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Corrigé 10
Exercice 1
Nous allons exploiter le théoreme du moment cinétique. La démarche est analogue a celle
qui conduit a la deuxieme loi de Kepler affirmant que la vitesse aréolaire d’une planete
est constante.

Nous allons faire I’hypothese que la planete ne subit qu’une seule force : la force de
gravitation Fg,,. exercée par 'astre. Cette force est dirigée de la planete vers l'astre :

2b

2a

La force de gravitation Fﬁgm. est une force centrale : elle est toujours dirigée vers le méme
point S;. En choisissant comme origine le point S7, les vecteurs position 7 et force Fﬁgm‘
sont en tout temps paralleles.

Ainsi, le moment de la force est toujours nul :

Mg, =7 X Fyray. = 0.
Le théoreme du moment cinétique permet alors d’affirmer que
S S
Lg, =0 & Lg, =7 X mu = constante,

oll m est la masse de la planete.

Pour pouvoir exploiter la conservation du moment cinétique durant le mouvement de la
planete autour de I'astre, il est nécessaire de déterminer les vecteurs positions aux points
P, et P,. En particulier, nous allons avoir besoin de la distance f séparant 'astre du
centre de l'ellipse.

2b

2a
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En utilisant la contrainte S; P+ Sy P = 2a définissant 1’ellipse pour le point P, on constate

que
fPrvt=a> = f=Va>-12.

La conservation du moment cinétique permet alors d’écrire, selon la direction perpendi-
culaire au plan du mouvement,

(a+ fimvy = (a — f)mvy = bmuy .
Ainsi, les vitesses aux points P; (périhélie) et P, sont, respectivement, données par

a+ f a++va?—b? a+ f a++va?—b?
(% Vo -

V1 = Vo = Vo et vy = 0 —
a—f a— Va2 —b? b b

Numériquement, dans le cas de la Terre en orbite autour du Soleil, on obtient

v =30.29 km/s et vy =29.78 km/s.

Exercice 2
On commence par faire un schéma de la situation :

On suppose qu’il n’y a pas de frottement. Le CM du cerceau ne se déplace pas et la somme
des forces exercées sur le cerceau est donc nulle : le poids du cerceau (de masse m et de
rayon r) est compensé par une force de soutien au niveau de l'axe et F' par un second

soutien R horizontal.
Nous pouvons alors écrire, pour le cerceau par rapport a son centre O,

To = lod,
ou a = w est 'accélération angulaire. Selon Z, on a donc
T0o =1F = Ipa,

ol F'=||F|| et Ip = mr?. L’accélération angulaire v est constante et vaut

rF rF F
H=ag= — = —— = —9200s 2.
a(t) = @ Io mr?2 mr i

Comme l'accélération angulaire est constante, on peut s’inspirer des équations du mou-
vement uniformément accéléré pour trouver ’expression de la vitesse angulaire :

F
w(t) = Oéot + wop = —t,
mr

ot 'on a tenu compte de la condition initiale w(t = 0) = 0 pour fixer wy : wy = 05 *.

La vitesse angulaire apres un temps t; est donc
F
wy = w(t;) = —t; = 1000s".
mr

2



L’angle de rotation au temps ¢ pour la condition initiale #(¢ = 0) = 0 est donné par

1 F
0(t) =~ — .
2 mr
~—
=w=cste

L’angle apres un temps t; est ainsi

2

Ft
0, =0(t) = 5 L = 2500,

mr

ce qui correspond a un nombre de tours

6 Ft

iy m— =~ 398 tours.

ni

Exercice 3

Il n’est pas judicieux de choisir comme objet “cylindre et contrepoids”, ces deux parties
ne bougeant pas de la méme maniere. Ainsi,

e on considere tour a tour le cylindre et la masse;
e on établit la liaison géométrique entre leurs mouvements.

Il est primordial (comme toujours) de faire un dessin convenable de la situation :

Notons que 'axe de rotation A du cylindre est fixe.

Objet : cylindre
Forces : poids, soutien, tension

Comme le CM est au repos, il n’est pas
nécessaire de considérer la translation.
Rotation autour de O :

R - - - - o :
01 Mo = Mo(mi§) + Mo(S) + Mo(T) = 1o
g 0 ®
0 0

Ny

migy .
Selon €, :

Objet : contrepoids

I—f Forces : poids, tension

J m2§— T = mady

l Mo g

€y Selon €, :
mag — 1 = moasy .

Pour établir les équations de liaison, on peut considérer un petit angle de rotation du
cylindre et déterminer le mouvement correspondant du contrepoids :



° Si la poulie tourne d’un angle A# dans le sens
®E, donné par €, , le fil se déroule et le contre-
poids se déplace de Ay = RA# dans le sens
donné par €, .

e La variation par rapport au temps (dérivée) donne alors la liaison entre les vitesses :

Ay A
lim — =R lim — = Rw.
A}sr—rgo At A}sr—rgo At <0 v
e La variation des vitesses par rapport au temps (dérivée) donne ensuite la liaison
entre les accélérations :
ag = Rw .

