Algebre Linéaire & Géométrie Mise & niveau, EPFL

Série 14

Exercice 1. Décrire le noyau et I'image de I’application linéaire suivante :
f:R® = R? (z,y,2) = (z— 2,y — ).

Dans chacun des cas suivants, déterminer alors si possible des bases B et B’ de R? vérifiant la condition donnée.

o s = (o 7 o) b iflee = (g 5 ) S ]

Indication : on commencera par écrire la décomposition voulue de f(B) dans B'.

Solution: Le noyau de f est le sous-espace vectoriel de R? d’équations z = y = z. C’est donc la droite vectorielle engendrée par

(1,1,1) :
Ker f = Vect((1,1,1)).
L’application f est donc de rang 3 — 1 = 2, ce qui prouve que Im f = R2.

a. La question posée ici demande de trouver une base B = vy, v2,v3 de R? et une base B’ = v}, v} de R? telles que :

flo1) = vy

10 0 ,
o=y V) (00
V3) = ,U).

P (B)]sr”

La derni¢re condition demande & vz d’étre dans le noyau de f, et donc d’étre un multiple scalaire de (1,1,1). Posons alors
par exemple :
(%} :(1,0,0), 1)2:(0,1,0), ’03:(1,1,1).

La famille B est bien une base de R3 : les deux premiers éléments ne sont pas proportionnels et le troisitme n’en est pas
combinaison linéaire. Pour construire cette famille, on a choisi pour vz un élément particulier (non nul) dans le noyau de f,
que I'on a ensuite complété (en allant "au plus simple”) en une base de R®. Posons ensuite :

vll = (17_1)a Ué = (Oa 1)
—— ~——
f(v1) f(v2)

Définie de cette maniere la famille B’ est bien une base de R? car les couples (1, —1) et (0, 1) ne sont pas proportionnels. Par
ailleurs, les relations écrites ci-dessus sont bien vérifiées, si bien que la matrice [f]z g est bien celle demandée.

. La question posée ici demande de trouver une base B = v1,v2,v3 de R? et une base de B’ = v}, v} de R? telles que :

02 0 f(vl) = (0’ 0, 0)
[fls,sr = <0 0 1) & ;Evzi = 27}1/
V3) = —Vs.

PFB)]sr”

La premiére condition demande a v; d’étre dans le noyau de f, et donc d’étre un multiple scalaire de (1,1, 1). Posons alors
par exemple :
U1 :(1)171)7 U2:(170a0)7 'U3:(0,1,0).

La famille B est bien une base de R? : les deux derniers éléments ne sont pas proportionnels et le premier n’en est pas
combinaison linéaire. Pour construire cette famille, on a choisi pour v; un élément particulier (non nul) dans le noyau de f,
que l'on a ensuite complété (en allant au plus simple”) en une base de R3. Posons ensuite :

Ui = (%7_%)7 Ué = (07_1) .

—— ——
3(w2) )
Définie de cette maniere la famille B’ est bien une base de R? car les couples (%, —%) et (0,—1) ne sont pas proportionnels.

Par ailleurs, les relations écrites ci-dessus sont bien vérifiées, si bien que la matrice [f]g g/ est bien celle demandée.

. Il est ici impossible de trouver de telles bases B et B’. En effet, le rang de [f]g,z est égal & 2 (et ce peu importe le choix de
bases), et la matrice proposée ici est de rang 1.



Exercice 2. On donne les applications linéaires suivantes, dont on note A et B les matrices respectives en base canonique :
f:R* = R?, (x,y) — (3z + 4y, 62 + 8y) g:R?* 5 R?, (z,y) = (2= — 7y,0).

a. Montrer que A et B sont équivalentes. Sont-elles colonne-équivalentes ? ligne-équivalentes 7

b. Déterminer deux bases de R? dans lesquelles f est représentée par la matrice B, c’est-a-dire trouver BB et B’ telles que :
[fls.5r = B.

c. Montrer comment produire A & partir de B par une suite d’opérations élémentaires sur les lignes et les colonnes.

Solution:

a. On trouve :

e 0 @ s D) -()e .

