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Exercice 1

Nous allons exploiter le théorème du moment cinétique. La démarche est analogue à celle
qui conduit à la deuxième loi de Kepler affirmant que la vitesse aréolaire d’une planète
est constante.
Nous allons faire l’hypothèse que la planète ne subit qu’une seule force : la force de
gravitation F⃗grav. exercée par l’astre. Cette force est dirigée de la planète vers l’astre :
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La force de gravitation F⃗grav. est une force centrale : elle est toujours dirigée vers le même

point S1. En choisissant comme origine le point S1, les vecteurs position r⃗ et force F⃗grav.

sont en tout temps parallèles.
Ainsi, le moment de la force est toujours nul :

M⃗S1 = r⃗ × F⃗grav. = 0⃗ .

Le théorème du moment cinétique permet alors d’affirmer que

˙⃗
LS1 = 0⃗ ⇔ L⃗S1 = r⃗ ×mv⃗ =

−−−−−−→
constante ,

où m est la masse de la planète.
Pour pouvoir exploiter la conservation du moment cinétique durant le mouvement de la
planète autour de l’astre, il est nécessaire de déterminer les vecteurs positions aux points
P1 et P2. En particulier, nous allons avoir besoin de la distance f séparant l’astre du
centre de l’ellipse.
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En utilisant la contrainte S1P+S2P = 2a définissant l’ellipse pour le point P2, on constate
que

f 2 + b2 = a2 =⇒ f =
√
a2 − b2 .

La conservation du moment cinétique permet alors d’écrire, selon la direction perpendi-
culaire au plan du mouvement,

(a+ f)mv0 = (a− f)mv1 = bmv2 .

Ainsi, les vitesses aux points P1 (périhélie) et P2 sont, respectivement, données par

v1 =
a+ f

a− f
v0 =

a+
√
a2 − b2

a−
√
a2 − b2

v0 et v2 =
a+ f

b
v0 =

a+
√
a2 − b2

b
v0 .

Numériquement, dans le cas de la Terre en orbite autour du Soleil, on obtient

v1 = 30.29 km/s et v2 = 29.78 km/s .

Exercice 2

On commence par faire un schéma de la situation :

axe fixe

O

m

r

fil

F⃗

⊗ ˆ⃗z

R⃗

On suppose qu’il n’y a pas de frottement. Le CM du cerceau ne se déplace pas et la somme
des forces exercées sur le cerceau est donc nulle : le poids du cerceau (de masse m et de

rayon r) est compensé par une force de soutien au niveau de l’axe et F⃗ par un second

soutien R⃗ horizontal.
Nous pouvons alors écrire, pour le cerceau par rapport à son centre O,

τ⃗O = IOα⃗ ,

où α ≡ ω̇ est l’accélération angulaire. Selon ˆ⃗z, on a donc

τO = rF = IOα ,

où F = ||F⃗ || et IO = mr2. L’accélération angulaire α est constante et vaut

α(t) = α0 =
rF

IO
=

rF

mr2
=

F

mr
= 200 s−2 .

Comme l’accélération angulaire est constante, on peut s’inspirer des équations du mou-
vement uniformément accéléré pour trouver l’expression de la vitesse angulaire :

ω(t) = α0t+ ω0 =
F

mr
t ,

où l’on a tenu compte de la condition initiale ω(t = 0) = 0 pour fixer ω0 : ω0 = 0 s−1 .
La vitesse angulaire après un temps t1 est donc

ω1 = ω(t1) =
F

mr
t1 = 1000 s−1 .
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L’angle de rotation au temps t pour la condition initiale θ(t = 0) = 0 est donné par

θ(t) =
1

2

F

mr︸︷︷︸
=ω̇=cste

t2 .

L’angle après un temps t1 est ainsi

θ1 = θ(t1) =
Ft21
2mr

= 2500 ,

ce qui correspond à un nombre de tours

n1 =
θ1
2π

=
Ft21
4πmr

∼= 398 tours .

Exercice 3

Il n’est pas judicieux de choisir comme objet “cylindre et contrepoids”, ces deux parties
ne bougeant pas de la même manière. Ainsi,

� on considère tour à tour le cylindre et la masse ;
� on établit la liaison géométrique entre leurs mouvements.

Il est primordial (comme toujours) de faire un dessin convenable de la situation :

m1

A

R

m2

Notons que l’axe de rotation A du cylindre est fixe.

