’énergie cinétique pour la bille s’écrit

Ecin(2)− Ecin(1) = W ext
1→2

1

2
mv2D +

1

2
ICMω

2
D − 0 = W1→2(mg⃗) +W1→2(S⃗) +W1→2(f⃗) ,

où ω⃗D est la vitesse angulaire de la bille autour du CM à l’instant t2 de décrochement.
� Le poids s’exerce au CM :

W1→2(mg⃗) = mg(h1 − h2) = mg(R + r)(1− cosαD) .
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� Le soutien et le frottement s’exercent au point de contact de la bille avec la boule.
Comme lors d’un roulement sans glissement le point de la bille entrant en contact
avec la bille s’arrête, sa vitesse devient nulle et S⃗ et f⃗ ne travaillent pas :

W1→2(S⃗) = W1→2(f⃗) = 0 .

Ainsi
1

2
mv2D +

1

2
ICMω

2
D = mg(R + r)(1− cosαD) .

C’est la conservation de l’énergie mécanique de la bille.

Ecrire l’équation de liaison entre rotation et déplacement.
La bille roulant sans glisser, si pendant ∆t elle tourne de ∆φ selon e⃗z⊗, elle déroule sur
la boule une longueur ∆s = r∆φ. Il suit que l’angle α change de ∆α avec ∆s = R∆α. Le
déplacement du CM le long de Γ est alors de ∆sCM = (R + r)∆α. En divisant par ∆t et
prenant la limite ∆t → 0, on a

rωCM = Rα̇ vCM = (R + r)α̇ =
R + r

R
rωCM .

En particulier à t2 ,

vD =
R + r

R
rωD .

Des trois équations, déduire αD .
Rappelons les équations :

(R + r)g cosαD = v2D
1

2
mv2D +

1

2
ICMω

2
D = mg(R + r)(1− cosαD)

vD =
R + r

R
rωD .

La deuxième équation est ≪ la plus compliquée ≫. Faisons-y les substitutions pour obtenir
une équation en αD (ICM = pmr2) :

1

2
mv2D +

1

2
pmr2ω2

D = mg(R + r)(1− cosαD)

1

2
mv2D +

1

2
pm( R

R+r
)2v2D = mg(R + r)(1− cosαD)

1

2
m(R + r)g cosαD +

1

2
pm( R

R+r
)2(R + r)g cosαD = mg(R + r)(1− cosαD)

1

2
cosαD +

1

2
p( R

R+r
)2 cosαD = 1− cosαD(

1 + 2 + p( R
R+r

)2
)
cosαD = 2

d’où

cosαD =
2

3 + p( R
R+r

)2
.

Remarque. Nous connaissons le résultat similaire pour un objet glissant sans frottement :
il décroche sous un angle α′

D donné par cosα′
D = 2

3
. Ainsi

cosαD < cosα′
D ⇐⇒ αD > α′

D .

En effet, du fait de la mise en rotation de la bille, celle-ci décroche plus loin.
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