A et B sont toutes deux de rang 1 : elles sont équivalentes. Pour déterminer si elles sont colonne-équivalentes, regardons les
images de f et g :

Imf:2r=y et Img:y=0.
Comme ces deux droites vectorielles sont différentes, on peut affirmer que A et B ne sont pas colonne-équivalentes. En terme
matriciel, cela signifie qu’il est impossible d’utiliser la méme colonne pour décomposer A et B, ou encore qu’il est impossible

de transformer A en B en n’utilisant que des opérations élémentaires sur les colonnes. Enfin, pour déterminer si A et B sont
ligne-équivalentes, regardons les noyaux de f et g :

Kerf:3z4+4y=0 et Kerg:2x—7y=0.

Comme ces deux droites vectorielles sont différentes, on peut affirmer que A et B ne sont pas ligne-équivalentes. Au niveau
des matrices, cela signifie qu’il est impossible d’utiliser la méme ligne pour décomposer A et B, ou encore qu'il est impossible
de transformer A en B en n’utilisant que des opérations élémentaires sur les lignes.

b. Cherchons les bases B et B’ via leurs matrices de changement de base P et () depuis la base canonique :
[flss =B & Q 'AP=B.

Pour trouver de telles matrices, on peut essayer ”d’envoyer” la décomposition colonne-ligne trouvée au (a) pour A sur celle
de B. Autrement dit, on peut chercher P et () inversibles telles que :

(3 4gP=(2 -7) et Q' (;>:((1J>

—_———

e(p)=(3)

Les conditions que I'on vient d’écrire ne caractérisent pas des matrices P et ) de maniére unique (autrement dit, il y a de
nombreuses bases B et B’ solutions du probléme posé). On peut essayer d’en deviner en y allant par tdtonnement, c’est-a-dire
en cherchant & remplir les matrices petit-a-petit de sorte a satisfaire les conditions. Par exemple, on peut prendre :

2 -1 1 0
P= t =
| —_———
fonctionne car 3-24+4-(—1)=2 et 3-(—1)+4-(=1)=—7 fonctionne car 1-14+0-0=1 et 2-1+1-0=2

Autrement dit, si ’on définit :
B=(2-1),(-1,-1) et B =(1,2),(0,1)

on a bien que f est représentée par B dans les bases B et B’. Rappelons pour finir quelques méthodes pour trouver ces
matrices P et (), dans le cas ol I'on n’est pas parvenu a en deviner. Une premiere idée est de les chercher sous une forme
particuliere, par exemple diagonale, triangulaire ... Par exemple pour P :

2
(3 4)P=(2 -7) et P diagonale = P—(S O7>.
1

La forme diagonale ne fonctionne pas ici pour @), il n’y a aucune matrice diagonale inversible @) vérifiant :

°0) =)



La forme triangulaire supérieure ne fonctionne pas non plus, mais la forme triangulaire inférieure fonctionne bien. On trouve

(6 )

Une autre méthode consiste a faire apparaitre des matrices inversibles en ”complétant” les lignes et les colonnes apparaissant
dans nos relations. Par exemple pour P on ”complete” les lignes (3 4) et (2 —7) en des matrices inversibles (il y a beaucoup

de fagons de s’y prendre) :
3 4 2 -7
b= 7)

De cette maniere on demande a P de vérifier une condition supplémentaire qui n’est pas imposée par I’énoncé. L’avantage est
qu’on peut maintenant trouver P via le calcul suivant :

par exemple :

N AC -G

. En appliquant les opérations élémentaires suivantes sur B :

W

Cl<—%Cl7 CQ<__%027 Lo+ Lo+ 214

20 0) (6 0) (@ o) 2= o)

Remarque : cette suite d’opérations fournit une autre fagon d’identifier des matrices P et @) comme au (b). En effet, on sait

on trouve la matrice A :

qu’elle correspond au produit matriciel suivant faisant intervenir des matrices élémentaires :

1 0N/2 =1\/2 O\N/1 O 3 4 _
(2 1) (0 0) (8 1) (0 _471) = (6 8> & B=Q'AP
% ~——

Q B p-1 A

Exercice 3. On donne Iapplication linéaire suivante, dont on note A la matrice dans la base canonique Bea, de R? :

On note aussi B la matrice construite en appliquant & A la suite d’opérations élémentaires suivantes :

f:R?2 5 R%, (z,y) = (z + 2y, 3z + 5y).