O
R

T⃗

m1g⃗

S⃗⊗ e⃗z

Objet : cylindre

Forces : poids, soutien, tension

Comme le CM est au repos, il n’est pas
nécessaire de considérer la translation.
Rotation autour de O :

M⃗O = M⃗O(m1g⃗)︸ ︷︷ ︸
0⃗

+ M⃗O(S⃗)︸ ︷︷ ︸
0⃗

+ M⃗O(T⃗ )︸ ︷︷ ︸
⊗

= IO ˙⃗ω

Selon e⃗z :
RT = I0ω̇ .

−T⃗

m2g⃗

e⃗y

Objet : contrepoids

Forces : poids, tension

m2g⃗ − T⃗ = m2a⃗2

Selon e⃗y :

m2g − T = m2a2 .

Pour établir les équations de liaison, on peut considérer un petit angle de rotation du
cylindre et déterminer le mouvement correspondant du contrepoids :
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�

O

R
⊗ e⃗z

e⃗y

∆y = ∆s

∆θ
∆s

Si la poulie tourne d’un angle ∆θ dans le sens
donné par e⃗z , le fil se déroule et le contre-
poids se déplace de ∆y = R∆θ dans le sens
donné par e⃗y .

� La variation par rapport au temps (dérivée) donne alors la liaison entre les vitesses :

lim
∆t→0

∆y

∆t
= R lim

∆t→0

∆θ

∆t
⇔ v2 = Rω .

� La variation des vitesses par rapport au temps (dérivée) donne ensuite la liaison
entre les accélérations :

a2 = Rω̇ .

Nous sommes donc amenés à résoudre le système suivant :
RT = IOω̇

m2g − T = m2a2
a2 = Rω̇ .

Il est souvent plus simple de d’abord exprimer les accélérations en fonction de ω̇ (a2 = Rω̇)
et de résoudre le système {

RT = IOω̇ · 1
m2g − T = m2Rω̇ ·R

en amplifiant les équations respectivement par 1 et par R , de sorte que l’addition membre
à membre fasse tomber les termes en T , inconnue non recherchée. On obtient alors

m2gR = (IO +m2R
2)ω̇ .

Avec IO = 1
2
m1R

2 pour un cylindre plein, il vient

ω̇ =
m2gR

IO +m2R2
=

2m2g

(m1 + 2m2)R

et donc

a2 = Rω̇ =
2m2

m1 + 2m2

g > 0 .

Le contrepoids accélère vers le bas avec une accélération inférieure à g :

a2 = Rω̇ =
2m2

m1 + 2m2

g =
1

m1

2m2
+ 1

g < g .

Remarque : on est libre de choisir les repères comme on veut. Par exemple, avec le même
choix de e⃗z entrant et le choix (différent) de e⃗y vers le haut, les projections et équations
de liaison sont modifiées comme suit.

RT = IOω̇ (inchangée)
−m2g + T = m2a2 (modifiée)

a2 = −Rω̇ (modifiée) .

Avec a2 = −Rω̇ , il vient {
RT = IOω̇ · 1

−m2g + T = −m2Rω̇ · (−R)
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En amplifiant les équations respectivement par 1 et par −R , de sorte que l’addition
membre à membre fasse tomber les termes en T , inconnue non recherchée, on obtient
alors

m2gR = (IO +m2R
2)ω̇

et donc, comme ci-dessus,

ω̇ =
m2gR

IO +m2R2

mais

a2 = −Rω̇ = − m2R
2

IO +m2R2
g < 0 .

Toutefois, le contrepoids accélère bien vers le bas, e⃗y étant orienté vers le haut.

Connaissant l’accélération, on peut (en principe. . .) en déduire la vitesse et la position à
chaque instant. On considère alors l’instant correspondant à la distance parcourue.
L’accélération du contrepoids est constante. On sait que la vitesse est linéaire dans le
temps et la position quadratique (accélération = dérivée de la vitesse, vitesse = dérivée
de la position). Pour le contrepoids, avec un choix de l’origine à l’endroit où la vitesse est
nulle (t0 = 0), nous obtenons l’évolution temporelle selon e⃗y :

a2 =
2m2

m1 + 2m2

g = cte

v2(t) = a2 t car v2(0) = 0

y2(t) =
1

2
a2 t

2 car y2(0) = 0 .

Déterminons l’instant correspondant à une descente h . Notons th l’instant auquel le
contrepoids a parcouru une distance verticale h :

y2(th) =
1

2
a2 t

2
h = h ⇒ th =

√
2h

a2
.

Nous obtenons alors la vitesse à cet instant :

v2(th) = a2th =
√

2ha2 =

√
4hm2g

m1 + 2m2

.

