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Série 3

Exercice 1. Déterminer le rang la matrice A ci-dessous et en écrire une décomposition colonne-ligne minimale :

A =

 2 −3 1

−14 21 −7
10 −15 5

 .

Solution: La matrice A est non nulle. De plus, ses trois colonnes sont deux-à-deux proportionnelles. Par exemple, on peut écrire

les deux premières colonnes comme multiples scalaires de la troisième : 2

−14
10

 = 2

 1

−7
5

 ,

 −321
−15

 = −3

 1

−7
5

 .

On en déduit que A est de rang 1. Les relations de proportionnalité écrites ci-dessus permettent alors directement d’écrire :

A =

 2 −3 1

−14 21 −7
10 −15 5

 =

 1

−7
5

(
2 −3 1

)
.

Exercice 2. On donne la matrice :

A =

 3 −1 5

1 5 7

−2 1 −3

 .

a. Calculer le déterminant de A. Quel est le rang de A ?

b. Donner une décomposition colonne-ligne minimale de A.

Solution:

a. Utilisons par exemple le −1 en position (1, 2) pour ”nettoyer” la première ligne, via les opérations C1 ← C1 + 3C2 et

C3 ← C3 + 5C2. On trouve

detA =

∣∣∣∣∣∣
3 −1 5

1 5 7

−2 1 −3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
0 −1 0

16 5 32

1 1 2

∣∣∣∣∣∣︸ ︷︷ ︸
−(−1)| 16 32

1 2 |

= 0.

La dernière égalité peut aussi être obtenue en observant qu’une fois appliquée les deux opérations ci-dessus, on a fait apparaitre

une relation de proportionnalité entre la première et la troisième colonne :

2

 0

16

1

 =

 0

32

2

 .

Le déterminant de A est nul : son rang est donc inférieur ou égal à 2. Par ailleurs, les lignes de A ne sont pas deux-à-deux

proportionnelles (de même que ses colonnes) : cette matrice n’est donc ni de rang 0, ni de rang 1. On en déduit qu’elle est de

rang 2.

b. Pour écrire une décomposition colonne-ligne minimale de A (c’est-à-dire de longueur 2), on va chercher à exprimer l’une de

ses colonnes en fonction des deux autres. Or, en utilisant la relation de proportionnalité identifiée en a. on trouve :

2(

 3

1

−2

+ 3

−15
1

) =

 5

7

−3

+ 5

−15
1

 ou encore

 5

7

−3

 = 2

 3

1

−2

+

−15
1

 .



On obtient finalement :

A =

 3

1

−2

(
1 0 0

)
+

−15
1

(
0 1 0

)
+

 5

7

−3


︸ ︷︷ ︸

2

(
3
1
−2

)
+

(−1
5
1

)

(
0 0 1

)
=

 3

1

−2

(
1 0 2

)
+

−15
1

(
0 1 1

)
.

Exercice 3. On donne la matrice :

A =

 1 2 −1
0 1 2

−1 1 6

 .

a. Calculer le déterminant de A.

b. La matrice A est-elle inversible ? Si oui, calculer la matrice inverse A−1.

Solution:

a. Commençons par effectuer l’opération L3 ← L3 + L1, qui laisse invariant le déterminant. On trouve :

detA =

∣∣∣∣∣∣
1 2 −1
0 1 2

−1 1 6

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 2 −1
0 1 2

0 3 5

∣∣∣∣∣∣ .
Ensuite, appliquons l’opération L3 ← L3 − 3L2 afin de faire apparaitre une matrice triangulaire supérieure, pour laquelle le

déterminant n’est autre que le produit des coefficients diagonaux :

detA =

∣∣∣∣∣∣
1 2 −1
0 1 2

0 0 −1

∣∣∣∣∣∣ = 1 · 1 · (−1) = −1.