Co«+Coy—C1, L1 Ly, C1 + C1+Cy

a. Ecrire les matrices A et B. Montrer qu’elles sont colonne-équivalentes et ligne-équivalentes.
b. Déterminer une base B de R? telle que :
[f18.,Beun = B-

c. Produire B a partir de A par une suite d’opérations sur les lignes. Indication : on pourra “passer” par la matrice I5.

Solution:

a. On trouve la matrice A directement & partir de l'expression de f, puis la matrice B en appliquant la suite d’opérations

données. On obtient :
A 1 2 , 1 1 7 3 2 B- 5 2 .
3 5 3 2 1 1 2 1

Les matrices A et B sont toutes les deux inversibles (elles ont pour déterminants respectifs —1 et 1). On sait alors qu’elles sont
colonne-équivalentes et ligne-équivalentes. Rappelons que cela provient du fait que les applications linéaires f et g associées
via la base canonique ont méme image et méme noyau :

Imf=Img et Kerf=ZKerg.
—_———— —_———

R2 {(0,0)}

b. En appelant P la matrice de changement de base de B,y a B, on sait que :

[flBB., =B & AP=B.



Comme A est inversible, on voit qu’il n’y a qu’une seule matrice P solution du probléme, a savoir :

-1
P:A‘lB:12 52:—52 52:—21—8.
3 5 2 1 3 —-1)\2 1 13 5
On trouve donc que la base de R? suivante :

B =(-21,13), (-8,5)

est la seule base solution du probleme posé. Ce n’est pas demandé explicitement, mais c’est toujours une bonne idée de vérifier
notre résultat. Pour cela, notons :
B:'UDUZ et Bcan:ela€2~

On sait alors que :
5 2 f(v1) = bey + 2e2
[£18.Ben = B = ( > &
2 1 f(’l)g) = 2eq1 + eo.

On peut alors controler les relations que 1’on vient d’écrire par un calcul direct :

Flur) = f(=21,13) = (=21 + 26, —63 + 65) = (5,2) = 5e; + 2e,
Fva) = F(—8,5) = (=8 + 10, =24 + 25) = (2,1) = 2e; + €3.

c¢. Comme suggéré par I'indication, on peut chercher a obtenir B a partir de A par opérations élémentaires sur les lignes en
?visant” comme étape intermédiaire la matrice I5. Par exemple :

1 2 1 2 1 2 1 0 1 0 5 2
3 5/)7\0 —-1)7\0 1/7\0 1/7\2 1/ \2 1
A I B

qui correspond a la suite d’opérations :
L2<—L2—3L1, Lg(——LQ, Ll FL1—2L2, L2<—L2+2L17 L1 (—L1+2L2

Dans cette suite de matrices, on peut penser & la premiere partie comme le passage de A a son échelonnée réduite en ligne

) b
et a la deuxieme partie comme le passage de B a son échelonnée réduite en ligne, que 'on a ”renversé”. A noter qu’il n'y a
pas du tout unicité de la suite d’opérations que 'on a trouvée. Par exemple, si on utilise I’échelonnement suivant de B :

D R O R R R (R R O

——
B

=

alors, en "renversant” ce processus on obtient maintenant :

u b2 6 )Q G161 G i)’@j)

qui correspond a la suite d’opérations élémentaires suivantes sur les lignes :

LQ%LQ*SLl, LQ%*LQ, Ll(*L172L2, Ll(*E)Ll, L1<*L1+2L2, LQ%%LQ, LQ(‘LQ*I‘%Ll.

Exercice 4. On donne les applications linéaires suivantes, dont on note A et B les matrices en bases canoniques :

f:R2—>R3 g:R2—>R3
(z,y) = (v + 4y, 7z — 3y, —x + 2y) (z,y) = (z,y) = (=22 + 3y, — 2y, 5z + 6y)

a. Montrer que les matrices A et B sont ligne-équivalentes. Sont-elles colonne-équivalentes ?

b. On note Bgan la base canonique de R2. Déterminer une base B de R? telle que :

[f]Beun,8 = B-

Solution:



a. La matrice :