Autre méthode de résolution : comme nous cherchons une relation entre une posi-
tion et une vitesse (sans être intéressés par le temps), nous pouvons imaginer exploiter
le théorème de l’énergie cinétique pour les instants t0 = 0 et th correspondant à un
déplacement vertical h.

Intéressons-nous d’abord au contrepoids soumis à son poids et à la tension T⃗ :

Ecin(th)− Ecin(t0) = W0→h(m2g⃗) +W0→h(−T⃗ )

1

2
m2v

2
h − 0 = m2gh+W0→h(−T⃗ ) .

Comme le travail de la tension est inconnu, nous sommes amenés à considérer également
la poulie soumise à son poids, au soutien et à la tension T⃗ :

Ecin(th)− Ecin(t0) = W0→h(m1g⃗) +W0→h(S⃗) +W0→h(T⃗ )

1

2
IOω

2
h − 0 = W0→h(T⃗ ) .
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Les travaux de la tension sur le contrepoids et la poulie étant égaux et opposés, nous
avons par addition

1

2
m2v

2
h +

1

2
IOω

2
h = m2gh .

Avec l’équation de liaison v2 = Rω , nous obtenons finalement

1

2
m2v

2
h +

1

2
IO

v2h
R2

=
1

2
m2v

2
h +

1

2

1

2
m1R

2 v
2
h

R2
=

(
1

2
m2 +

1

2

1

2
m1

)
v2h = m2gh

et donc

vh =

√
4m2gh

2m2 +m1

.

Exercice 4

Nous allons appliquer le théorème du moment cinétique aux masses en rotation m1 et m2.
Il sera également nécessaire de décrire le mouvement des masses m3 et m4 se déplaçant
verticalement.
Appelons T⃗3, respectivement T⃗4, la force qu’exercem3, respectivementm4, sur les cylindres
solidaires.
En choisissant e⃗z entrant, la projection du théorème du moment cinétique selon e⃗z s’écrit

r1T3 + r2T4 = (I1 + I2)ω̇ ,

où ω̇ est l’accélération angulaire des deux cylindres (ces derniers sont supposés solidaires).
La deuxième loi de Newton appliquée aux masses m3 et m4 s’écrit

mig⃗ + T⃗i = mia⃗i , où i = 3, 4 .

En projetant selon e⃗y dirigé vers le bas, nous obtenons les équations

m3g − T3 = m3a3 et m4g − T4 = m4a4 .

Il convient maintenant de trouver la liaison entre le mouvement de rotation des cylindres
et le mouvement de translation des deux masses m3 et m4.

Lorsque les cylindres tournent à une vitesse angulaire ω, les masses m3 et m4 descendent
avec les vitesses respectives

v3 = r1ω et v4 = r2ω.

Par conséquent,
a3 = r1ω̇ et a4 = r2ω̇.

En résumé, nous avons les équations

r1T3 + r2T4 = (I1 + I2)ω̇ ,

m3g − T3 = m3a3 ,

m4g − T4 = m4a4 ,

a3 = r1ω̇ ,

a4 = r2ω̇ .

En éliminant T3, T4, a3 et a4, nous obtenons l’expression de l’accélération angulaire :

ω̇ =
(r1m3 + r2m4)

(m1 +m3)r12 + (m2 +m4)r22
g .
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Les accélérations verticales des deux masses m3 et m4 sont alors données par

a3 =
r1(r1m3 + r2m4)

(m1 +m3)r12 + (m2 +m4)r22
g

et

a4 =
r2(r1m3 + r2m4)

(m1 +m3)r12 + (m2 +m4)r22
g .

Quant aux tensions dans les fils, elles s’écrivent

T3 = m3(g − a3) = m3g(1−
r1(r1m3 + r2m4)

(m1 +m3)r12 + (m2 +m4)r22
)

= m3g
m1r1

2 +m2r2
2 +m4r2

2 − r1r2m4

(m1 +m3)r12 + (m2 +m4)r22

et

T4 = m4(g − a4) = m4g(1−
r2(r1m3 + r2m4)

(m1 +m3)r12 + (m2 +m4)r22
)

= m4g
m1r1

2 +m2r2
2 +m3r1

2 − r1r2m3

(m1 +m3)r12 + (m2 +m4)r22
.