Nous sommes donc amenés a résoudre le systeme suivant :

RT = Ipw
mag — 1T = maay
ag = Rw .

Il est souvent plus simple de d’abord exprimer les accélérations en fonction de w (az = Rw)
et de résoudre le systeme

RT = Ipw -1
meg —T = moRw | - R

en amplifiant les équations respectivement par 1 et par R, de sorte que 'addition membre
a membre fasse tomber les termes en 1", inconnue non recherchée. On obtient alors

magR = (Ip + myR*)d .
Avec Ip = $miR* pour un cylindre plein, il vient

o mogR 2meog
a IO + m2R2 n (m1 + 2m2)R

et done 9
. mo
=Ro=—-—"—¢4>0.
2 “ m1+2m29

Le contrepoids accélere vers le bas avec une accélération inférieure a g :
2m2 1

4y = Riy = - <gq.
2 my + 2my Y %Hg g

Remarque : on est libre de choisir les reperes comme on veut. Par exemple, avec le méme
choix de €, entrant et le choix (différent) de €, vers le haut, les projections et équations
de liaison sont modifiées comme suit.

RT = Iow (inchangée)

—mog+T = moay (modifiée)
a; = —Rw (modifiée).
Avec ay = —Rw, il vient
RT = Iow 1
—mog+T = —moRw| - (—R)



En amplifiant les équations respectivement par 1 et par —R, de sorte que l'addition
membre a membre fasse tomber les termes en 7', inconnue non recherchée, on obtient
alors

magR = (Ip + myR*)b

et donc, comme ci-dessus,

mggR
w=-——
]O + ’ITLQFE2
mais R
. mo
= —Rw = — <0
4 w Io + m2R2

Toutefois, le contrepoids accélere bien vers le bas, €, étant orienté vers le haut.

Connaissant 1’accélération, on peut (en principe. ..) en déduire la vitesse et la position a
chaque instant. On considere alors l'instant correspondant a la distance parcourue.
L’accélération du contrepoids est constante. On sait que la vitesse est linéaire dans le
temps et la position quadratique (accélération = dérivée de la vitesse, vitesse = dérivée
de la position). Pour le contrepoids, avec un choix de 'origine a I’endroit ou la vitesse est
nulle (¢, = 0), nous obtenons I’évolution temporelle selon €, :

2m2

pum— _— = t
2 my + 2mg g=ce
va(t) = ast car v9(0) =0
1
yalt) = Sast’ car y2(0) = 0.

2

Déterminons l'instant correspondant a une descente h. Notons ¢, l'instant auquel le
contrepoids a parcouru une distance verticale h :

1 2h
yQ(th):§a2t§:h = t, = o

Nous obtenons alors la vitesse & cet instant :

4h
’l)g(th) = agth =\ 2]10/2 = ﬂ

my + 2msy

Autre méthode de résolution : comme nous cherchons une relation entre une posi-
tion et une vitesse (sans étre intéressés par le temps), nous pouvons imaginer exploiter
le théoreme de l'énergie cinétique pour les instants ¢y = 0 et t, correspondant a un
déplacement vertical h.

Intéressons-nous d’abord au contrepoids soumis a son poids et a la tension T :

Eein(th) — Eein(to) = Wossn(mag) + Wosn(=T)

1 -
§mgvi -0 = mggh + Wg_ﬂz(—T) .
Comme le travail de la tension est inconnu, nous sommes amenés a considérer également
la poulie soumise a son poids, au soutien et a la tension T :

Eein(tn) — Ean(to) = Wosn(mig) + W0—>h(§> + W(Hh(f)

1 -
5 sz -0 = Woﬂh<T) .



Les travaux de la tension sur le contrepoids et la poulie étant égaux et opposés, nous

avons par addition

1 1
§m2v2 + ilowi = magh .

Avec I'équation de liaison vo = Rw, nous obtenons finalement

1 1. v? 1 11 v? 1 11
§m21}2 + §IOR—}; = émgvi + §§m1R2R—}; = (—m2 + ——m1> vy = magh

et donc

Exercice 4

Nous allons appliquer le théoreme du moment cinétique aux masses en rotation my et ms.
Il sera également nécessaire de décrire le mouvement des masses mz et my se déplacant
verticalement.

Appelons 7_’;3, respectivement ﬂ, la force qu’exerce mg, respectivement my, sur les cylindres
solidaires.

