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Exercice 1. Sur une feuille de papier, reproduire (approximativement) la figure suivante :

(0, 0)

(1, 0)

(0, 1)

a. Placer (3,−1) sur le dessin. Calculer ensuite − 1
2 (3,−1) et donner une construction géométrique du résultat.

b. Placer (2, 1) et (−1,−1) sur le dessin. Calculer (2, 1) + (−1,−1) et donner une construction géométrique du résultat.

c. Représenter sur le dessin la droite vectorielle Vect((3, 2)) et en donner une équation.

Solution:

a. Pour placer (3,−1), on peut imaginer la ”grille” associée au repère du plan qui nous a été donné.

En partant de (0, 0), on doit alors faire trois ”pas de type (1, 0)” et un ”pas de type (0,−1)” (ce qui correspond à un ”pas de

type (0, 1)” mais en arrière). Effectuons maintenant le calcul demandé. On trouve :

− 1
2 (3,−1) = (− 3

2 ,
1
2 ).

Le point correspondant sur le dessin peut être obtenu géométriquement en prenant le milieu du segment joignant (0, 0) à

(3,−1) (qui correspond à ( 32 ,−
1
2 )) puis en le ”retournant” autour de (0, 0).



b. A nouveau, pour placer (2, 1) et (−1,−1) sur la figure on peut imaginer la ”grille” associée au repère du plan qui nous été

donné. On obtient :

Effectuons maintenant le calcul demandé. On trouve :

(2, 1) + (−1,−1) = (2− 1, 1− 1) = (1, 0)

Géométriquement, cette égalité correspond au fait qu’en reliant (0, 0), (2, 1), (1, 0), (−1,−1) (dans cet ordre) on obtient un

parallélogramme :

c. Appelons V la droite vectorielle proposée :

V = Vect((3, 2)) = {t(3, 2) | t ∈ R}.

Voici quelques éléments de R2 appartenant à V :

(0, 0)︸ ︷︷ ︸
0(3,2)

, (3, 2)︸ ︷︷ ︸
1(3,2)

, (6, 4)︸ ︷︷ ︸
2(3,2)

, (−3,−2)︸ ︷︷ ︸
−(3,2)

, (−3

2
,−1)︸ ︷︷ ︸

− 1
2 (3,2)

, . . .

On obtient une représentation géométrique de V en reliant les différents points ci-dessus :



Enfin, la droite vectorielle V a pour équation :

V :

∣∣∣∣x 3

y 2

∣∣∣∣ = 0 ou encore 2x = 3y.

Exercice 2. Dans R2, on donne la droite vectorielle :

V : 5x+ 3y = 0.

a. Déterminer une base B de V .

b. Soit v = (x, y) ∈ R2. Si v appartient à V , calculer [v]B en fonction de x uniquement, puis en fonction de y uniquement.

Solution:

a. Tout couple non nul v1 solution de l’équation 5x+ 3y = 0 donne une base de V . On peut par exemple prendre :

B = (3,−5)︸ ︷︷ ︸
v1

.

b. Si v appartient à V alors il est mutiple scalaire de v1, c’est-à-dire :

v = tv1 ⇔ (x, y) = t(3,−5) = (3t,−5t)

où t est la coordonnée de v dans la base B de V . En fonction de x uniquement, on trouve alors :

[v]B = t =
x

3︸ ︷︷ ︸
car x=3t

.

En fonction de y uniquement, on trouve :

[v]B = t = −y

5︸ ︷︷ ︸
car y=−5t

.



Exercice 3. Dans R2, on donne la famille :

B = (3, 2), (4, 1).

a. Montrer que B est une base de R2 et déterminer la matrice de changement de base de Bcan à B.
b. Quel élément de R2 a pour coordonnées

(
3
−1

)
dans la base B ?

c. Pour tout v = (x, y) ∈ R2, calculer [v]B et écrire la décomposition de v dans B.
d. Faire apparaitre géométriquement la décomposition trouvée au c. sur la figure ci-dessous.

