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Corrigé 11

Exercice 1

Il n’est pas judicieux de choisir comme objet cylindre et contrepoids, ces deux parties ne
bougeant pas de la méme maniere. Ainsi,

e on considere tour a tour le cylindre et la masse

e on établit la liaison géométrique entre leurs mouvements.

a) Cylindre
Objet : cylindre
Forces : poids, tensions

Le CM est accéléré :
m1§+ f—Ff/ - mlc_il .

Selon €, ,
mig+T —T =ma, .

Rotation autour du CM :

Mey = MCM(m1§) + MCM(T) +M0M(f/) = JomBom

0
Selon €, :
rT + RT’ = ICM(«Z}CM .
b) Masse (contrepoids)
Objet : contrepoids
I—f Forces : poids, tension
{ Mmag — ’f = Mgl

Selon €, :

lmgﬁ
mog — 1" = maas .

c) Liaison géométrique

Pour établir les équations de liaison, on peut considérer un petit angle de rotation du

cylindre et déterminer le mouvement correspondant du CM du cylindre et celui du contre-

poids.
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° Si, pendant At le cylindre tourne d’un
angle Af dans le sens donné par €, , le
fil a gauche se déroule de

As = RAO

et le CM du cylindre se déplace de
Ay; = As = RAO

dans le sens donné par €, .

Les variations temporelles (dérivées) donnent alors

. Ay . Af .
Al ar T AN Ry @ om T Mo = oa = o
. Si, pendant At, le cylindre tourne d’un angle A6

dans le sens donné par €., le fil se déroule et le
contrepoids se déplace de As = rAf par rapport
au cylindre dans le sens donné par ¢, .

Donc par rapport au plafond, msy se déplace de

Ays = Ay; + As = (R+1r)Ad

dans le sens donné par €, .

Les variations temporelles (dérivées) donnent alors

. Ayy . A0 B B .
Algloﬂ_(R—i_T)Al?—I}oE & v=(R+rwem = a=(R+r)wcm-

d) Résolution du systéeme

mig+T—-T = ma
rT + RT' = Icuwem
meg — 1T = maas
a; = R(,UCM
Ay = (R + T)@CM .

Il est souvent plus simple de d’abord exprimer les accélérations en fonction de wey et de
résoudre le systeme

mig + T-T = mlRwCM - R
rT + RT/ = ICMLZJCM -1
meg —T = mo(R+71)wem | - (R+7)

en amplifiant les équations respectivement par R, 1 et R + r, de sorte que ’addition
membre & membre fasse tomber les termes en T et 71”, inconnues non recherchées. On
obtient alors

migR +mag(R+1) = (iR + Ion + ma(R + 7))o -
Il vient alors (avec Icy = %mlR2 pour un cylindre plein)

migR+mag(R+7) — 2mi+2my(1+p) g
%mlRQ +mo(R+7)2  3my+2me(l+p)? R

weM =

2



et donc

Ay =

Discussion

2my + 2ma(1 + p)

3my + 2ma(1 + p)? g

2ma (1 +p) + 2my(1 + p)?
3my + 2ma(1 + p)?

Rwenv =

R(1+4p)wcm =

e Comme 2m; < 3my et 2mo(1 +p) < 2mo(l +p)?, on a 0 < a; < g. Le CM du
cylindre accélere vers le bas et moins fortement qu’en chute libre.

e Comme ay > 0, mo accélere bien vers le bas. Mais elle ne peut pas le faire aussi
fortement qu’en chute libre (la tension ne peut pas pousser ms vers le bas). La
relation est donc correcte seulement si ay < g, soitsil+p<1&p< % !

Sip> %, le fil est détendu et ms est en chute libre. En effet, le calcul de T" donne

T =ms(g — az)

= (1- mag
3my + 2ma(1 + p)?

~(3my 4 2ma(1 + p)? — 2my (1 + p) — 2ma(1 + p)? .
3my + 2ma(1 + p)? 2

. ( m1(1 - 219) )
= 5 | M2g
3my + 2ma(1 + p)

d’ou la condition T'> 0 < p < % .