1 4
A= 7 =3
-1 2

est de rang 2. En effet, elle est de taille 3 x 2, si bien que son rang est inférieur ou égal a 2. Par ailleurs, il n’y a pas de relation
de proportionnalité entre ses deux colonnes, si bien que son rang est strictement supérieur a 1. En raisonnant de méme, on
voit que la matrice :
-2 3
B=|1 =2
5 6

est aussi de rang 2. D’apres le théoreme du rang, on sait donc que les noyaux de f et de g sont nuls :
Ker f = Kerg,
—_———
{(0,0)}

d’ou 'on déduit directement que les matrices A et B sont ligne-équivalentes. Pour savoir si elles sont colonne-équivalentes, il
faut déterminer si les plans vectoriels image de f et g sont égaux. Pour cela, calculons par exemple une équation de Im f :

1 4 =z
7T =3 1 4 1 4
: —23 y—‘_l 9 x—‘_l Q‘y—i-’? _32—11m—6y—31z—0.
- z

Or cette équation n’est pas satisfaite par les triplets suivants, qui forment une base de Im g :

g(1,0) = (-2,1,5) et ¢(0,1)=(3,-2,6).

—22—-6—-153=—181#0 33+12—186=—141+#0

Les plans vectoriels image de f et g sont différents : A et B ne sont pas colonne-équivalentes.

b. En appelant P la matrice de changement de base de la base canonique de R? & B, on sait que :

1 4 -2 3
[flsons=B <& P'A=B & A=PB < 7 -3]=P|1 =2
-1 2 5 6

Pour identifier une telle matrice inversible P, on peut voir A et B comme des "débuts de matrices inversibles”, et donc
les compléter (en leur ajoutant & chacune une colonne) de sorte & en faire des matrices inversibles. Par exemple, on peut
demander a P de satisfaire :

1 4 0 -2 3 0

7T -3 1 =P 1 -2 0

-1 2 0 5 6 1
déterminant —67#0 donc inversible déterminant 1#0 donc inversible

De cette maniére on demande & P de vérifier une condition supplémentaire qui n’est pas imposée par ’énoncé. L’avantage est
qu’on peut maintenant trouver P via le calcul suivant :

1 4 -2 3 0
P=17 -3 1 1 -2 0
-1 2 6 1

Pour calculer I'inverse qui intervient dans I’expression ci-dessus, passons par exemple par la résolution du systeme linéaire
général suivant (ce n’est pas la seule méthode) :

—2x+3y=a —y=a+2b y=—a—2b = —2a—3b
r—2y="> & r—2y=> & r=b+2y=—2a—3b & y=—a—2b
S5c+6y+z=c Sr+6y+z=c z=c—5x— 6y =16a+ 27b+ ¢ z=16a 4+ 27b+ ¢
On trouve donc : .
-2 3 0 -2 -3 0
1 -2 0 =(-1 -2 0
5 6 1 16 27 1

La matrice inversible P suivante est donc solution du probleme posé :
1 4 0 -2 -3 0 -6 —11 0
P=|17 -3 1 -1 -2 0)=1|5 12 1
-1 2 0 16 27 1 0 -1 0



Autrement dit, la base suivante de R3 :
B=(-6,50), (-11,12,-1), (0,1,0)

est solution du probleme posé. Ce n’est pas demandé explicitement, mais c’est toujours une bonne idée de vérifier notre
résultat. Pour cela, notons :
Bean = e1,e2 et B =v1,v2,03.

On sait alors que :

2 3 {f(el) = —2v1 + v2 + 5v3
==

[flans=B={1 -2
5 6 f(62) = 37)1 — 2’02 + 6113.

On peut alors controler les relations que l'on vient d’écrire par un calcul direct :

0) = f(e1)

{ — 20y + vy + Bug = —2(—6,5,0) 4+ (11,12, —1) +5(0,1,0) = (1,7, —1) = f(1,
1) = f(€2)~

301 — 205 + 6v3 = 3(—6,5,0) — 2(—11,12, —1) + 6(0,1,0) = (4, —3,2) = £(0,

Exercice 5. On donne, en fonction des parametres «, 8 € R, les deux matrices suivantes :

_(a a B _f(a a B
A_<a55> et B_(ﬁaﬁ)

a. Montrer que A et B sont toujours colonne-équivalentes.

b. A quelle(s) condition(s) sur « et 8 sont-elles ligne-équivalentes ? Indication : discuter selon que o = 8 ou « # .

