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Exercice 1. Décrire le noyau et l’image de l’application linéaire suivante :

f : R3 → R2, (x, y, z)→ (x− z, y − x).

Dans chacun des cas suivants, déterminer alors si possible des bases B et B′ de R3 vérifiant la condition donnée.

a. [f ]B,B′ =

(
1 0 0

0 1 0

)
b. [f ]B,B′ =

(
0 2 0

0 0 −1

)
c. [f ]B,B′ =

(
0 0 0

0 1 1

)
.

Indication : on commencera par écrire la décomposition voulue de f(B) dans B′.

Solution: Le noyau de f est le sous-espace vectoriel de R3 d’équations x = y = z. C’est donc la droite vectorielle engendrée par

(1, 1, 1) :

Ker f = Vect((1, 1, 1)).

L’application f est donc de rang 3− 1 = 2, ce qui prouve que Im f = R2.

a. La question posée ici demande de trouver une base B = v1, v2, v3 de R3 et une base B′ = v′1, v
′
2 de R2 telles que :

[f ]B,B′ =

(
1 0 0

0 1 0

)
︸ ︷︷ ︸

”[f(B)]B′”

⇔


f(v1) = v′1

f(v2) = v′2

f(v3) = (0, 0).

La dernière condition demande à v3 d’être dans le noyau de f , et donc d’être un multiple scalaire de (1, 1, 1). Posons alors

par exemple :

v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (1, 1, 1).

La famille B est bien une base de R3 : les deux premiers éléments ne sont pas proportionnels et le troisième n’en est pas

combinaison linéaire. Pour construire cette famille, on a choisi pour v3 un élément particulier (non nul) dans le noyau de f ,

que l’on a ensuite complété (en allant ”au plus simple”) en une base de R3. Posons ensuite :

v′1 = (1,−1)︸ ︷︷ ︸
f(v1)

, v′2 = (0, 1)︸ ︷︷ ︸
f(v2)

.

Définie de cette manière la famille B′ est bien une base de R2 car les couples (1,−1) et (0, 1) ne sont pas proportionnels. Par

ailleurs, les relations écrites ci-dessus sont bien vérifiées, si bien que la matrice [f ]B,B′ est bien celle demandée.

b. La question posée ici demande de trouver une base B = v1, v2, v3 de R3 et une base de B′ = v′1, v
′
2 de R2 telles que :

[f ]B,B′ =

(
0 2 0

0 0 −1

)
︸ ︷︷ ︸

”[f(B)]B′”

⇔


f(v1) = (0, 0, 0)

f(v2) = 2v′1

f(v3) = −v′2.

La première condition demande à v1 d’être dans le noyau de f , et donc d’être un multiple scalaire de (1, 1, 1). Posons alors

par exemple :

v1 = (1, 1, 1), v2 = (1, 0, 0), v3 = (0, 1, 0).

La famille B est bien une base de R3 : les deux derniers éléments ne sont pas proportionnels et le premier n’en est pas

combinaison linéaire. Pour construire cette famille, on a choisi pour v1 un élément particulier (non nul) dans le noyau de f ,

que l’on a ensuite complété (en allant ”au plus simple”) en une base de R3. Posons ensuite :

v′1 = ( 12 ,−
1
2 )︸ ︷︷ ︸

1
2 f(v2)

, v′2 = (0,−1)︸ ︷︷ ︸
−f(v3)

.

Définie de cette manière la famille B′ est bien une base de R2 car les couples ( 12 ,−
1
2 ) et (0,−1) ne sont pas proportionnels.

Par ailleurs, les relations écrites ci-dessus sont bien vérifiées, si bien que la matrice [f ]B,B′ est bien celle demandée.

c. Il est ici impossible de trouver de telles bases B et B′. En effet, le rang de [f ]B,B′ est égal à 2 (et ce peu importe le choix de

bases), et la matrice proposée ici est de rang 1.