b. Pour trouver l’inverse, il existe plusieurs méthodes. Une première méthode consiste à partir de la matrice A et à faire apparaitre

la matrice identité I3 en appliquant successivement des opérations élémentaires sur les lignes. Par exemple, les opérations :

L3 ← L3 + L1 , L3 ← L3 − 3L2 , L3 ← −L3 , L2 ← L2 − 2L3 , L1 ← L1 + L3 , L1 ← L1 − 2L2

mènent à la suite de matrices suivantes :

A =

 1 2 −1
0 1 2

−1 1 6

 ,

1 2 −1
0 1 2

0 3 5

 ,

1 2 −1
0 1 2

0 0 −1

 ,

1 2 −1
0 1 2

0 0 1

 ,

1 2 −1
0 1 0

0 0 1

 ,

1 2 0

0 1 0

0 0 1

 ,

1 0 0

0 1 0

0 0 1

 = I3.

En appliquant exactement la même suite d’opérations sur la matrice identité I3 on obtient alors la matrice inverse de A :

I3 =

1 0 0

0 1 0

0 0 1

 ,

1 0 0

0 1 0

1 0 1

 ,

1 0 0

0 1 0

1 −3 1

 ,

 1 0 0

0 1 0

−1 3 −1

 ,

 1 0 0

2 −5 2

−1 3 −1

 , . . .

. . .

 0 3 −1
2 −5 2

−1 3 −1

 ,

−4 13 −5
2 −5 2

−1 3 −1

 = A−1.

Une deuxième méthode consiste à effectuer un travail similaire sur les colonnes de A. Enfin, une troisième méthode consiste

à résoudre de manière générale le système linéaire 3× 3 de matrice A : 1 2 −1
0 1 2

−1 1 6


︸ ︷︷ ︸

A

x

y

z

 =

a

b

c

 ⇔


x+ 2y − z = a

y + 2z = b

− x+ y + 6z = c

⇔


x+ 2y − z = a

y + 2z = b

3y + 5z = a+ c

⇔ · · ·

· · ·


x+ 2y − z = a

y + 2z = b

− z = a− 3b+ c

⇔


x = −2y + z + a = −4a+ 13b− 5c

y = b− 2z = 2a− 5b+ 2c

z = −a+ 3b− c

⇔

x

y

z

 =

−4 13 −5
2 −5 2

−1 3 −1


︸ ︷︷ ︸

A−1

a

b

c

 .



Exercice 4. On propose ci-dessous un raisonnement pour inverser la matrice :

A =

0 0 1

0 1 4

1 −2 1

 .

≪ On dispose côte-à-côte la matrice A et la matrice identité I3 :0 0 1

0 1 4

1 −2 1

 |

1 0 0

0 1 0

0 0 1


Ensuite, on effectue sur ces deux matrices les opérations élémentaires suivantes, simultanément :

L2 ← L2 − 4L1, L3 ← L3 − L1, L3 ← L3 + 2L2, C1 ↔ C3.

On trouve les deux matrices suivantes : 1 0 0

0 1 0

0 0 1

 |

0 0 1

0 1 −4
1 2 −9

 .

L’inverse A−1 de A est alors la matrice écrite sur la droite. ≫

a. Le résultat obtenu est-il juste ? Justifier.

b. Traduire le processus décrit à l’aide de matrices élémentaires.

c. Expliquer comment corriger l’erreur commise pour obtenir la vraie valeur de A−1.

Solution:

a. Le raisonnement proposé est erroné, comme on peut s’en convaincre rapidement en calculant par exemple le produit :0 0 1

0 1 4

1 −2 1

0 0 1

0 1 −4
1 2 −9

 =

1 2 −9
4 9 −40
1 0 0

 ̸= I3.

b. Introduisons les matrices élémentaires correspondant aux opérations proposées :

E1 =

 1 0 0

−4 1 0

0 0 1

 , E2 =

 1 0 0

0 1 0

−1 0 1

 , E3 =

1 0 0

0 1 0

0 2 1

 , E4 =

0 0 1

0 1 0

1 0 0

 .