En choisissant €, entrant, la projection du théoreme du moment cinétique selon €, s’écrit

15+ 1Ty = (I + L)W,

ou w est I'accélération angulaire des deux cylindres (ces derniers sont supposés solidaires).
La deuxieme loi de Newton appliquée aux masses ms et my s’écrit

En projetant selon €, dirigé vers le bas, nous obtenons les équations
msg — T3 = ms3as et myg — T4 = MyQy .

Il convient maintenant de trouver la liaison entre le mouvement de rotation des cylindres
et le mouvement de translation des deux masses ms et my.

Lorsque les cylindres tournent a une vitesse angulaire w, les masses mg et m, descendent
avec les vitesses respectives
v3 =Tiw et vy = row.

Par conséquent,
as = le et ay = 7”2(,;).

En résumé, nous avons les équations

mTs+rTy = (I + L)w,

mzg — 13 = ma3ag,

mag — Ty = myay,
az = rw,
ays = Tow.

En éliminant T3, T}, a3 et a4, nous obtenons ’expression de 'accélération angulaire :

o (rimg + ramy)
w = 5 59-
(mq + mg)ri12 + (mg + my)re

6



Les accélérations verticales des deux masses mg et my4 sont alors données par

r1(rims + romy) ;
(my + m3)ri2 + (ma + my)r?

a3 =

et
ro(rims + romy)

(m1 + mg)T12 + (mz + m4)r22

ayq =

Quant aux tensions dans les fils, elles s’écrivent

r1(rims + romy)
my + mg)?"12 + (mz + m4)7“22
mar1? 4+ mare? + myry? — riromy

(mq + mg)ri? + (mg + my)ra?

T = mg(g—ag):mgg(1—<

= mag

et

ro(rims + romy)
my + mg)T12 + (mg + m4)r22

Ty = my(g—as) = myg(l — (

2 2 2
mir1” + maore” + mary” — rirems

(mq + mg)ri? + (mg + my)ra?

myg

Exercice 5

Nous allons exploiter le théoreme du moment cinétique pour étudier la dynamique de la
rotation de la toupie.

Nous allons supposer que le couple de freinage est mesuré par rapport au centre de la
toupie (axe de rotation). Par hypothese, ce couple, que nous allons noter M , est supposé
constant. Il s’oppose a la rotation de la toupie et conduit a une décélération de celle-ci :

M= 1.

Imaginons que la toupie tourne dans le sens des aiguilles d’'une montre (vecteur vitesse
angulaire &) et choisissons un repere dans le méme sens (J = ke, avec k > 0).

La projection de I’équation ci-dessus fournit alors

—M=1Iw.



Le signe traduit le fait que M s’oppose a .
Ainsi, 'accélération angulaire s’écrit

w = —— = constante.
I

On devine alors que la vitesse angulaire est de la forme

w(t) = wy — Tt :
ol wyp est une constante.
La constante wy correspond a la vitesse de rotation initiale de la toupie :

w(t=0s) =wp = 5027 = 314.159s*.

Nous savons que la toupie tombe apres 30 secondes car sa vitesse angulaire est devenue
négligeable (w = 0s™!). Ainsi,
M
W(tl =30 S) = Wy — Ttl
= 0.

Cette équation permet de déterminer le couple de freinage :

Twy 200-107%-107*- 1007

~9209-107*Nm.
f 30 o

M =

L’expression de la vitesse angulaire de la toupie,

M
¢,

w(t) =wo — 7

permet de deviner I'angle parcouru par la toupie au cours du temps :

M 2
0(t) = wot — ot

On en déduit le nombre de tours effectués par la toupie jusqu’a son arrét :

o(t 1 M
n(t1 =30 S) = ;;> = %<W(ﬂf1 - §t12>
1 ( ; th1> wot1
= —lw ) = —=
2\ ) 4
1007 - 30
- 750,
AT

Exercice 6
Comme le courant ne circule que pendant une seconde, il faut différencier deux cas.

Lorsque le moteur est en fonction (c’est-a-dire lorsque le courant circule), le rotor voit sa
vitesse angulaire augmenter. Le moment de force M est parallele et de méme signe que
la vitesse angulaire du rotor . Ainsi,

M = I,



ou M est le moment du couple. Ce moment est constant et non nul dans la premiere
seconde apres 'enclenchement (0 < ¢ < 1s). Ensuite (pour ¢ > 1s), il est nul. Il convient
donc de procéder en deux étapes.

Pour 0 <t < 1s, le moment du couple est non nul et provoque une accélération angulaire

w = — = constante.

1

La vitesse angulaire est alors donnée par

M
w(t) = Tt—i—wo,

olt wy = w(0) = 0s™! car le moteur est initialement immobile. L’angle parcouru par le

rotor a quant a lui pour expression

1M
t) = ——t
ou 'on va poser ¢y = ¢(0) =0.
On a donc en particulier,
2 1
w(ls) = 0= 205! et o(1s) = 501 10.