Exercice 2

Comme dans 'exercice 1,

e on considere tour a tour le cylindre et la masse

e on établit la liaison géométrique entre leurs mouvements.

a) Cylindre

Objet : cylindre
Forces : poids, soutien, tension, frottement

Le CM est accéléré :

Selon €, ,
T—f:MaM ((IM’yZO).
Rotation autour du CM :
Moy = MCM<M§> + MCM<§) ‘f‘MCM(T) ‘f‘MCM(]?) — IemWem
_— —— Y—— ——

0 0 © ©

Selon €, :
RT + Rf = Icmwen -

b) Masse (contrepoids)



Objet : contrepoids

VK A\ Q Forces : poids, tension

I:ﬂ mg+ T = manm

(% O e, .
Selon €, :
. e,
mg \ 4 Y

c) Liaison géométrique

mg —T = ma,, .

Pour établir les équations de liaison, on peut considérer un petit angle de rotation du
cylindre et déterminer le mouvement correspondant du CM du cylindre et celui du contre-
poids.

. Si, pendant At le cylindre tourne d’un
angle Af dans le sens donné par €, , il
€& @© g, “enroule” sur le sol une longueur
e As = RAf

et le CM du cylindre se déplace de

dans le sens donné par €, .
Les variations temporelles (dérivées) donnent alors

A Tar T Al Ry @ v feon == o,

. Si, pendant At le cylindre tourne d’un
angle Af dans le sens donné par €,
le fil se déroule et le contrepoids se
déplace de As = RAO par rapport au
cylindre dans le sens donné par €, .
Comme le cylindre avance de Axy,, m
se déplace de

Ay, = Azpyr + As = 2RA0

dans le sens donné par €, .

Les variations temporelles (dérivées) donnent alors

. Ay, A, .
A Ay T 2RAN R o v = 2Reon = am = 2Reou

d) Résolution du systéeme

T—f = M(IM

RT+ Rf = Iemon
mg—"T = ma,
ayr = RCZJCM
Ay = QR(,L)CM .



Il est souvent plus simple de d’abord exprimer les accélérations en fonction de wey et de
résoudre le systeme
T—f = MRweyn | - R
RT+ Rf = Iomwem | -1
mg—T = m2Rwcm | - 2R

en amplifiant les équations respectivement par R, 1 et 2R, de sorte que ’addition membre
a membre fasse tomber les termes en 7" et f, inconnues non recherchées. On obtient alors

2mgR = (M R* + Icy + 4mR*)dcy -

Avec Ioy = %M R? pour un cylindre plein, il vient

) 2mgR dmg
w — =
M7 MR?+ Ioy +4mR? ~ (3M + 8m)R
et donc Am
= Rwcy=-——+——9>0
an YOM T 3 +8m J
8m
¢ “OM = S sm YT

Le cylindre accélere vers la gauche et la masse vers le bas.

Exercice 3

On considere l'objet “haltere” pour la translation (deuxiéme loi de Newton) et pour
la rotation (théoréme du moment cinétique).

Commencons par faire un dessin de ’haltere en trois dimensions :

11

On peut également représenter I'haltere telle qu’elle apparait perpendiculairement a son
axe de rotation :

sol



On note que le point de contact avec le support est plus éloigné du centre que le point de
contact avec le fil.

Nous allons appliquer la deuxieme loi de Newton a l'objet “haltere” :

Objet : haltere L .

Selon €, :
Fcosa+ f=macy.

Il convient de remarquer que le sens de la force de frottement f n’est pas connu a priori.

Dans I'équation ci-dessus, sa composante f selon €, peut donc étre positive ou négative.

Nous allons maintenant considérer le théoreme du moment cinétique appliqué a I'ob-
jet “haltere” :

62
®
sol
v mg
Rotation par rapport au CM : '
MCM = CMCU~

Selon €, :

Comme on suppose que le cylindre roule sans glisser, ’équation de liaison s’écrit :

Aoy = Rw .



On obtient le sytéeme suivant :

Fcosa+ f = mRw

O F — mR2% -
—rF—Rf = ICMCD} = FRcosa—rF=mRw+ Ioyw.