Multiplier à gauche / droite une matrice 3 × 3 par l’une de ces matrices élémentaires revient à effectuer l’opération corres-

pondante sur les lignes / colonnes de cette matrice. Détaillons alors les étapes du raisonnement proposé. Tout d’abord, on

applique aux deux matrices l’opération L2 ← L2 − 4L1. On obtient :

E1A =

0 0 1

0 1 0

1 −2 1

 | E1 =

 1 0 0

−4 1 0

0 0 1

 .

Ensuite, c’est au tour de l’opération L3 ← L3 − L1. On obtient :

E2E1A =

0 0 1

0 1 0

1 −2 0

 | E2E1 =

 1 0 0

−4 1 0

−1 0 1

 .

Passons à l’opération L3 ← L3 + 2L2. On obtient :

E3E2E1A =

0 0 1

0 1 0

1 0 0

 | E3E2E1 =

 1 0 0

−4 1 0

−9 2 1

 .

Enfin, la dernière étape consiste à appliquer l’opération C1 ↔ C3 c’est-à-dire, matriciellement, à calculer :

E3E2E1AE4 =

1 0 0

0 1 0

0 0 1

 | E3E2E1E4 =

0 0 1

0 1 −4
1 2 −9

 .



c. Aucune erreur de calcul ne s’est glissée dans le raisonnement mais plutôt une erreur d’interprétation de ces calculs. En effet,

l’erreur consiste à interpréter l’égalité :

E3E2E1AE4 = I3

en disant que le produit E3E2E1E4 (c’est-à-dire la matrice qui se trouve sur la droite à la fin du processus) est l’inverse de

A. Or la bonne façon d’interpréter ce résultat est plutôt de dire que :

E3E2E1A = E−1
4 et donc E4E3E2E1A = I3.

Autrement dit, l’inverse A−1 de A est en fait la matrice E4E3E2E1. On l’obtient en appliquant à la matrice E3E2E1 (calculée

à l’avant-dernière étape) l’opération L1 ↔ L3. On trouve alors :

A−1 =

−9 2 1

−4 1 0

1 0 0

 .

Exercice 5. Dans chacun des cas suivants, déterminer à quelle condition sur α, β, γ ∈ R la matrice proposée est inversible et,

sous cette condition, calculer l’inverse :

a.

0 0 α

0 β 0

γ 0 0

 b.

0 α 0

0 0 β

γ 0 0

 c.

α 0 0

β β 0

γ γ γ

.

Solution:

a. On a : ∣∣∣∣∣∣
0 0 α

0 β 0

γ 0 0

∣∣∣∣∣∣ = α

∣∣∣∣0 β

γ 0

∣∣∣∣ = −αβγ.
La condition pour que la matrice proposée soit inversible est donc que le produit αβγ soit non nul, ou autrement dit que

chacun des coefficients α, β, γ soit non nul. Pour trouver sous cette condition l’inverse, partons de la matrice donnée et faisons

apparaitre la matrice identité I3 en appliquant successivement des opérations élémentaires sur les colonnes. Par exemple, les

opérations :

C1 ↔ C3 , C1 ← 1
αC1 , C2 ← 1

βC2 , C3 ← 1
γC3

mènent à la suite de matrices suivantes :0 0 α

0 β 0

γ 0 0

 ,

α 0 0

0 β 0

0 0 γ

 ,

1 0 0

0 β 0

0 0 γ

 ,

1 0 0

0 1 0

0 0 γ

 ,

1 0 0

0 1 0

0 0 1

 = I3.

En appliquant exactement la même suite d’opérations sur la matrice identité I3 on obtient :

I3 =

1 0 0

0 1 0

0 0 1

 ,

0 0 1

0 1 0

1 0 0

 ,

0 0 1

0 1 0
1
α 0 0

 ,

0 0 1

0 1
β 0

1
α 0 0

 ,

0 0 1
γ

0 1
β 0

1
α 0 0

 .