Pour ¢ > 1s, le moment du couple est nul. Il n’y a donc pas d’accélération angulaire et la
vitesse angulaire du rotor est constante :

w=0 = w(t)=w(ls)=uw; = constante.
L’angle parcouru par le rotor est ainsi donné par

o(t) =p(1s) +wi(t—15s).
Ainsi,
p(25) = 10 +20(2 — 1) = 30

et le nombre de tours correspondant est

2
n(2s) = gpé:) =4.77.

Exercice 7

Nous allons exploiter le lien entre moment de force et accélération angulaire. En choisissant
Z pointant dans le plan de la feuille (Z ®), nous pouvons écrire, par rapport a I'axe de
rotation,

M = —RF=—-kRw

1
= Ja= imRZOc.

Comme o = «a(t) = w(t), on obtient alors I’équation différentielle

o(t) = —Ti—l;w(t).

9



On devine que la vitesse angulaire w(t) solution de cette équation différentielle est une
fonction de type exponentielle. On va donc poser, dans le cas le plus général,

w(t) = AeP!,

ou A et B sont des constantes.
L’accélération angulaire s’écrit alors

aft) = w(t) = BAeP' = Bw(t).

On obtient alors que A = w(0) = wp et B = —2%.

L’évolution de la vitesse angulaire est ainsi donnée par

2k

w(t) = wpe mr",

Exercice 8

Nous allons appliquer les lois de la dynamique a 1’objet.

Objet : cet objet (sans le fil)

axe A Forces : poids, soutien, forces de torsion

g, 45 Les forces de torsion sont exercées par le fil au niveau

du contact avec 'objet. Elles sont de résultante nulle et
donnent lieu au couple de rappel M, appel -

0

Le CM étant au repos, nous ne considérons que la rota-
0—0 tion autour de I’axe défini par le fil vertical :

— =, —

MA - MA(mﬁ) + MA(S) + Mrappel - [UjA
——

Ymg N T
0 0 Opposé a €
Selon €, :
—CO=1wy =106

Pour déterminer la période d’oscillation, nous devons connaitre I’évolution temporelle de
'angle 6. Nous cherchons donc une fonction du temps 6(t) vérifiant I’équation

C

0(t) = —0(t).

Nous connaissons les fonctions ayant cette propriété : sin et cos. Pour rappel,

f(z) =sin(Qz) f'(x) =Qcos(Qz) f"(x) = —sin(Qz) = —Q*f(x)
f(x) =cos(Qz) f'(x) =—-Qsin(Qz) f'(z) = —-Q2cos(Qz) = —Q%g(z).

Posons donc

szgetdoan: %

La solution a notre équation est alors

6(t) = Asin(Qt) + B cos(Qt),

10



ou A et B sont des constantes données par les conditions initiales (I'angle et la vitesse
angulaire & un instant donné).

La période d’oscillation T est le plus petit réel strictement positif tel que
Ot +T)=06(t) Vt.
Pour notre solution,
Asin(Qt + QT) 4+ Bceos(Qt + QT') = Asin(Q2t) + Bcos(§t) Vi

et QT doit donc étre un multiple de 27 .
Le plus petit T positif est ainsi donné par

27 I
QT =2 T=—=2m\/|—.
T & O T c

En effet, plus le moment d’inertie I est grand, plus l'oscillation est lente. Et plus le fil est
rigide (C' grand), plus l'oscillation est rapide.

Exercice 9

On procede comme toujours : dessin, objet, forces. ..

On a a disposition les lois de la dynamique (translation et rotation autour d’un point fixe
ou du CM).

Considérer le cylindre.

T
Objet : cylindre

' Forces : poids, tension

mg
Newton :

m§’+f = mdcm

et selon €, : mg —T = ma.
€z Remarque : il n’y a pas d’accélération selon I’horizontale.

Ny

Rotation autour du CM :

MCM(mﬁ) + MCM(T) = Iom@om
—_—— ——
g

®
mg

et selon €, : RT = Icywewm -

Avec ICM = %mR2 y 2T = meCM .
Ecrire les équations de liaison.
Liaison : si, pendant At, le cylindre tourne autour du CM de Ay selon €, , son CM avance
selon €, de

Ay =+RAp.
Alors A A
— L 2Y m =F
0= A A = PR Ry = e Y
En dérivant,
a = ROJCM .

11



Résolvons le systéeme d’équation avec a = Rw :
cM

mg—T = mRwcm

2T = mRwcy .
Par addition apres amplification de la premiere équation par 2, on a
2mg = ImRwenm
et donc selon €, et selon €, respectivement :

29 29
3R 37

weM =

12