Solution:

a. Il suffit de constater que 'on passe de A & B en échangeant les deux premieéres colonnes, ce qui correspond par exemple a
I’égalité matricielle :

01 0
AP =B avec P=11 0 0
0 0 1

b. Supposons dans un premier temps que o = . Dans ce cas, les deux matrices A et B sont égales :

A_p_ (o @«
T\ o o)
Elles sont donc a fortiori ligne-équivalentes. On supposera dorénavant que o # 3. Appelons alors :
f9: R3? — R?

les applications linéaires de matrices respectives A et B en base canonique. On cherche & savoir si f et g ont le méme noyau.
Intéressons-nous a celui de f, qui n’est autre que ’ensemble des solutions du systéme homogene de matrice A :

ar+ay+Bz=0 - ar+ay+pBz=0 ar+ Bz=0
ax+ By + Pz =0 (B—-a)y=0 y =0 (car a # B3)

Comme « ou § est non nul (puisque ces deux réels sont distincts) on voit que la premiére équation dans le dernier systéme
n’est pas Ox + 0z = 0. Elle est donc indépendante de la deuxieme, si bien que le noyau de f est ici la droite vectorielle :

Ker f = Vect((5,0, —a)).
Or on sait d’apres (a) que f et g ont le méme rang. Le noyau de g est donc aussi une droite vectorielle, et on a :
Kerf=Kerg < ¢(8,0,—a)=(0,00 & pg=0.
—_—
(0,8(8—a))

Si B # 0 alors les matrices A et B ne sont donc pas ligne-équivalentes. Si par contre § = 0 alors A et B sont ligne-équivalentes.
Dans ce cas on peut en effet relier A & B par une suite d’opérations élémentaires sur les lignes :

A:aa07aaO,B:aa0
a 0 0 0 —a 0 0 a O
qui correspond a la suite d’opérations :
LQ(*LQ*L17 LQ(**LQ.

En conclusion, on a donc :
A et B ligne-équivalentes < «a = ou =0.



Exercice 6. Décrire le noyau et I'image de I’application linéaire suivante :
f:R® SRS (2,9,2) = B3z +2y+2,-3z+2,—y — 2).

Si c’est possible, déterminer alors une base B de R® vérifiant la condition donnée.

a. La derniére colonne de la matrice [f]g est nulle.

b. Méme condition qu’au a. et, en supplément, la derniére ligne de la matrice [f]g est nulle.

oo

).

c. Mémes conditions qu’au b. et, en supplément, la premiere colonne de la matrice [f]z est (

Solution: Le noyau de f est le sous-espace vectoriel de R? formé des solutions du systeme :
3z +2y+2=0
z =3z
—3rx+2=0 & { < (z,y,2) =x(1,-3,3).

=0 y= -3z

C’est donc la droite vectorielle engendrée par (1,—3,3) :
Ker f = Vect((1,-3,3)).

L’application f est de rang 2. Le sous-espace vectoriel Im f est un plan vectoriel, dont on obtient une base a chaque fois que 'on
produit par f deux éléments de R® qui ne sont pas proportionnels, comme par exemple :

f(l,0,0) = (3a7370) :3(137]-’0) et f(O,l,O) = (270771)'

On voit donc que le plan vectoriel Im f admet (1, —1,0), (2,0, —1) pour base et posséde donc pour équation :

1 2
y 1 O—_1 Ox— 2 +1 2z—x—|— +2z=0
y “lo -1 0 —1|Y 7 |=1 offT* Y -
z 0 -1

a. Notons v1, va,v3 les éléments de la base B recherchée. La derniére colonne de [f]|g est nulle si et seulement si :

0

[flws)lz= 1[0 < f(vs) =(0,0,0) <& w3 €eKerf.
0

—_———

3éme colonne de [f]n

Posons alors :
v = (1,0,0)7 Vg = (07 1,0), V3 = (1, —373).

La famille B définie de cette maniere est bien une base de R? : les deux premiers éléments ne sont pas proportionnels et le
troisieme n’en est pas combinaison linéaire. Par ailleurs, d’apres la description du noyau de f obtenue ci-dessus on voit que
B vérifie bien la condition proposée ici.

b. La question posée revient a demander a ce que la matrice de f dans la base B soit de la forme suivante :

0
[fls = 0
0

o ™ R
S > 2

pour certains réels «, 8,7 et . De maniere équivalente, on souhaite satisfaire des relations du type :

f(v1) = avy + Bog
f(v2) = yv1 + dvy
f(’Ug) = (07070)