Exercice 2. On donne les applications linéaires suivantes, dont on note A et B les matrices respectives en base canonique :

f : R2 → R2 , (x, y)→ (3x+ 4y, 6x+ 8y) g : R2 → R2 , (x, y)→ (2x− 7y, 0).

a. Montrer que A et B sont équivalentes. Sont-elles colonne-équivalentes ? ligne-équivalentes ?

b. Déterminer deux bases de R2 dans lesquelles f est représentée par la matrice B, c’est-à-dire trouver B et B′ telles que :

[f ]B,B′ = B.

c. Montrer comment produire A à partir de B par une suite d’opérations élémentaires sur les lignes et les colonnes.

Solution:

a. On trouve :

A =

(
3 4

6 8

)
=

(
1

2

)(
3 4

)
et B =

(
2 −7
0 0

)
=

(
1

0

)(
2 −7

)
.

A et B sont toutes deux de rang 1 : elles sont équivalentes. Pour déterminer si elles sont colonne-équivalentes, regardons les

images de f et g :

Im f : 2x = y et Im g : y = 0.

Comme ces deux droites vectorielles sont différentes, on peut affirmer que A et B ne sont pas colonne-équivalentes. En terme

matriciel, cela signifie qu’il est impossible d’utiliser la même colonne pour décomposer A et B, ou encore qu’il est impossible

de transformer A en B en n’utilisant que des opérations élémentaires sur les colonnes. Enfin, pour déterminer si A et B sont

ligne-équivalentes, regardons les noyaux de f et g :

Ker f : 3x+ 4y = 0 et Ker g : 2x− 7y = 0.

Comme ces deux droites vectorielles sont différentes, on peut affirmer que A et B ne sont pas ligne-équivalentes. Au niveau

des matrices, cela signifie qu’il est impossible d’utiliser la même ligne pour décomposer A et B, ou encore qu’il est impossible

de transformer A en B en n’utilisant que des opérations élémentaires sur les lignes.

b. Cherchons les bases B et B′ via leurs matrices de changement de base P et Q depuis la base canonique :

[f ]B,B′ = B ⇔ Q−1AP = B.

Pour trouver de telles matrices, on peut essayer ”d’envoyer” la décomposition colonne-ligne trouvée au (a) pour A sur celle

de B. Autrement dit, on peut chercher P et Q inversibles telles que :

(
3 4

)
P =

(
2 −7

)
et Q−1

(
1

2

)
=

(
1

0

)
︸ ︷︷ ︸

Q( 10 )=(
1
2 )

.

Les conditions que l’on vient d’écrire ne caractérisent pas des matrices P et Q de manière unique (autrement dit, il y a de

nombreuses bases B et B′ solutions du problème posé). On peut essayer d’en deviner en y allant par tâtonnement, c’est-à-dire

en cherchant à remplir les matrices petit-à-petit de sorte à satisfaire les conditions. Par exemple, on peut prendre :

P =

(
2 −1
−1 −1

)
︸ ︷︷ ︸

fonctionne car 3·2+4·(−1)=2 et 3·(−1)+4·(−1)=−7

et Q =

(
1 0

2 1

)
︸ ︷︷ ︸

fonctionne car 1·1+0·0=1 et 2·1+1·0=2

Autrement dit, si l’on définit :

B = (2,−1), (−1,−1) et B′ = (1, 2), (0, 1)

on a bien que f est représentée par B dans les bases B et B′. Rappelons pour finir quelques méthodes pour trouver ces

matrices P et Q, dans le cas où l’on n’est pas parvenu à en deviner. Une première idée est de les chercher sous une forme

particulière, par exemple diagonale, triangulaire ... Par exemple pour P :

(
3 4

)
P =

(
2 −7

)
et P diagonale ⇒ P =

(
2
3 0

0 − 7
4

)
.

La forme diagonale ne fonctionne pas ici pour Q, il n’y a aucune matrice diagonale inversible Q vérifiant :

Q

(
1

0

)
=

(
1

2

)
.



La forme triangulaire supérieure ne fonctionne pas non plus, mais la forme triangulaire inférieure fonctionne bien. On trouve

par exemple :

Q =

(
1 0

2 1

)
,

(
1 0

2 −1

)
,

(
1 0

2
√
3

)
. . .

Une autre méthode consiste à faire apparaitre des matrices inversibles en ”complétant” les lignes et les colonnes apparaissant

dans nos relations. Par exemple pour P on ”complète” les lignes
(
3 4

)
et

(
2 −7

)
en des matrices inversibles (il y a beaucoup

de façons de s’y prendre) : (
3 4

0 1

)
P =

(
2 −7
0 1

)
.