Ainsi,
F(Rcosa —1) = (mR?* + Ioy),
de sorte que 'accélération angulaire et ’accélération s’écrivent :

Rcosa —r . Rcosa —r

= = =———RF.
mR2 + Iy mR? + Iy

On peut alors trouver 'expression de la force de frottement :

rF IoyF Rcosa —r
R R mR?2+ Iy

f =

_rmR+ rley/ R+ Ioy cosa — TICM/RF
mR? + Loy

rmB + Iy cos a
mR? + Ioy

Il est intéressant de discuter le signe de ’accélération de maniere a caractériser completement
le mouvement de I'haltere :

e Si Recosa—r >0 < cosa > 5 (situation ol |a| est petit), I'accélération est
dirigée vers la droite et la force de frottement vers la gauche (f < 0).

e Si Rcosao—r=0 & cosa= I’haltere est immobile et la force de frottement
est vers la gauche (f = —5F).

r
R’

e Si Recosa—r <0 < cosa < % (situation ol |af est grand), I'accélération est
dirigée vers la gauche et la force de frottement est vers la gauche ou la droite selon
le moment d’inertie.

On se convainc facilement de ’existence de ces trois situations en considérant le moment
des forces extérieures par rapport au point de contact O avec le support.

F

sol ol -




Le moment des forces S, mg et f est toujours nul par rapport a ce point. A I'équilibre, le
moment de F doit donc étre nul, ce qu1 signifie que le support de F (tangent au cylindre
intérieur) passe par O, d’oll cosa = %.

Exercice 4 (facultatif)

Nous allons appliquer le théoreme du moment cinétique a la masse en rotation m;. Il sera
également nécessaire de décrire le mouvement de translation horizontal des deux masses
mi et my.

Dynamique de I'objet ¢ ”?

Appelons T la tension dans le fil entre la roue et la masse mo.

F
axe
R
— — @ gz
T €z

Avec le choix de €, dirigé vers la gauche et €, sortant, la deuxieme équation de Newton
appliquée a la roue s’écrit
F+T= mias .

D’autre part, dans le référentiel du CM et par rapport a un axe passant par le CM, le
théoreme du moment cinétique fournit

R(F—T) = I,

ol R est le rayon de la roue.

Dynamique de la
La masse ne tourne pas, mais subit une accélération dont ’expression est donnée par la
deuxieme loi de Newton projetée selon €, :

— —

_T Cx
—T = moaQs .
(a) Nous avons obtenu un systéme de trois équations :

F + T = mias ,
R(F-T) = I,
-T = maas .

Nous devons maintenant établir le lien entre aq, as et w.
Si ¢ est la longueur du fil entre la roue et 'extrémité du fil et d la longueur du fil entre la

roue et la masse, on a
4#
<\R TR
d



(+7R+d=1L.
Cela implique que o
(+d=0
(toute longueur prise sur I'un des morceaux se retrouve sur 'autre).
De plus, lorsque la roue tourne d’un angle ¢, la longueur ¢ gagne Ry. Ainsi { = Ruw.
Comme d = x5 — x1, x5 et x1 étant les positions respectives de mo et my, il vient
{+d=Ri+ay—a; =0.

Notre systéme d’équations est donc finalement, avec I = m; R?,

F + T = miaq ,
F-T = my R
=T = moas ,

0 = Rw+a2—a1.

Résolution : variante I En éliminant 7" dans les deux premieres équations, il vient
2F = mia + mlRw = ml(al + Rw) .

D’autre part, en réécrivant la deuxieme équation a l'aide des deux dernieres relations du
systeme, on obtient
F+moa; = (miR+meR)W.

Les accélérations de translation et angulaire de la roue ont donc pour expression

al—ml et w—mlR.
On remarque que a; = Rw, ce qui traduit bien le fait que la roue est entrainée par le fil
lorsque ce dernier ne glisse pas sur celle-ci.
Finalement, ’accélération de la masse ms et la tension dans le fil sont quant a elles données
par
ay=0 et T =0.