Les deux premiéres relations seront vérifiées si vy, vy forment une base de Im f : en effet, dans ce cas f(v1) et f(v2) s’écriront
automatiquement comme combinaison linéaire de v1 et vy, puisqu’ils appartiennent & Im f. Posons alors :

U1 = (1’ _170)7 V2 = (270a _1)7 U3 = (1,_3a3)

La famille B ainsi définie est bien base de R? : les deux premiers éléments ne sont pas proportionnels et engendrent le plan
vectoriel d’équation = + y + 2z = 0, sur lequel le troisieme élément ne se trouve pas. Elle vérifie bien des relations du type



ci-dessus et répond donc bien au probleme posé, d’apres 'argument donné ci-dessus. Ce n’est pas demandé, mais cherchons
explicitement la matrice [f]g. Pour cela, calculons la famille f(B) et décomposons-la sur B. On trouve :

f(1,-1,0) =(1,-3,1) =3(1,—1,0) — (2,0,—1)

f(2a 07 71) = (5’ 777 1) = 7(1’ 7170) - (2707 71)

f(v3) =(0,0,0).

si bien que :
3 7 0
[fls=|-1 -1 0
0 0 0

c. En reprenant les notations ci-dessus, on voit que I’on souhaite maintenant satisfaire des relations du type :
f(v1) = v2
f(v2) = yv1 + 0z
f(U3) = (070’ O)
(correspondant au cas ot & = 0 et 8 = 1). Posons alors :

v = (1,-1,0), wvy=(1,-3,1), wv3=(1,-3,3).
—_———
f(v1)

La famille B ainsi définie est bien base de R? : les deux premiers éléments ne sont pas proportionnels et engendrent le plan
vectoriel d’équation x + y + 2z = 0 (c’est-a-dire Im f), sur lequel le troisitme élément ne se trouve pas. Calculons alors la
famille f(B) et décomposons-la sur B. On trouve :

f(1,=1,0)=(1,-3,1)
F(1,-3,1) = (=2,-2,2) = —4(1,—1,0) + 2(1,-3,1)

f(vs) = (0,0,0).

si bien que :

a bien la forme voulue.

Exercice 7. On donne les applications linéaires suivantes, dont on note A et B les matrices respectives en base canonique :
f:R3 5 R3 g:R3 = R3
(z,9,2) = bz +4y + z,x + by + bz, —x + 2y + 3z) (z,y,2) > Bz +y+ 22,24+ 2y + z,—Tx + 6y — 32)

a. Les matrices A et B sont elles équivalentes ? colonne-équivalentes ? ligne-équivalentes ?

b. Dans M3(R), déterminer une matrice qui est colonne-équivalente & A et ligne-équivalente & B.

Solution:

a. Cherchons le rang de la matrice A :

Il n’y a visiblement pas de relation de proportionnalité entre ses colonnes prises deux-a-deux. Par conséquent, A est de rang
supérieur ou égal a 2. Pour savoir si elle est de rang 2 ou de rang 3, on peut par exemple calculer son déterminant :

5 4 1] |0 —21 -24
detA=|1 5 5/=[1 5 5 :—’_721 _824’: ‘; 2‘:0.
-1 2 3 o 7 8

On voit donc que A est de rang 2. Passons a ’étude du rang de B :



Il n’y a visiblement pas non plus de relation de proportionnalité entre ses colonnes prises deux-a-deux. Par conséquent, B est
de rang supérieur ou égal a 2. Pour savoir si elle est de rang 2 ou de rang 3, calculons aussi son déterminant :

3 1 2 0o 1 O
detB=|1 2 1|=|-5 2 -3
-7 6 -3 —-25 6 —15

=0.

|5 =3 .5 3
T |=25 —15 5 3

On voit donc que B est de rang 2. Les matrices A et B ont donc le méme rang : elles sont équivalentes. En termes matriciels,
il est possible de décomposer A et B en utilisant le méme nombre de colonnes et de lignes, ou de relier A & B par une suite
d’opérations élémentaires portant sur les colonnes et sur les lignes. Pour déterminer si A et B sont colonne-équivalentes, il
faut déterminer si les plans vectoriels image de f et g sont égaux. Pour cela, calculons par exemple une équation de Im f :

)
4
1 )

4
1 5 5 4
g —’_1 9 1 9 1 5Z—7m—14y+212—0.