Exercice 5

Nous allons exploiter le théorème du moment cinétique pour étudier la dynamique de la
rotation de la toupie.
Nous allons supposer que le couple de freinage est mesuré par rapport au centre de la
toupie (axe de rotation). Par hypothèse, ce couple, que nous allons noter M⃗ , est supposé
constant. Il s’oppose à la rotation de la toupie et conduit à une décélération de celle-ci :

M⃗ = I ˙⃗ω .

Imaginons que la toupie tourne dans le sens des aiguilles d’une montre (vecteur vitesse
angulaire ω⃗) et choisissons un repère dans le même sens (ω⃗ = ke⃗z, avec k > 0).

ω⃗

M⃗

˙⃗ω

e⃗z

La projection de l’équation ci-dessus fournit alors

−M = Iω̇ .
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Le signe traduit le fait que M⃗ s’oppose à ω⃗.
Ainsi, l’accélération angulaire s’écrit

ω̇ = −M

I
= constante .

On devine alors que la vitesse angulaire est de la forme

ω(t) = ω0 −
M

I
t ,

où ω0 est une constante.
La constante ω0 correspond à la vitesse de rotation initiale de la toupie :

ω(t = 0 s) = ω0 = 50 · 2π ∼= 314.159 s−1 .

Nous savons que la toupie tombe après 30 secondes car sa vitesse angulaire est devenue
négligeable (ω ∼= 0 s−1). Ainsi,

ω(t1 = 30 s) = ω0 −
M

I
t1

= 0 .

Cette équation permet de déterminer le couple de freinage :

M =
Iω0

t1
=

200 · 10−3 · 10−4 · 100π
30

∼= 2.09 · 10−4Nm .

L’expression de la vitesse angulaire de la toupie,

ω(t) = ω0 −
M

I
t ,

permet de deviner l’angle parcouru par la toupie au cours du temps :

θ(t) = ω0t−
M

2I
t2 .

On en déduit le nombre de tours effectués par la toupie jusqu’à son arrêt :

n(t1 = 30 s) =
θ(t1)

2π
=

1

2π

(
ω0t1 −

M

2I
t1

2
)

=
1

2π

(
ω0t1 −

ω0t1
2

)
=

ω0t1
4π

=
100π · 30

4π
= 750 .

Exercice 6

Comme le courant ne circule que pendant une seconde, il faut différencier deux cas.

Lorsque le moteur est en fonction (c’est-à-dire lorsque le courant circule), le rotor voit sa

vitesse angulaire augmenter. Le moment de force M⃗ est parallèle et de même signe que
la vitesse angulaire du rotor ω⃗. Ainsi,

M = Iω̇ ,
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où M est le moment du couple. Ce moment est constant et non nul dans la première
seconde après l’enclenchement (0 < t < 1 s). Ensuite (pour t > 1 s), il est nul. Il convient
donc de procéder en deux étapes.

Pour 0 < t < 1 s, le moment du couple est non nul et provoque une accélération angulaire

ω̇ =
M

I
= constante .

La vitesse angulaire est alors donnée par

ω(t) =
M

I
t+ ω0 ,

où ω0 = ω(0) = 0 s−1 car le moteur est initialement immobile. L’angle parcouru par le
rotor a quant à lui pour expression

φ(t) =
1

2

M

I
t2 + φ0 ,

où l’on va poser φ0 = φ(0) = 0 .

On a donc en particulier,

ω(1 s) =
2

0.1
= 20 s−1 et φ(1 s) =

1

2

2

0.1
= 10 .

Pour t > 1 s, le moment du couple est nul. Il n’y a donc pas d’accélération angulaire et la
vitesse angulaire du rotor est constante :

ω̇ = 0 ⇒ ω(t) = ω(1 s) = ω1 = constante .

L’angle parcouru par le rotor est ainsi donné par

φ(t) = φ(1 s) + ω1(t− 1 s) .

Ainsi,
φ(2 s) = 10 + 20(2− 1) = 30

et le nombre de tours correspondant est

n(2 s) =
φ(2 s)

2π
∼= 4.77 .

Exercice 7

Nous allons exploiter le lien entre moment de force et accélération angulaire. En choisissant
ˆ⃗z pointant dans le plan de la feuille (ˆ⃗z ⊗), nous pouvons écrire, par rapport à l’axe de
rotation,

M = −RF = −kRω

= Iα =
1

2
mR2α .

Comme α = α(t) = ω̇(t), on obtient alors l’équation différentielle

ω̇(t) = − 2k

mR
ω(t) .
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On devine que la vitesse angulaire ω(t) solution de cette équation différentielle est une
fonction de type exponentielle. On va donc poser, dans le cas le plus général,

w(t) = AeBt ,

où A et B sont des constantes.
L’accélération angulaire s’écrit alors

α(t) = ω̇(t) = BAeBt = Bω(t) .

