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Série 06

Exercice 1. On fixe le repère suivant du plan, où le parallélogramme en gris est d’aire 2.

(0, 0)

(1, 0)

(0, 1)

Dans chacun des cas ci-dessous, déterminer l’aire orientée de la famille v1, v2 donnée :

a. v1 = (−4, 0), v2 = (0, 1) b. v1 = (2, 3), v2 = (0,−1) c. v1 = (1, 2), v2 = (2, 4).

On demande de raisonner à chaque fois de deux façons : d’abord en utilisant la formule avec le déterminant, puis en expliquant

à l’aide d’un dessin le lien géométrique entre le parallélogramme construit sur v1, v2 et celui construit sur la base canonique.

Solution: Notons les deux vecteurs de la base canonique de R2 par :

e1 = (1, 0) et e2 = (0, 1).

Le parallélogramme construit sur e1, e2 est orienté directement et d’aire 2. On a donc :

σ(e1, e2) = 2.

a. En appliquant la formule vue au cours on obtient :{
v1 = −4e1

v2 = e2
⇒ σ(v1, v2) =

∣∣∣∣−4 0

0 1

∣∣∣∣σ(e1, e2) = −4 = −8.

Plaçons maintenant v1 et v2 dans le plan et construisons (en rouge) le parallélogramme correspondant :

Il est construit en empilant 4 parallélogramme gris : il est donc d’aire 8. Par ailleurs, il est orienté indirectement (car le sens

de rotation de v1 vers v2 est le sens des aiguilles d’une montre), si bien que l’aire orientée de v1, v2 est égale à −8.



b. Appliquons une nouvelle fois la formule faisant le lien entre aire orientée et déterminant :{
v1 = 2e1 + 3e2

v2 = −e2
⇒ σ(v1, v2) =

∣∣∣∣2 0

3 −1

∣∣∣∣σ(e1, e2) = −2 = −4.

Plaçons maintenant v1 et v2 dans le plan et construisons le parallélogramme correspondant :

On a aussi dessiné le parallélogramme obtenu en ”glissant” v1 par un multiple scalaire de v2 jusqu’à v3 = v1 + 3v2. On sait

alors qu’un tel ”glissement” ne modifie pas l’aire orientée. Autrement dit :

σ(v1, v2) = σ(v1 + 3v2, v2) = σ(v3, v2).

Comme le parallélogramme construit sur v3, v2 est obtenu en empilant 2 parallélogramme gris, on voit qu’il est d’aire 4. Par

ailleurs, il est orienté indirectement (car le sens de rotation de v3 vers v2 est le sens des aiguilles d’une montre), si bien que

l’aire orientée de v3, v2, et donc aussi celle de v1, v2, est égale à −4.

c. La formule faisant le lien entre aire orientée et déterminant donne ici :{
v1 = e1 + 2e2

v2 = 2e1 + 4e2
⇒ σ(v1, v2) =

∣∣∣∣1 2

2 4

∣∣∣∣σ(e1, e2) = 0.

Géométriquement, (0, 0), v1 et v2 sont alignés (car v1 et v2 = 2v1 sont proportionnels), si bien que le parallélogramme construit

sur v1, v2 est aplati : il est d’aire nulle.

Exercice 2. On donne les deux bases suivantes de R2 :

B = (5, 3), (4, 7) et B′ = (14, 13), (1,−4).

a. Déterminer la matrice de changement de base P de B à B′.

b. Reproduire (approximativement) le dessin ci-dessous sur votre feuille puis placer B′ dessus.



(0, 0)

(5, 3)

(4, 7)

c. Calculer det(P ) et interpréter géométriquement le résultat.

Solution:

a. Notons :

v1 = (5, 3), v2 = (4, 7)︸ ︷︷ ︸
B

et v′1 = (14, 13), v′2 = (1,−4)︸ ︷︷ ︸
B′

.

Pour faire le lien entre B et B′, passons de manière intermédiaire par la base canonique :

Bcan = (1, 0)︸ ︷︷ ︸
e1

, (0, 1)︸ ︷︷ ︸
e2

On peut alors écrire, en notation matricielle :

(
v1 v2

)
=

(
e1 e2

)(5 4

3 7

)
et

(
v′1 v′2

)
=

(
e1 e2

)(14 1

13 −4

)
d’où l’on déduit :

(
v′1 v′2

)
=

(
v1 v2

)(5 4

3 7

)−1 (
14 1

13 −4

)
= 1

23

(
v1 v2

)( 7 −4

−3 5

)(
14 1

13 −4

)
=

(
v1 v2

)(2 1

1 −1

)
︸ ︷︷ ︸

P

.

b. La matrice P trouvée au a. nous montre qu’on a les décompositions suivantes (que l’on peut bien sûr vérifier directement) :{
v′1 = 2v1 + v2

v′2 = v1 − v2

Pour placer B′ sur le dessin, on peut alors imaginer la ”grille” associée à B. Sur celle-ci, on trouve v′1 en faisant deux pas de

type v1 et un de type v2, puis on trouve v′2 en faisant un pas de type v1 et en ”reculant” d’un pas de type v2.



c. On trouve :

det(P ) =

∣∣∣∣2 1

1 −1

∣∣∣∣ = −3.