(0, 0)

(4, 1)

(3, 2)

v

Solution:

a. (3, 2) et (4, 1) n’étant pas proportionnels, B est une base de R2. La matrice de changement de base de Bcan à B est :

P =

(
3 4

2 1

)
.

Rappelons que cette matrice contient dans ses colonnes les coordonnées dans Bcan des éléments de B, à savoir :

[(3, 2)]Bcan
=

(
3

2

)
et [(4, 1)]Bcan

=

(
4

1

)
.

b. Par définition même des coordonnées dans une base, c’est l’élément :

3(3, 2)− (4, 1) = (9, 6)− (4, 1) = (5, 5)

qui a pour coordonnées
(

3
−1

)
dans la base B.

c. La matrice de changement de coordonnées Q de Bcan à B est la matrice inverse de P :

Q =

(
3 4

2 1

)−1

=
1

−5

(
1 −4

−2 3

)
.

En multipliant les coordonnées canoniques de v par cette matrice on obtient les coordonnées de v en base B (formule de

conversion) :

[v]B = Q[v]Bcan
=

1

−5

(
1 −4

−2 3

)(
x

y

)
=

1

5

(
−x+ 4y

2x− 3y

)
.

La décomposition demandée est donc :

v =
1

5
(−x+ 4y)(3, 2) +

1

5
(2x− 3y)(4, 1).

d. Géométriquement, la décomposition trouvée en c. correspond à faire apparaitre un parallélogramme dont une diagonale est

le segment joignant (0, 0) à v et dont deux des côtés s’appuient sur les droites vectorielles engendrées par (3, 2) et (4, 1) :

(0, 0)

(4, 1)

(3, 2)
v

1
5 (−x+ 4y)(3, 2)

1
5 (2x− 3y)(4, 1)



Exercice 4. On donne les deux bases suivantes de R2 :

B = (0, 2), (1,−3) et B′ = (−1, 1), (2, 1).

a. Déterminer la matrice de changement de base de B à B′.

b. Pour tout élément v de R2 exprimer [v]B′ en fonction de [v]B.

c. Contrôler la relation écrite au b. sur quelques exemples de votre choix.

Solution:

a. Notons :

v1 = (0, 2), v2 = (1,−3)︸ ︷︷ ︸
B

et v′1 = (−1, 1), v′2 = (2, 1)︸ ︷︷ ︸
B′

.

Donnons plusieurs méthodes pour trouver la matrice de changement de base P de B à B′. Dans la première, cherchons

directement à décomposer les éléments de B′ sur B (la présence du 0 dans v1 rend les calculs assez simples) :{
v′1 = (−1, 1) = −(0, 2)− (1,−3) = −v1 − v2

v′2 = (2, 1) = 7
2 (0, 2) + 2(1,−3) = 7

2v1 + 2v2

On en déduit la matrice P , via ses deux colonnes :

[v′1]B =

(
−1

−1

)
et [v′2]B =

(
7
2

2

)
⇒ P =

(
−1 7

2

−1 2

)
.

Passons à une deuxième méthode. Pour faire lien entre B et B′, passons de manière intermédiaire par la base canonique :

Bcan = (1, 0)︸ ︷︷ ︸
e1

, (0, 1)︸ ︷︷ ︸
e2

On peut alors écrire, en notation matricielle :

(
v1 v2

)
=

(
e1 e2

)(0 1

2 −3

)
et

(
v′1 v′2

)
=

(
e1 e2

)(−1 2

1 1

)
d’où l’on déduit :

(
v′1 v′2

)
=

(
v1 v2

)(0 1

2 −3

)−1 (−1 2

1 1

)
=

(
v1 v2

)( 3
2

1
2

1 0

)(
−1 2

1 1

)
=

(
v1 v2

)(−1 7
2

−1 2

)
︸ ︷︷ ︸

P

.

On retrouve bien sûr la même matrice P . Enfin, montrons comment obtenir le résultat en raisonnant sur les coordonnées.