]

SIS

-1 T(x—2y+3z)

Or cette équation n’est pas satisfaite par les triplets suivants, qui appartiennent tous a Img :

9(17070) = (371777)5 9(07170) = (13276) et 9(03051) = (271373)'
3—2—-21=—20#£0 1-4418=15%#0 2—2-9=—9#0

Les plans vectoriels image de f et g sont différents : A et B ne sont pas colonne-équivalentes. En termes matriciels, il est
impossible de décomposer A et B en utilisant les mémes colonnes, ou de relier A & B par une suite d’opérations élémentaires
portant uniquement sur les colonnes. Passons & ’étude de la ligne-équivalence de A et B. Il faut cette-fois ci déterminer si les
noyaux de f et g (qui sont des droites vectorielles) sont égaux. Pour cela, cherchons par exemple celui de f, en résolvant le
systeme suivant :

Sr+4y+2=0 —2ly—242z=0
z+5y+52=0 & z+5y+52=0
—z4+2y+32=0 Ty+82z=0

A (ZC,y,Z):;<5,—8,7>-

—N—
< 8
(I
| e
~joo W
W

Il n’y a alors plus qu’a constater que :
9(5,—8,7) = (21,—4,—-104) # (0,0,0)

pour affirmer que les noyaux de f et g sont distincts : A et B ne sont pas ligne-équivalentes. En termes matriciels, il est
impossible de décomposer A et B en utilisant les mémes lignes, ou de relier A & B par une suite d’opérations élémentaires
portant uniquement sur les lignes.

b. Il y a de nombreuses matrices solutions du probleme posé. On peut prendre par exemple :

5 4 19 13 14
C=11]0B 1 2+(5])(1 2 1)=|8 11 7
-1 2 -1 3 0

En effet, de cette maniere on définit une matrice de rang 2 : elle admet une décomposition colonne-ligne de longueur 2 (et est
donc de rang inférieur ou égal & 2) et ses colonnes ne sont visiblement pas deux-a-deux proportionnelles. La décomposition de
C écrite ci-dessus est minimale, si bien que, si 'on appelle h : R? — R3 ’application linéaire de matrice C' en base canonique,
ona:

3z+y+2z=0

Imh=1Imf et Kerh=ZKerg:
r+2y+2=0.

—
Vect((5,1,—1),(4,5,2))

On en déduit bien que C est colonne-équivalente a A et ligne-équivalente a B.

Exercice 8. Est-il vrai ou faux de dire que, pour tout choix de matrices colonne-équivalentes A, B € Ma(R) on a :
a. A et A+ B sont colonne-équivalentes? b. BA et B? sont colonne-équivalentes?  c¢. A% et B2 sont colonne-équivalentes ?

Si vous pensez que c’est vrai expliquez pourquoi. Si vous pensez que c’est faux, donnez un contre-exemple.

Solution:



a. C’est faux. Prenons par exemple :
10 -1 0
(10w e(0).

Les matrices A et B sont inversibles. On sait donc qu’elles sont colonne-équivalentes (et aussi ligne-équivalentes). On peut
par exemple écrire :

B=AP avec P=A"'B=-1I,.

Cependant, A + B est la matrice nulle, et n’est donc pas équivalente & A (elles n’ont pas le méme rang) : les matrices A et
A + B ne sont donc pas colonne-équivalentes.

b. C’est vrai. En effet, comme A et B sont colonne-équivalentes, il existe une matrice inversible P telle que :
B =AP.
Multiplions les deux membres de cette égalité par B a gauche. On obtient :
B? = B(AP) = (BA)P,

ce qui montre bien que B? et BA sont colonne-équivalentes. En fait, une suite d’opération élémentaires sur les colonnes qui
transforme A en B transforme aussi BA en B2.

11 0 1
(D) ()

Ces deux matrices sont colonne-équivalentes. Elles peuvent en effet étre décomposées en utilisant la méme colonne :

A:(é)(l 1) et B:(é)(o 1).

On peut aussi observer que B est obtenue a partir de A par 'opération Cy < C; — Cs. Calculons alors les carrés de A et B :

L R R R R )

A est une matrice de projection B est nilpotente

c. C’est faux. Prenons par exemple :

Les matrices A2 et B? n’ont pas le méme rang : elles ne sont pas équivalentes, et a fortiori pas colonne-équivalentes.