On sait alors que :

(
v′1 v′2

)
=

(
v1 v2

)
P ⇒ σ(v′1, v

′
2) = det(P )σ(v1, v2) = −3σ(v1, v2).

Interprétation géométrique : le parallélogramme construit sur v′1, v
′
2 (en rouge ci-dessus) est 3 fois plus étendu que celui

construit sur v1, v2 (en gris), et orienté dans l’autre sens (le gris est orienté indirectement, le rouge directement).

Exercice 3. Dans R2, on donne les éléments suivants :

v1 = (4,−1), v2 = (0, 5), v3 = (1, 2).

a. Déterminer une équation de la droite de R2 contenant v1 et v2 et la représenter sur un dessin.

b. Mêmes questions pour la droite contenant v3 et dirigée par v2.

c. Identifier l’intersection des droites introduites en a. et b.

Solution:

a. Appelons V la droite de R2 contenant v1 et v2 (en orange sur la figure ci-dessous).

La droite vectorielle associée à V (en pointillés ci-dessus) est dirigée par :

v1 − v2 = (4,−1)− (0, 5) = (4,−6) = 2(2,−3).

Elle admet pour équation :

3x+ 2y = 0.

Rappelons deux méthodes pour trouver cette équation. Tout d’abord, on peut exprimer la nullité d’un déterminant :∣∣∣∣x 2

y −3

∣∣∣∣ = −3x− 2y = 0︸ ︷︷ ︸
(x,y) et (2,−3) proportionnels

⇔ 3x+ 2y = 0.



Une autre manière consiste à créer une équation linéaire homogène dont (2,−3) est solution. Pour obtenir une équation de V

il n’y a plus qu’à évaluer 3x+ 2y en v1 ou en v2. On trouve :

V : 3x+ 2y = 10.

b. Appelons W la droite contenant v3 et dirigée par v2 (en bleu sur la figure ci-dessous). La droite vectorielle associée à W est

Vect(v2), qui a pour équation x = 0 (en pointillés sur la figure ci-dessous). On en déduit alors :

W : x = 1.

c. L’intersection de V et W est l’ensemble des solutions du système :{
3x+ 2y = 10

x = 1
⇔

x = 1

y =
7

2

On voit donc qu’il n’y a qu’un seul élément dans cette intersection, à savoir (1, 7
2 ). Géométriquement, cela signifie que les

deux droites étudiées ci-dessus s’intersectent en un unique point du plan :



Exercice 4. Combien de sous-ensembles de R2 distincts sont décrits ci-dessous ?

(5,−3) + Vect((2,−1)) , 2x+ 4y + 2 = 0, (25,−13) + Vect((−
√
3,

√
3
2 ))

Solution: Les trois sous-ensembles donnés sont des droites affines de R2 (celle du milieu est déterminée par une équation, et les deux

autres par une description paramétrique). Nous allons voir qu’il s’agit en fait de la même droite, décrite de trois façons différentes.

Montrons par exemple que les deux premières droites décrites sont les mêmes. Elles ont en tout cas la même droite vectorielle

associée, à savoir celle d’équation 2x+ 4y = 0, puisque :

2 · 2 + 4 · (−1) = 0.

Géométriquement, cela signifie que ces deux droites sont parallèles. De plus, elles ont un élément en commun, à savoir (5,−3),

puisque :

2 · 5 + 4 · (−3) + 2 = 0.

On peut donc bien conclure qu’elles sont égales. En raisonnant de manière analogue, on montre que la deuxième et la troisième

droites sont en fait les mêmes, ce qui achève de montrer le résultat voulu.

Exercice 5. Dans chacun des cas suivants, donner une équation du plan V de R3 décrit par les conditions données :

a. (3,−1, 2), (4,−1,−1) et (2, 0, 2) appartiennent à V .

b. V contient (3,−2,−7) et est parallèle au plan d’équation 2x− 3z + 5 = 0.

c. V contient (2,−1, 3) ainsi que la droite d’équations x−1
3 = y−2

2 = z+3
−2 .

Solution:

a. Figure d’étude :



Le plan vectoriel W associé à V est contient :

(4,−1,−1)− (3,−1, 2) = ((1, 0,−3)) et (2, 0, 2)− (3,−1, 2) = (−1, 1, 0).