Pour cela, donnons-nous un élément v = (x, y) de R2 et calculons ses coordonnées en base B et en base B′. On trouve :

[v]B =

(
0 1

2 −3

)−1 (
x

y

)
et [v]B′ =

(
−1 2

1 1

)−1 (
x

y

)
.

On sait alors que la matrice de changement de coordonnées de B à B′ est P−1, ou, pour le dire autrement, que P est la

matrice de changement de coordonnées de B′ à B. Autrement dit, P est la matrice vérifiant :

[v]B′ = P−1[v]B ⇔ [v]B = P [v]B′ .

Au vu des formules ci-dessus on obtient :

P =

(
0 1

2 −3

)−1 (−1 2

1 1

)
=

(
−1 7

2

−1 2

)
.

b. La matrice de changement de coordonnées de B à B′ est l’inverse de P :

P−1 =

(
−1 7

2

−1 2

)
= 2

3

(
2 − 7

2

1 −1

)
= 1

3

(
4 −7

2 −2

)
.

On en déduit la relation :

[v]B′ = 1
3

(
4 −7

2 −2

)
[v]B.



c. Prenons par exemple :

v = v1 = (0, 2) , et donc [v]B =

(
1

0

)
.

La relation trouvée au b. devient alors :

[v]B′ = 1
3

(
4 −7

2 −2

)(
1

0

)
= 1

3

(
4

2

)
.

Pour contrôler que ce sont bien les bonnes coordonnées, calculons la combinaison linéaire :

4
3v

′
1 +

2
3v

′
2 = 4

3 (−1, 1) + 2
3 (2, 1) = (− 4

3 ,
4
3 ) + ( 43 ,

2
3 ) = (0, 2) = v.

Comme on trouve v, on voit que la formule fonctionne bien sur cet exemple. Pour un deuxième exemple, prenons :

v = 4v1 + v2 = (1, 5) , et donc [v]B =

(
4

1

)
.

La relation trouvée au b. devient alors :

[v]B′ = 1
3

(
4 −7

2 −2

)(
4

1

)
=

(
3

2

)
.

Pour contrôler que ce sont bien les bonnes coordonnées, calculons la combinaison linéaire :

3v′1 + 2v′2 = 3(−1, 1) + 2(2, 1) = (−3, 3) + (4, 2) = (1, 5) = v.

Exercice 5. On considère trois éléments v1, v2 et v3 de R2 représentés dans le plan comme ci-dessous :

(0, 0)

v1 v2

v3

Les familles B = v1,
1
2v2 et B′ = v2, v3 sont alors des bases de R2 et on note P la matrice de changement de base de B à B′ :

P =

(
α β

γ δ

)
.

Pour chacune des affirmations suivantes, dire en justifiant votre réponse si elle est vraie ou fausse.

a. γ = 0 b. β < 0 c. δ < 1.

Solution: Par définition même de P , on a les décompositions suivantes :{
v2 = αv1 +

γ
2 v2

v3 = βv1 +
δ
2v2 .

a. C’est faux. La première des deux relations ci-dessus donne directement α = 0 et γ = 2.

b. C’est vrai. En effet, faisons apparaitre géométriquement la décomposition de v3 comme combinaison linéaire de v1 et v2 :



(0, 0)

v1 v2

v3

δ
2v2

βv1

Il apparait ici clairement que β < 0 ((0, 0) est situé entre v1 et βv1.

c. C’est faux. Reprenons le dessin ci-dessus et faisons apparaitre 1
2v2 (situé au milieu entre (0, 0) et v2) :

(0, 0)

v1 v2

v3

δ
2v2

βv1

1
2v2

Il apparait ici clairement que δ > 1 ( δ2v2 est situé entre 1
2v2 et v2).

Exercice 6. Dans chacun des cas suivants, déterminer la base B de R2 vérifiant la condition donnée :

a. la matrice de changement de base de B à Bcan est

(
−1 2

1 3

)
.

b. pour tout v = (x, y) ∈ R2, on a [v]B =

(
x− 5y

−2x+ 9y

)
.

c. la matrice de changement de coordonnées de B à la base B′ = (7, 1), (4,−5) de R2 est

(
1 −1

2 1

)
.