De cette manière on demande à P de vérifier une condition supplémentaire qui n’est pas imposée par l’énoncé. L’avantage est

qu’on peut maintenant trouver P via le calcul suivant :

P =

(
3 4

0 1

)−1 (
2 −7
0 1

)
= 1

3

(
1 −4
0 3

)(
2 −7
0 1

)
=

(
2
3 − 11

3

0 1

)
.

c. En appliquant les opérations élémentaires suivantes sur B :

C1 ← 3
2C1 , C2 ← − 4

7C2 , L2 ← L2 + 2L1

on trouve la matrice A :

B =

(
2 −7
0 0

)
,

(
3 −7
0 0

)
,

(
3 4

0 0

)
, A =

(
3 4

6 8

)
.

Remarque : cette suite d’opérations fournit une autre façon d’identifier des matrices P et Q comme au (b). En effet, on sait

qu’elle correspond au produit matriciel suivant faisant intervenir des matrices élémentaires :(
1 0

2 1

)
︸ ︷︷ ︸

Q

(
2 −7
0 0

)
︸ ︷︷ ︸

B

(
3
2 0

0 1

)(
1 0

0 − 4
7

)
︸ ︷︷ ︸

P−1

=

(
3 4

6 8

)
︸ ︷︷ ︸

A

⇔ B = Q−1AP

Exercice 3. On donne l’application linéaire suivante, dont on note A la matrice dans la base canonique Bcan de R2 :

f : R2 → R2 , (x, y)→ (x+ 2y, 3x+ 5y).

On note aussi B la matrice construite en appliquant à A la suite d’opérations élémentaires suivantes :

C2 ← C2 − C1 , L1 ↔ L2 , C1 ← C1 + C2

a. Ecrire les matrices A et B. Montrer qu’elles sont colonne-équivalentes et ligne-équivalentes.

b. Déterminer une base B de R2 telle que :

[f ]B,Bcan
= B.

c. Produire B à partir de A par une suite d’opérations sur les lignes. Indication : on pourra ”passer” par la matrice I2.

Solution:

a. On trouve la matrice A directement à partir de l’expression de f , puis la matrice B en appliquant la suite d’opérations

données. On obtient :

A =

(
1 2

3 5

)
,

(
1 1

3 2

)
,

(
3 2

1 1

)
, B =

(
5 2

2 1

)
.

Les matrices A et B sont toutes les deux inversibles (elles ont pour déterminants respectifs −1 et 1). On sait alors qu’elles sont

colonne-équivalentes et ligne-équivalentes. Rappelons que cela provient du fait que les applications linéaires f et g associées

via la base canonique ont même image et même noyau :

Im f = Im g︸ ︷︷ ︸
R2

et Ker f = Ker g︸ ︷︷ ︸
{(0,0)}

.

b. En appelant P la matrice de changement de base de Bcan à B, on sait que :

[f ]B,Bcan = B ⇔ AP = B.



Comme A est inversible, on voit qu’il n’y a qu’une seule matrice P solution du problème, à savoir :

P = A−1B =

(
1 2

3 5

)−1 (
5 2

2 1

)
=

(
−5 2

3 −1

)(
5 2

2 1

)
=

(
−21 −8
13 5

)
.

On trouve donc que la base de R2 suivante :

B = (−21, 13) , (−8, 5)

est la seule base solution du problème posé. Ce n’est pas demandé explicitement, mais c’est toujours une bonne idée de vérifier

notre résultat. Pour cela, notons :

B = v1, v2 et Bcan = e1, e2.

On sait alors que :

[f ]B,Bcan
= B =

(
5 2

2 1

)
⇔

{
f(v1) = 5e1 + 2e2

f(v2) = 2e1 + e2.