Résolution : variante II Eliminons pour commencer a1, w et as : multiplions 1'éq. 1
par mil, I’éq. 2 par —mil, I’éq. 3 par —m% et additionnons les 4 équations. Il vient

1 1 1
—((F+T)——(F -T)+ —T=0=T=0.
my my ma
Ainsi
) F ) F
a, =10 a; = Rw a = — w= )
mq le

(b) Nous avons obtenu un systeme de trois équations :

F + T = miasq ,
R(F-T) = I,
=T = maas .

Lorsque le fil glisse sur la roue, cette derniere n’est pas entrainée par le fil et w = 0. Ainsi,

T=F.



Les accélérations de la roue m; et de la masse my sont alors données par

2F F
ag=— et ag=——.
ma meo

Exercice 5

Le théoreme de I'énergie cinétique s’applique a un objet choisi. Il convient donc de procéder
comme d’habitude : dessin, choix de I'objet, identification des forces, lois de la dynamique.
Nous allons considérer le cylindre :
T
Objet : cylindre

' Forces : poids, tension

—

mg
Appliquons le théoreme de ’énergie cinétique au cylindre :
aty A to Théoreme de 'énergie cinétique entre l'instant

initial ¢; , la situation (1), et U'instant final ¢,
la situation (2) :

. ext

Ecin(Q) — Ecin(l) - Wla2 )
ou Iénergie cinétique du solide (la somme de
Iénergie cinétique de toutes les parties) peut
h s’écrire comme somme des énergies cinétiques

de translation du CM et de rotation autour du
CM :

Ecin = Ecin,CM + Ecin,rot .

Ecrivons I'énergie cinétique initiale et finale. Initialement (instant ¢;) le cylindre est im-
mobile. Apres une descente d’'une distance h, sa vitesse (celle de son CM) est ¥y et sa
vitesse angulaire autour du CM est &y :

1 1
Ecin<1) = Ecin,CM(l) + Ecimrot(l) = §mU% + 5[(&)% =0

1 1
Ein(2) = Euncm(2) + Eeinrot(2) = §mv§ + 5—70);-

Déterminons maintenant le travail de chacune des forces, en se souvenant que, par définition,
le travail d’une force F' est

2
Wl—>2 :/ F- dF)
1
ou dr est le déplacement du point du solide sur lequel la force F est appliquée.

e Pour le poids, appliqué au CM,

2
W1—>2(m§_])) = / mg - dre -
1

10



Le poids étant constant et le CM en mouvement vertical vers le bas,

2
W1%2(m§) = mg/ dycm = mgh .
1

Remarque : ce travail est positif.
e Pour la tension, appliquée au morceau m; du cylindre lorsqu’il atteint le fil vertical
(point C)

2
Wi_yo(T) :/ T - dF,.
1

Dans le référentiel du CM, tout m; sur le cylindre est en rotation autour du CM.

:cUCM X

Dans le référentiel d’inertie, la vitesse
de m; est alors

U; = Ucm + U, = Ucm + dom X

En particulier, lorsque m; atteint le le point C', d’une part vy est dirigée vers le
bas et de norme Rwcyy (si le fil se déroule de As = RAG, le CM descend d’autant)
et d’autre part oy X 77 est vers le haut et de norme Rweay ,

;=0 enC.

On dit que C est le centre instantané de rotation.
Pendant une durée infinitésimale dt, le déplacement dr; de m; est donc nul et le
travail de la tension également :

Wio(T) = /2f~dﬁ- =0.
1
Revenons au théoreme de ’énergie cinétique. Ce dernier s’écrit ainsi
Ein(2) — Ean(1) = WX,
émvg + %[w% = mgh.

De plus, comme déja indiqué, le mouvement du CM et la rotation autour du CM sont liés
par le déroulement du fil. A U'instant ¢, ,

V9 = Rws .
Finalement,
1 1 1 v mR*+1
§mv§ + §Iw§ = émvg + D) R_22 = Q—RQU% = mgh,
d’ou

[ 2ghm R? 2gh —
2 mR?+ 1 1+ m;ﬁ J

L’inertie de rotation fait que la descente est plus lente qu’en chute libre.