Solution:

a. Sous la condition donnée, on sait que la matrice de changement de base de Bcan à B est :(
−1 2

1 3

)−1

= 1
5

(
−3 2

1 1

)
.

On en déduit que :

B = (− 3
5 ,

1
5 ), (

2
5 ,

1
5 ).

b. En écrivant :

[v]B =

(
x− 5y

−2x+ 9y

)
=

(
1 −5

−2 9

)(
x

y

)
on voit que la matrice de changement de coordonnées de Bcan à B est égale à :(

1 −5

−2 9

)
.



En l’inversant, on trouve la matrice de changement de base de Bcan à B :(
1 −5

−2 9

)−1

=

(
−9 −5

−2 −1

)
.

On en déduit :

B = (−9,−2), (−5,−1).

c. La matrice de changement de coordonnées de B à la base B′ n’est autre que la matrice de changement de base de B′ à la base

B. Par conséquent, les colonnes de la matrice : (
1 −1

2 1

)
sont les coordonnées dans B′ des éléments de B. On en déduit que :

B = (15,−9)︸ ︷︷ ︸
(7,1)+2(4,−5)

, (−3,−6)︸ ︷︷ ︸
−(7,1)+(4,−5)

.

Exercice 7. Donner un exemple de base B de R2 qui vérifie :

a. que l’on a l’égalité [(0, 1)]B =
(

1
−1

)
.

b. en plus de la condition du a., que la première coordonnée de (2, 1) en base B est nulle.

c. en plus des conditions du a. et du b., que les deux coordonnées de (1, 1) en base B sont égales.

Solution: Considérons une base de R2 :

B = (λ, µ), (ρ, σ) (avec

∣∣∣∣λ ρ

µ σ

∣∣∣∣ ̸= 0).

a. L’égalité [(0, 1)]B =
(

1
−1

)
est satisfaite si et seulement si :

(λ, µ)− (ρ, σ) = (0, 1) c’est-à-dire (λ, µ) = (ρ, σ) + (0, 1) = (ρ, σ + 1).

En résumé, pour construire une base qui répond à la question, on doit donc choisir 4 réels λ, µ, ρ, σ vérifiant :

λ = ρ, µ = σ + 1 et

∣∣∣∣ ρ ρ

σ + 1 σ

∣∣∣∣ = −ρ ̸= 0.

Voici quelques exemples :

(1, 1), (1, 0) (1, 2), (1, 1) (1, 0), (1,−1) (2,−4), (2,−5) . . .

Ce n’est pas demandé, mais cherchons maintenant à visualiser le travail que l’on vient d’effectuer sur un dessin. Commençons

pour cela par nous donner une représentation géométrique de R2 via le choix d’un repère du plan.

Plaçons alors sur le dessin une base du type trouvé ci-dessus.



Cela fait apparaitre deux nouveaux axes (le premier étant la droite vectorielle engendrée par (ρ, σ + 1) et le deuxième celle

engendrée par (ρ, σ)) que l’on peut utiliser à leur tour pour définir des coordonnées sur le plan. En décomposant (0, 1) sur

ces deux axes, on voit maintenant apparaitre les coordonnées [(0, 1)]B =
(

1
−1

)
qui correspondent à l’égalité :

(0, 1) = (ρ, σ + 1)− (ρ, σ).

b. La nouvelle condition signifie exactement que (2, 1) est un multiple scalaire de (ρ, σ). Autrement dit, aux conditions identifiées

au a., on doit maintenant ajouter que :

ρ = 2σ.

Les bases solutions du problème posé ont donc la forme :

B = (2σ, σ + 1), (2σ, σ) (avec σ ̸= 0).

Voici quelques exemples :

(2, 2), (2, 1) (−2, 0), (−2,−1) (6, 4), (6, 3) (−10,−4), (−10,−5) . . .