On peut alors contrôler les relations que l’on vient d’écrire par un calcul direct :{
f(v1) = f(−21, 13) = (−21 + 26,−63 + 65) = (5, 2) = 5e1 + 2e2

f(v2) = f(−8, 5) = (−8 + 10,−24 + 25) = (2, 1) = 2e1 + e2.

c. Comme suggéré par l’indication, on peut chercher à obtenir B à partir de A par opérations élémentaires sur les lignes en

”visant” comme étape intermédiaire la matrice I2. Par exemple :(
1 2

3 5

)
︸ ︷︷ ︸

A

,

(
1 2

0 −1

)
,

(
1 2

0 1

)
,

(
1 0

0 1

)
︸ ︷︷ ︸

I2

,

(
1 0

2 1

)
,

(
5 2

2 1

)
︸ ︷︷ ︸

B

qui correspond à la suite d’opérations :

L2 ← L2 − 3L1 , L2 ← −L2 , L1 ← L1 − 2L2 , L2 ← L2 + 2L1 , L1 ← L1 + 2L2.

Dans cette suite de matrices, on peut penser à la première partie comme le passage de A à son échelonnée réduite en ligne,

et à la deuxième partie comme le passage de B à son échelonnée réduite en ligne, que l’on a ”renversé”. A noter qu’il n’y a

pas du tout unicité de la suite d’opérations que l’on a trouvée. Par exemple, si on utilise l’échelonnement suivant de B :(
5 2

2 1

)
︸ ︷︷ ︸

B

,

(
5 2

0 1
5

)
,

(
5 2

0 1

)
,

(
5 0

0 1

)
,

(
1 0

0 1

)

alors, en ”renversant” ce processus on obtient maintenant :(
1 2

3 5

)
︸ ︷︷ ︸

A

,

(
1 2

0 −1

)
,

(
1 2

0 1

)
,

(
1 0

0 1

)
︸ ︷︷ ︸

I2

,

(
5 0

0 1

)
,

(
5 2

0 1

)
,

(
5 2

0 1
5

)
,

(
5 2

2 1

)
︸ ︷︷ ︸

B

qui correspond à la suite d’opérations élémentaires suivantes sur les lignes :

L2 ← L2 − 3L1 , L2 ← −L2 , L1 ← L1 − 2L2 , L1 ← 5L1 , L1 ← L1 + 2L2 , L2 ← 1
5L2 , L2 ← L2 +

2
5L1.

Exercice 4. On donne les applications linéaires suivantes, dont on note A et B les matrices en bases canoniques :

f : R2 → R3

(x, y)→ (x+ 4y, 7x− 3y,−x+ 2y)

g : R2 → R3

(x, y)→ (x, y)→ (−2x+ 3y, x− 2y, 5x+ 6y)

a. Montrer que les matrices A et B sont ligne-équivalentes. Sont-elles colonne-équivalentes ?

b. On note Bcan la base canonique de R2. Déterminer une base B de R3 telle que :

[f ]Bcan,B = B.

Solution:



a. La matrice :

A =

 1 4

7 −3
−1 2


est de rang 2. En effet, elle est de taille 3×2, si bien que son rang est inférieur ou égal à 2. Par ailleurs, il n’y a pas de relation

de proportionnalité entre ses deux colonnes, si bien que son rang est strictement supérieur à 1. En raisonnant de même, on

voit que la matrice :

B =

−2 3

1 −2
5 6


est aussi de rang 2. D’après le théorème du rang, on sait donc que les noyaux de f et de g sont nuls :

Ker f = Ker g︸ ︷︷ ︸
{(0,0)}

,

d’où l’on déduit directement que les matrices A et B sont ligne-équivalentes. Pour savoir si elles sont colonne-équivalentes, il

faut déterminer si les plans vectoriels image de f et g sont égaux. Pour cela, calculons par exemple une équation de Im f :∣∣∣∣∣∣
1 4 x

7 −3 y

−1 2 z

∣∣∣∣∣∣ =
∣∣∣∣ 7 −3
−1 2

∣∣∣∣x− ∣∣∣∣ 1 4

−1 2

∣∣∣∣ y + ∣∣∣∣1 4

7 −3

∣∣∣∣ z = 11x− 6y − 31z = 0.

Or cette équation n’est pas satisfaite par les triplets suivants, qui forment une base de Im g :

g(1, 0) = (−2, 1, 5)︸ ︷︷ ︸
−22−6−153=−181̸=0

et g(0, 1) = (3,−2, 6)︸ ︷︷ ︸
33+12−186=−141̸=0

.