On obtient alors que A = ω(0) = ω0 et B = − 2k
mR

.

L’évolution de la vitesse angulaire est ainsi donnée par

ω(t) = ω0 e
− 2k

mR
t .

Exercice 8

Nous allons appliquer les lois de la dynamique à l’objet.

axe A

θ = 0

θ

e⃗z

M⃗rappel

S⃗

mg⃗

∑
F⃗torsion = 0⃗

Objet : cet objet (sans le fil)

Forces : poids, soutien, forces de torsion

Les forces de torsion sont exercées par le fil au niveau
du contact avec l’objet. Elles sont de résultante nulle et
donnent lieu au couple de rappel M⃗rappel .

Le CM étant au repos, nous ne considérons que la rota-
tion autour de l’axe défini par le fil vertical :

M⃗A = M⃗A(mg⃗)︸ ︷︷ ︸
0⃗

+ M⃗A(S⃗)︸ ︷︷ ︸
0⃗

+ M⃗rappel︸ ︷︷ ︸
opposé à e⃗z

= I ˙⃗ωA

Selon e⃗z :
−Cθ = Iω̇A = Iθ̈ .

Pour déterminer la période d’oscillation, nous devons connâıtre l’évolution temporelle de
l’angle θ . Nous cherchons donc une fonction du temps θ(t) vérifiant l’équation

θ̈(t) = −C

I
θ(t) .

Nous connaissons les fonctions ayant cette propriété : sin et cos . Pour rappel,

f(x) = sin(Ωx) f ′(x) = Ω cos(Ωx) f ′′(x) = −Ω2 sin(Ωx) = −Ω2f(x)
f(x) = cos(Ωx) f ′(x) = −Ω sin(Ωx) f ′′(x) = −Ω2 cos(Ωx) = −Ω2g(x) .

Posons donc

Ω2 =
C

I
et donc Ω =

√
C

I
.

La solution à notre équation est alors

θ(t) = A sin(Ωt) +B cos(Ωt) ,
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où A et B sont des constantes données par les conditions initiales (l’angle et la vitesse
angulaire à un instant donné).

La période d’oscillation T est le plus petit réel strictement positif tel que

θ(t+ T ) = θ(t) ∀t .

Pour notre solution,

A sin(Ωt+ ΩT ) +B cos(Ωt+ ΩT ) = A sin(Ωt) +B cos(Ωt) ∀t

et ΩT doit donc être un multiple de 2π .
Le plus petit T positif est ainsi donné par

ΩT = 2π ⇔ T =
2π

Ω
= 2π

√
I

C
.

En effet, plus le moment d’inertie I est grand, plus l’oscillation est lente. Et plus le fil est
rigide (C grand), plus l’oscillation est rapide.

Exercice 9

On procède comme toujours : dessin, objet, forces. . .
On a à disposition les lois de la dynamique (translation et rotation autour d’un point fixe
ou du CM).
Considérer le cylindre.

CM
R

mg⃗

T⃗
Objet : cylindre

Forces : poids, tension

CM
R

mg⃗

T⃗

⊗ e⃗z

e⃗y

Newton :
mg⃗ + T⃗ = ma⃗CM

et selon e⃗y : mg − T = ma .
Remarque : il n’y a pas d’accélération selon l’horizontale.

Rotation autour du CM :

M⃗CM(mg⃗)︸ ︷︷ ︸
0⃗

+ M⃗CM(T⃗ )︸ ︷︷ ︸
⊗

= ICM
˙⃗ωCM

et selon e⃗z : RT = ICMω̇CM .

Avec ICM = 1
2
mR2 , 2T = mRω̇CM .

Ecrire les équations de liaison.
Liaison : si, pendant ∆t , le cylindre tourne autour du CM de ∆φ selon e⃗z , son CM avance
selon e⃗y de

∆y = +R∆φ .

Alors

v = lim
∆t→0

∆y

∆t
= +R lim

∆t→0

∆φ

∆t
= RωCM ∀ t .

En dérivant,
a = Rω̇CM .
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Résolvons le système d’équation avec a = Rω̇CM :

mg − T = mRω̇CM

2T = mRω̇CM .

Par addition après amplification de la première équation par 2, on a

2mg = 3mRω̇CM

et donc selon e⃗z et selon e⃗y respectivement :

ω̇CM =
2g

3R
a =

2g

3
.
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