Exercice 6
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Sous l'effet du poids, la bille gagne en vitesse et finit par décrocher.
Exploiter la condition de décrochement pour I’endroit ou la bille quitte la boule.
Déterminer ensuite une seconde relation entre vitesse et position de la bille.

Considérer d’abord une position quelconque pour la bille.
Objet : bille

Forces : poids, soutien, frottement
mg+ S+ f=ma.

Le décrochement de la bille de la surface de
la boule est caractérisé par la disparition du
soutien : S =0.

La condition de décrochement s’exprime le mieux selon la normale €, . I1 faut donc ca-
ractériser la trajectoire du centre de masse de la bille.
La trajectoire du CM de la bille est un arc

g de cercle de rayon R + 7.

Selon €; :
mgsina — f = may .
|
|
! —
| r Selon €, :
|
|
2
| O{ / - /l]
—~  mg mgcosa — S = ma, = m—"2
’ \ R +7r

|
|
Iy
7
2

Au décrochement repéré par 'angle ap, S =0 :
2

Up
R+r

mgcosap =m = (R+r)gcosap = v5.

Une seconde relation entre ap et vp est fournie par le théoreme de I’énergie cinétique du
solide qu’est la bille.

Notons (1) le départ et (2) le décrochement. Plus précisément, ¢; est 'instant du départ
et ty I'instant du décrochement.

Pour le choix de I'origine des hauteurs au niveau du centre de la boule et bien sur €}, vers
le haut, le théoreme de 1’énergie cinétique pour la bille s’écrit

Ecin(Q)_Ecin(l) = WfﬁZ

1 1 — - —
EmUQD + 5 CMW%) -0 = W1_>2(mg) + W1_>2( ) + W1_>2(f) s

ol Wp est la vitesse angulaire de la bille autour du CM a l'instant ¢ de décrochement.
e Le poids s’exerce au CM :

Wie(mg) = mg(hy — he) = mg(R+7r)(1 — cosap) .

12



e Le soutien et le frottement s’exercent au point de contact de la bille avec la boule.
Comme lors d'un roulement sans glissement le point de la bille entrant en contact
avec la bille s’arréte, sa vitesse devient nulle et S et f ne travaillent pas :

—, —

WlaZ(‘S) = Wl%?(f) =0.

Ainsi ) |
§msz + §ICMw’23 =mg(R+7)(1 —cosap).

C’est la conservation de I’énergie mécanique de la bille.

Ecrire I’équation de liaison entre rotation et déplacement.

La bille roulant sans glisser, si pendant At elle tourne de Ay selon €,®, elle déroule sur
la boule une longueur As = rAp. Il suit que I'angle o change de Aa avec As = RA«. Le
déplacement du CM le long de T" est alors de Ascy = (R + 7)Aca. En divisant par At et
prenant la limite At — 0, on a

. . +r
rwem = Ra vey = (R+71)d = B TWEM -
En particulier a ¢,
R+r
vp = TWp .
D Ia D
Des trois équations, déduire ap .
Rappelons les équations :
(R+7r)gcosap = vh
1
5mv% + 3 cmwh = mg(R+7)(1 —cosap)
R+
Up = R rwp .

La deuxieme équation est < la plus compliquée >. Faisons-y les substitutions pour obtenir
une équation en ap (Ioy = pmr?) :

1 1
§mv% + §pmr2w% = mg(R+7)(1 —cosap)
1
§mv% + §pm(RiT,)21),23 = mg(R+r)(1—cosap)
1 1
Em(R +r)gcosap + §pm(Rir)2(R +r)gcosap = mg(R+7)(1 —cosap)
1 1 R
5 cosap + §p(R+T) cosap = 1—-cosap
(1+2+p(F5)*) cosap = 2
d’ou
2
cosap = —————.
3+p(R}—&%-r)2

Remarque. Nous connaissons le résultat similaire pour un objet glissant sans frottement :
il décroche sous un angle o/, donné par cosa’, = % . Ainsi

cosap < cosap < ap > alp.

En effet, du fait de la mise en rotation de la bille, celle-ci décroche plus loin.
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