A nouveau, cherchons à visualiser le travail effectué. Pour cela, plaçons sur le dessin une base du type trouvé ci-dessus.

Au vu des décompositions suivantes (qui se vérifient bien sur le dessin) :

(1, 0) = (2σ, σ + 1)− (2σ, σ), (2, 1) = 0(2σ, σ + 1) + 1
σ (2σ, σ)

on voit que les conditions requises sont remplies : dans la base B, (0, 1) a pour coordonnées
(

1
−1

)
, et la deuxième coordonnée

de (2, 1) est nulle (le point correspondant se trouve sur le deuxième axe de coordonnées).

c. On a vu que, sous les conditions du a. et du b., la matrice de changement de base de Bcan à B est du type :

P =

(
2σ 2σ

σ + 1 σ

)
(avec σ ̸= 0).

Exprimons alors les coordonnées de (1, 1) en base B :

[(1, 1)]B = P−1

(
1

1

)
= − 1

2σ

(
σ −2σ

−σ − 1 2σ

)(
1

1

)
=

(
1
2

− 1
2 + 1

2σ

)
.



Les deux coordonnées de (1, 1) en base B sont donc égales si et seulement si :

1
2 = − 1

2 + 1
2σ c’est-à-dire σ = 1

2 .

On voit donc qu’il existe une seule base de R2 satisfaisant les conditions données, à savoir :

B = (1, 3
2 ), (1,

1
2 ).

Pour terminer, cherchons à nouveau une visualisation du problème que l’on vient de résoudre. Pour cela, plaçons la base

trouvée sur le dessin.

Au vu des décompositions suivantes (qui se vérifient bien sur le dessin) :

(1, 0) = (1, 3
2 )− (1, 1

2 ), (2, 1) = 0(1, 3
2 ) + 2(1, 1

2 ), (1, 1) = 1
2 (1,

3
2 ) +

1
2 (1,

1
2 )

on voit que les conditions requises sont remplies : dans la base B, (0, 1) a pour coordonnées
(

1
−1

)
, la deuxième coordonnée de

(2, 1) est nulle (le point correspondant se trouve sur le deuxième axe de coordonnées), et les deux coordonnées de (1, 1) sont

égales.

Exercice 8. Déterminer la valeur du réel α sachant que l’on a l’inclusion :

Vect((1, α+ 4), (α, 5α+ 6)) ⊂ Vect((α− 1, α2 + 5)).

Solution: Observons pour commencer que, pour tout réel α, le sous-espace vectoriel :

Vect((α− 1, α2 + 5))

est une droite vectorielle, car :

(α− 1, α2 + 5︸ ︷︷ ︸
>0

) ̸= (0, 0).

On en déduit que, si α vérifie la condition donnée, alors :

Vect((1, α+ 4), (α, 5α+ 6)) ̸= R2

car R2 n’est contenu dans aucune droite vectorielle. On en déduit que, nécessairement :∣∣∣∣ 1 α

α+ 4 5α+ 6

∣∣∣∣︸ ︷︷ ︸
5α+6−α(α+4)

= 0 ⇔ α2 − α− 6 = 0 ⇔ α ∈ {−2, 3}.

Pour ces deux valeurs de α, voyons maintenant si l’inclusion étudiée est vérifiée ou non. Pour α = −2, cette inclusion s’écrit :

Vect((1,−2 + 4), (−2, 5 · (−2) + 6))︸ ︷︷ ︸
Vect((1,2))

⊂ Vect((−2− 1, (−2)2 + 5))︸ ︷︷ ︸
Vect((1,−3))

.

Elle est donc fausse, car (1, 2) n’est pas multiple scalaire de (1,−3). Pour α = 3, cette inclusion s’écrit :

Vect((1, 3 + 4), (3, 5 · 3 + 6))︸ ︷︷ ︸
Vect((1,7))

⊂ Vect((3− 1, 32 + 5))︸ ︷︷ ︸
Vect((1,7))

.

Elle est donc vraie. En résumé, il y a un seul réel solution du problème posé, à savoir α = 3.