On en déduit que l’inverse recherché est : 0 0 1
γ

0 1
β 0

1
α 0 0

 .

b. Commençons par calculer le déterminant de la matrice proposée. En développant selon la première ligne, on trouve :∣∣∣∣∣∣
0 α 0

0 0 β

γ 0 0

∣∣∣∣∣∣ = −α
∣∣∣∣0 β

γ 0

∣∣∣∣ = αβγ.

La condition pour que cette matrice soit inversible est donc la même qu’en a. : le produit αβγ doit être non nul, ou, autrement

dit, chacun des coefficients α, β, γ doit être non nul. Sous cette condition, pour trouver l’inverse, partons de la matrice donnée et

faisons apparaitre la matrice identité I3 en appliquant successivement des opérations élémentaires sur les lignes. Par exemple,

les opérations :

L2 ↔ L3 , L1 ↔ L3 , L1 ← 1
γL1 , L2 ← 1

αL2 , L3 ← 1
βL3



mènent à la suite de matrices suivantes :0 α 0

0 0 β

γ 0 0

 ,

0 α 0

γ 0 0

0 0 β

 ,

γ 0 0

0 α 0

0 0 β

 ,

1 0 0

0 α 0

0 0 β

 ,

1 0 0

0 1 0

0 0 β

 ,

1 0 0

0 1 0

0 0 1

 = I3.

En appliquant exactement la même suite d’opérations sur la matrice identité I3 on obtient :

I3 =

1 0 0

0 1 0

0 0 1

 ,

1 0 0

0 0 1

0 1 0

 ,

0 0 1

1 0 0

0 1 0

 ,

0 0 1
γ

1 0 0

0 1 0

 ,

0 0 1
γ

1
α 0 0

0 1 0

 ,

0 0 1
γ

1
α 0 0

0 1
β 0

 .

On en déduit que l’inverse recherché est : 0 0 1
γ

1
α 0 0

0 1
β 0

 .

c. Commençons par calculer le déterminant de la matrice proposée. En développant selon la première ligne, on trouve :∣∣∣∣∣∣
α 0 0

β β 0

γ γ γ

∣∣∣∣∣∣ = α

∣∣∣∣β 0

γ γ

∣∣∣∣ = αβγ.

La condition pour que cette matrice soit inversible est donc la même qu’en a. et b. : le produit αβγ doit être non nul, ou,

autrement dit, chacun des coefficients α, β, γ doit être non nul. Sous cette condition, pour trouver l’inverse, on peut par

exemple résoudre le système linéaire :

α 0 0

β β 0

γ γ γ

x

y

z

 =

a

b

c

 ⇔


αx = a

βx+ βy = b

γx+ γy + γz = c

⇔


x = 1

αa

y = 1
β b−

1
αa

z = 1
γ c−

1
β b

⇔

x

y

z

 =


1
α 0 0

− 1
α

1
β 0

0 − 1
β

1
γ


a

b

c

 .

On en déduit que l’inverse recherché est : 
1
α 0 0

− 1
α

1
β 0

0 − 1
β

1
γ

 .

Exercice 6. On donne, en fonction de α ∈ R, la matrice :

A =

 −α α+ 1 −1
α2 − 2α− 1 α2 + α+ 2 α− 3

α2 + 2α− 1 −1− 3α α+ 1

 .

Déterminer le rang de A en fonction de la valeur du paramètre α, ainsi qu’une décomposition colonne-ligne minimale de A.