Il admet donc pour équation :

W :

∣∣∣∣∣∣
x 1 −1

y 0 1

z −3 0

∣∣∣∣∣∣ =
∣∣∣∣ 0 1

−3 0

∣∣∣∣x−
∣∣∣∣ 1 −1

−3 0

∣∣∣∣ y + ∣∣∣∣1 −1

0 1

∣∣∣∣ z = 3x+ 3y + z = 0.

Pour obtenir une équation de V il n’y a plus qu’à évaluer 3x+3y+ z en (3,−1, 2), (4,−1,−1) ou (2, 0, 2) (on obtient la même

valeur). On trouve :

V : 3x+ 3y + z = 8.

b. Figure d’étude :

Pour obtenir une équation de V , il faut juste changer la constante dans celle de W : 2x − 3z + 5 = 0, pour que le triplet

(3,−2,−7) soit solution. On trouve :

V : 2x− 3z = 27.

c. La droite d’équations x−1
3 = y−2

2 = z+3
−2 contient les triplets suivants (solutions particulières des équations) :

(1, 2,−3), (4, 4,−5), (7, 6,−7) . . .

Le plan V peut donc être caractérisé par exemple comme l’unique plan contenant les triplets suivants :

(2,−1, 3), (1, 2,−3), (4, 4,−5).

On peut alors raisonner comme au a. pour en trouver une équation. Le plan vectoriel W associé à V contient :

(2,−1, 3)− (1, 2,−3) = (1,−3, 6) et (4, 4,−5)− (1, 2,−3) = (3, 2,−2).

Il admet donc pour équation :



W :

∣∣∣∣∣∣
x 1 3

y −3 2

z 6 −2

∣∣∣∣∣∣ =
∣∣∣∣−3 2

6 −2

∣∣∣∣x−
∣∣∣∣1 3

6 −2

∣∣∣∣ y + ∣∣∣∣ 1 3

−3 2

∣∣∣∣ z = −6x+ 20y + 11z = 0.

Pour obtenir une équation de V il n’y a plus qu’à évaluer −6x + 20y + 11z en (2,−1, 3), (1, 2,−3) ou (4, 4,−5) (on obtient

la même valeur). On trouve :

V : −6x+ 20y + 11z = 1.

Exercice 6. Dans R3 on donne les trois plans suivants :

U : x+ y + z = 3 , V : x+ 2y + 3z = 6 , W : 2x+ y = 7.

a. Donner une description paramétrique de U ∩ V .

b. Représenter sur un dessin les plans U et V ainsi que leur intersection.

c. Identifier l’intersection U ∩ V ∩W puis placer W sur votre dessin.

Solution:

a. Pour identifier l’intersection U ∩ V on résout le système linéaire :{
x+ y + z = 3

x+ 2y + 3z = 6
⇔

{
x+ y + z = 3

y + 2z = 3
⇔

{
x+ (3− 2z) + z = 3

y = 3− 2z
⇔

{
x = z

y = 3− 2z.

Par conséquent :

(x, y, z) ∈ U ∩ V ⇔ (x, y, z) = (z, 3− 2z, z) ⇔ (x, y, z) = (0, 3, 0) + z(1,−2, 1).

Ceci correspond bien à une description paramétrique de U ∩ V (où z est le paramètre) :

U ∩ V = {(0, 3, 0) + z(1,−2, 1) | z ∈ R}.



b. D’après le a., on sait que U ∩ V est une droite de R3 : c’est celle contenant (0, 3, 0) et dirigée par (1,−2, 1). On obtient le

dessin suivant (où l’on représente aussi la droite vectorielle associée à U ∩ V ) :

c. Pour identifier l’intersection U ∩ V ∩W on peut résoudre le système linéaire :
x+ y + z = 3

x+ 2y + 3z = 6

2x+ y = 7

⇔


x = z

y = 3− 2z

2z + (3− 2z) = 7

⇔


x = z

y = 3− 2z

3 = 7

(à la première étape, on a directement intégré le calcul de U ∩V effectué au a.). Le dernier système n’ayant visiblement aucune

solution (aucun choix de x, y et z ne peut permettre de satisfaire la dernière équation), on peut en conclure que l’intersection

recherchée est vide. Géométriquement, cela peut s’interpréter en disant que la droite U ∩ V est parallèle au plan W .



Les trois plans U, V et W sont un peu comme les trois faces d’un Toblerone !

Exercice 7. Dans R3, on donne le système suivant, avec second membre indéterminé :
x− 4y + 7z = α

3x+ y + 8z = β

2x− 8y + 14z = γ.