Les plans vectoriels image de f et g sont différents : A et B ne sont pas colonne-équivalentes.

b. En appelant P la matrice de changement de base de la base canonique de R3 à B, on sait que :

[f ]Bcan,B = B ⇔ P−1A = B ⇔ A = PB ⇔

 1 4

7 −3
−1 2

 = P

−2 3

1 −2
5 6

 .

Pour identifier une telle matrice inversible P , on peut voir A et B comme des ”débuts de matrices inversibles”, et donc

les compléter (en leur ajoutant à chacune une colonne) de sorte à en faire des matrices inversibles. Par exemple, on peut

demander à P de satisfaire :  1 4 0

7 −3 1

−1 2 0


︸ ︷︷ ︸

déterminant −6̸=0 donc inversible

= P

−2 3 0

1 −2 0

5 6 1


︸ ︷︷ ︸

déterminant 1̸=0 donc inversible

.

De cette manière on demande à P de vérifier une condition supplémentaire qui n’est pas imposée par l’énoncé. L’avantage est

qu’on peut maintenant trouver P via le calcul suivant :

P =

 1 4 0

7 −3 1

−1 2 0

−2 3 0

1 −2 0

5 6 1

−1

.

Pour calculer l’inverse qui intervient dans l’expression ci-dessus, passons par exemple par la résolution du système linéaire

général suivant (ce n’est pas la seule méthode) :
− 2x+ 3y = a

x− 2y = b

5x+ 6y + z = c

⇔


− y = a+ 2b

x− 2y = b

5x+ 6y + z = c

⇔


y = −a− 2b

x = b+ 2y = −2a− 3b

z = c− 5x− 6y = 16a+ 27b+ c

⇔


x = −2a− 3b

y = −a− 2b

z = 16a+ 27b+ c

On trouve donc : −2 3 0

1 −2 0

5 6 1

−1

=

−2 −3 0

−1 −2 0

16 27 1

 .

La matrice inversible P suivante est donc solution du problème posé :

P =

 1 4 0

7 −3 1

−1 2 0

−2 −3 0

−1 −2 0

16 27 1

 =

−6 −11 0

5 12 1

0 −1 0

 .



Autrement dit, la base suivante de R3 :

B = (−6, 5, 0) , (−11, 12,−1) , (0, 1, 0)

est solution du problème posé. Ce n’est pas demandé explicitement, mais c’est toujours une bonne idée de vérifier notre

résultat. Pour cela, notons :

Bcan = e1, e2 et B = v1, v2, v3.

On sait alors que :

[f ]Bcan,B = B =

−2 3

1 −2
5 6

 ⇔

{
f(e1) = −2v1 + v2 + 5v3

f(e2) = 3v1 − 2v2 + 6v3.

On peut alors contrôler les relations que l’on vient d’écrire par un calcul direct :{
− 2v1 + v2 + 5v3 = −2(−6, 5, 0) + (−11, 12,−1) + 5(0, 1, 0) = (1, 7,−1) = f(1, 0) = f(e1)

3v1 − 2v2 + 6v3 = 3(−6, 5, 0)− 2(−11, 12,−1) + 6(0, 1, 0) = (4,−3, 2) = f(0, 1) = f(e2).

Exercice 5. On donne, en fonction des paramètres α, β ∈ R, les deux matrices suivantes :

A =

(
α α β

α β β

)
et B =

(
α α β

β α β

)
.

a. Montrer que A et B sont toujours colonne-équivalentes.

b. A quelle(s) condition(s) sur α et β sont-elles ligne-équivalentes ? Indication : discuter selon que α = β ou α ̸= β.

Solution:

a. Il suffit de constater que l’on passe de A à B en échangeant les deux premières colonnes, ce qui correspond par exemple à

l’égalité matricielle :

AP = B avec P =

0 1 0

1 0 0

0 0 1

 .

b. Supposons dans un premier temps que α = β. Dans ce cas, les deux matrices A et B sont égales :

A = B =

(
α α α

α α α

)
.