Solution: Cherchons à calculer le déterminant de la matrice A. Pour cela, commençons par effectuer l’opération C1 ← C1 − αC3,

qui ne modifie pas le déterminant. On obtient :

det(A) =

∣∣∣∣∣∣
−α α+ 1 −1

α2 − 2α− 1 α2 + α+ 2 α− 3

α2 + 2α− 1 −1− 3α α+ 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣

0 α+ 1 −1
α− 1 α2 + α+ 2 α− 3

α− 1 −1− 3α α+ 1

∣∣∣∣∣∣ = (α− 1)

∣∣∣∣∣∣
0 α+ 1 −1
1 α2 + α+ 2 α− 3

1 −1− 3α α+ 1

∣∣∣∣∣∣ ,
la dernière égalité étant obtenue par extraction du facteur α−1 de la première colonne. Appliquons ensuite l’opération L2 ← L2−L3

et développons selon la première colonne. On trouve :

det(A) = (α− 1)

∣∣∣∣∣∣
0 α+ 1 −1
0 α2 + 4α+ 3 −4
1 −1− 3α α+ 1

∣∣∣∣∣∣ = (α− 1)

∣∣∣∣ α+ 1 −1
α2 + 4α+ 3 −4

∣∣∣∣ .
Sur le déterminant 2× 2 obtenu, effectuons à présent l’opération L2 ← L2 − 4L1. On trouve alors :

det(A) = (α− 1)

∣∣∣∣ α+ 1 −1
α2 − 1 0

∣∣∣∣ = (α− 1)2(α+ 1).



On en déduit déjà que si α est différent de 1 et −1 alors le déterminant de A est non nul, si bien que A est de rang 3. Dans ce cas

une décomposition colonne-ligne minimale de A est par exemple donnée par :

A =

1

0

0

(
−α α+ 1 −1

)
+

0

1

0

(
α2 − 2α− 1 α2 + α+ 2 α− 3

)
+

0

0

1

(
α2 + 2α− 1 −1− 3α α+ 1

)
.

Pour α = 1, la matrice A vaut :

A =

−1 2 −1
−2 4 −2
2 −4 2

 .

On observe qu’elle est non nulle et que ses lignes sont deux-à-deux proportionnelles (tout comme ses colonnes). Elle est donc de

rang 1, et une décomposition colonne-ligne minimale de A est par exemple donnée par :

A =

−1−2
2

(
1 −2 1

)
.

Pour α = −1, la matrice A vaut :

A =

 1 0 −1
2 2 −4
−2 2 0

 .

Elle est de rang inférieur ou égal à 2 (car son déterminant est nul). De plus A est non nulle et ses lignes ne sont pas deux-à-deux

proportionnelles (tout comme ses colonnes). Elle n’est donc ni de rang 0, ni de rang 1. Par conséquent, elle est de rang 2. Pour

écrire une décomposition colonne-ligne minimale de A, partons de la décomposition :

A =

 1

2

−2

(
1 0 0

)
+

0

2

2

(
0 1 0

)
+

−1−4
0

(
0 0 1

)
(qui n’est pas minimale car de longueur 3) et observons par exemple que la troisième colonne est égale à la somme des autres,

multipliée par −1. On obtient alors :

A =

 1

2

−2

(
1 0 0

)
+

0

2

2

(
0 1 0

)
+ (−

 1

2

−2

−
0

2

2

)
(
0 0 1

)
=

 1

2

−2

(
1 0 −1

)
+

0

2

2

(
0 1 −1

)
.

Exercice 7. On considère un système linéaire 3× 3 dont on note A la matrice des coefficients :
α1,1x+ α1,2y + α1,3z = a

α2,1x+ α2,2y + α2,3z = b

α3,1x+ α3,2y + α3,3z = c

a. En supposant que (x, y, z) est solution, calculer les déterminants suivants en fonction de x, y et z :∣∣∣∣∣∣
a α1,2 α1,3

b α2,2 α2,3

c α3,2 α3,3

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
α1,1 a α1,3

α2,1 b α2,3

α3,1 c α3,3

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
α1,1 α1,2 a

α2,1 α2,2 b

α3,1 α3,2 c

∣∣∣∣∣∣ .
b. Sous l’hypothèse que det(A) ̸= 0, en déduire une formule générale pour la matrice inverse A−1 de A.