En discutant selon la valeur des paramètres réels α, β et γ, résoudre ce système et interpréter géométriquement la résolution.

Solution: Commençons par remarquer que :

2x− 8y + 14z = 2(x− 4y + 7z).

On va alors distinguer deux cas. Tout d’abord, supposons que :

γ ̸= 2α.

Dans ce cas, la première et la troisième équation du système donné sont incompatibles, si bien que l’ensemble des solutions est vide.

Géométriquement, ces deux équations définissent deux plans parallèles représenté en gris sur la figure ci-dessous :

Le plan en rouge, défini par la deuxième équation, intersecte chacun des deux plans gris séparément selon deux droites qui sont

parallèles. Il n’y a donc pas d’éléments dans l’intersection ”globale” de ces trois plans : l’ensemble des solutions est vide. Passons

maintenant au cas où :

γ = 2α.

Dans ce cas, on obtient :
x− 4y + 7z = α

3x+ y + 8z = β

2x− 8y + 14z = 2α

⇔

{
x− 4y + 7z = α

3x+ y + 8z = β
⇔

{
x− 4y + 7z = α

13y − 13z = β − 3α
⇔


x = −3z +

α+ 4β

13

y = z +
β − 3α

13

Autrement dit, un triplet (x, y, z) est solution du sytème proposé si et seulement s’il est de la forme :

(x, y, z) = (−3z +
α+ 4β

13
, z +

β − 3α

13
, z) = (

α+ 4β

13
,
β − 3α

13
, 0) + z(−3, 1, 1).

L’ensemble des solutions du système proposé est donc dans ce cas la droite contenant le triplet (α+4β
13 , β−3α

13 , 0) et dirigé par

(−3, 1, 1). Géométriquement, on a le dessin suivant :



Exercice 8. Si c’est possible, donner les équations d’une droite V de R3 telle que :

a. (−3,−2, 1) appartient à V .

b. Même condition qu’au a. et, en supplément, V est parallèle au plan d’équation 3x− 5y + 4z = 12.

c. Mêmes conditions qu’au b. et, en supplément V possède un élément en commun avec la droite d’équations :

x− 6

2
=

y + 2

−1
=

z

3
.

Solution:

a. Il y a beaucoup de possibilités. Les droites V qui fonctionnent sont toutes celles du type :

V = (−3,−2, 1) + Vect(v1) où v1 ∈ R3, v1 ̸= (0, 0, 0).



Voici quelques exemples :

x+ 3 = y + 2 = z − 1︸ ︷︷ ︸
v1=(1,1,1)

,
x+ 3

2
=

y + 2

3
, z = 1︸ ︷︷ ︸

v1=(2,3,0)

, x = −3, y = −2︸ ︷︷ ︸
v1=(0,0,1)

, . . .

b. Avec les notations du a., il faut maintenant que v1 soit directeur du plan d’équation 3x− 5y + 4z = 12 c’est-à-dire que :

V = (−3,−2, 1) + Vect(v1) où v1 = (α, β, γ) tel que 3α− 5β + 4γ = 0 et v1 ̸= (0, 0, 0).

Il y a encore beaucoup de possibilités. Par exemple :

x+ 3

5
=

y + 2

3
, z = 1︸ ︷︷ ︸

v1=(5,3,0)

, x = −3,
y + 2

4
=

z − 1

5︸ ︷︷ ︸
v1=(0,4,5)

,
x+ 3

2
=

y + 2

2
= z − 1︸ ︷︷ ︸

v1=(2,2,1)

, . . .

Géométriquement, on voit que toutes les droites trouvées ici sont contenues dans le plan :

W : 3x− 5y + 4z = 5

(obtenu en ”décalant” 3x− 5y + 4z = 12 pour ”le faire passer” par (−3,−2, 1)).

c. La condition supplémentaire impose à V de contenir le point d’intersection du plan W (introduit au b.) et de la droite

d’équations :

x− 6

2
=

y + 2

−1
=

z

3
.

Pour identifier ce point, résolvons le système :
3x− 5y + 4z = 5

x− 6

2
=

y + 2

−1
y + 2

−1
=

z

3

⇔


3x− 5y + 4z = 5

x+ 2y = 2

3y + z = −6

⇔


3(2− 2y)− 5y + 4(−6− 3y) = 5

x = 2− 2y

z = −6− 3y

⇔


y = −1

x = 4

z = −3.

Il y a donc une unique droite solution du problème posé ici, à savoir celle contenant (−3,−2, 1) et (4,−1,−3). Avec les

notations du a. on prend donc :

v1 = (4,−1,−3)− (−3,−2, 1) = (7, 1,−4)

si bien que V admet pour équations :
x+ 3

7
= y + 2 =

z − 1

−4
.