Solution:

a. Cherchons par exemple à calculer le premier déterminant (les deux autres se calculent exactement de la même manière) :∣∣∣∣∣∣
a α1,2 α1,3

b α2,2 α2,3

c α3,2 α3,3

∣∣∣∣∣∣ .
Comme (x, y, z) est solution du système, on a déjà :∣∣∣∣∣∣

a α1,2 α1,3

b α2,2 α2,3

c α3,2 α3,3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
α1,1x+ α1,2y + α1,3z α1,2 α1,3

α2,1x+ α2,2y + α2,3z α2,2 α2,3

α3,1x+ α3,2y + α3,3z α3,2 α3,3

∣∣∣∣∣∣ .



Sur le déterminant obtenu, appliquons à présent les opérations C1 ← C1 − yC2 et C1 ← C1 − zC3. On trouve :∣∣∣∣∣∣
a α1,2 α1,3

b α2,2 α2,3

c α3,2 α3,3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
α1,1x α1,2 α1,3

α2,1x α2,2 α2,3

α3,1x α3,2 α3,3

∣∣∣∣∣∣ .
On peut alors extraire le facteur x de la première colonne :∣∣∣∣∣∣

a α1,2 α1,3

b α2,2 α2,3

c α3,2 α3,3

∣∣∣∣∣∣ = x

∣∣∣∣∣∣
α1,1 α1,2 α1,3

α2,1 α2,2 α2,3

α3,1 α3,2 α3,3

∣∣∣∣∣∣︸ ︷︷ ︸
det(A)

.

b. Supposons que le déterminant de A est non nul. Dans ce cas, on sait que le système possède une unique solution pour tout

choix de second membre. A est inversible et la matrice inverse vérifie :

A

x

y

z

 =

a

b

c

 ⇔

x

y

z

 = A−1

a

b

c

 .

Or, le résultat obtenu en a. permet de décrire x en fonction de a, b et c. En effet, on a :

x =
1

det(A)

∣∣∣∣∣∣
a α1,2 α1,3

b α2,2 α2,3

c α3,2 α3,3

∣∣∣∣∣∣ = 1

det(A)
(

∣∣∣∣α2,2 α2,3

α3,2 α3,3

∣∣∣∣ a− ∣∣∣∣α1,2 α1,3

α3,2 α3,3

∣∣∣∣ b+ ∣∣∣∣α1,2 α1,3

α2,2 α2,3

∣∣∣∣ c)
la dernière égalité étant obtenue en développant par rapport à la première colonne. Nous venons en fait donc de découvrir la

formule pour la première ligne de A−1. En raisonnant de même pour la deuxième et la troisième ligne on trouve finalement :

A−1 =
1

det(A)



∣∣∣∣α2,2 α2,3

α3,2 α3,3

∣∣∣∣ −
∣∣∣∣α1,2 α1,3

α3,2 α3,3

∣∣∣∣ ∣∣∣∣α1,2 α1,3

α2,2 α2,3

∣∣∣∣
−
∣∣∣∣α2,1 α2,3

α3,1 α3,3

∣∣∣∣ ∣∣∣∣α1,1 α1,3

α3,1 α3,3

∣∣∣∣ −
∣∣∣∣α1,1 α1,3

α2,1 α2,3

∣∣∣∣∣∣∣∣α2,1 α2,2

α3,1 α3,2

∣∣∣∣ −
∣∣∣∣α1,1 α1,2

α3,1 α3,2

∣∣∣∣ ∣∣∣∣α1,1 α1,2

α2,1 α2,2

∣∣∣∣


.

Cette formule porte le nom du mathématicien suisse Gabriel Cramer (1704-1752).