Elles sont donc a fortiori ligne-équivalentes. On supposera dorénavant que α ̸= β. Appelons alors :

f, g : R3 → R2

les applications linéaires de matrices respectives A et B en base canonique. On cherche à savoir si f et g ont le même noyau.

Intéressons-nous à celui de f , qui n’est autre que l’ensemble des solutions du système homogène de matrice A :{
αx+ αy + βz = 0

αx+ βy + βz = 0
⇔

{
αx+ αy + βz = 0

(β − α)y = 0
⇔

{
αx+ βz = 0

y = 0 (car α ̸= β)

Comme α ou β est non nul (puisque ces deux réels sont distincts) on voit que la première équation dans le dernier système

n’est pas 0x+ 0z = 0. Elle est donc indépendante de la deuxième, si bien que le noyau de f est ici la droite vectorielle :

Ker f = Vect((β, 0,−α)).

Or on sait d’après (a) que f et g ont le même rang. Le noyau de g est donc aussi une droite vectorielle, et on a :

Ker f = Ker g ⇔ g(β, 0,−α)︸ ︷︷ ︸
(0,β(β−α))

= (0, 0) ⇔ β = 0.

Si β ̸= 0 alors les matrices A et B ne sont donc pas ligne-équivalentes. Si par contre β = 0 alors A et B sont ligne-équivalentes.

Dans ce cas on peut en effet relier A à B par une suite d’opérations élémentaires sur les lignes :

A =

(
α α 0

α 0 0

)
,

(
α α 0

0 −α 0

)
, B =

(
α α 0

0 α 0

)
qui correspond à la suite d’opérations :

L2 ← L2 − L1 , L2 ← −L2.

En conclusion, on a donc :

A et B ligne-équivalentes ⇔ α = β ou β = 0.



Exercice 6. Décrire le noyau et l’image de l’application linéaire suivante :

f : R3 → R3, (x, y, z)→ (3x+ 2y + z,−3x+ z,−y − z).

Si c’est possible, déterminer alors une base B de R3 vérifiant la condition donnée.

a. La dernière colonne de la matrice [f ]B est nulle.

b. Même condition qu’au a. et, en supplément, la dernière ligne de la matrice [f ]B est nulle.

c. Mêmes conditions qu’au b. et, en supplément, la première colonne de la matrice [f ]B est
(

0
1
0

)
.

Solution: Le noyau de f est le sous-espace vectoriel de R3 formé des solutions du système :
3x+ 2y + z = 0

− 3x+ z = 0

− y − z = 0

⇔

{
z = 3x

y = −3x
⇔ (x, y, z) = x(1,−3, 3).

C’est donc la droite vectorielle engendrée par (1,−3, 3) :

Ker f = Vect((1,−3, 3)).

L’application f est de rang 2. Le sous-espace vectoriel Im f est un plan vectoriel, dont on obtient une base à chaque fois que l’on

produit par f deux éléments de R3 qui ne sont pas proportionnels, comme par exemple :

f(1, 0, 0) = (3,−3, 0) = 3(1,−1, 0) et f(0, 1, 0) = (2, 0,−1).

On voit donc que le plan vectoriel Im f admet (1,−1, 0), (2, 0,−1) pour base et possède donc pour équation :∣∣∣∣∣∣
x 1 2

y −1 0

z 0 −1

∣∣∣∣∣∣ =
∣∣∣∣−1 0

0 −1

∣∣∣∣x− ∣∣∣∣1 2

0 −1

∣∣∣∣ y + ∣∣∣∣ 1 2

−1 0

∣∣∣∣ z = x+ y + 2z = 0.

a. Notons v1, v2, v3 les éléments de la base B recherchée. La dernière colonne de [f ]B est nulle si et seulement si :

[f(v3)]B =

0

0

0


︸ ︷︷ ︸
3ème colonne de [f ]B

⇔ f(v3) = (0, 0, 0) ⇔ v3 ∈ Ker f.

Posons alors :

v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (1,−3, 3).

La famille B définie de cette manière est bien une base de R3 : les deux premiers éléments ne sont pas proportionnels et le

troisième n’en est pas combinaison linéaire. Par ailleurs, d’après la description du noyau de f obtenue ci-dessus on voit que

B vérifie bien la condition proposée ici.

b. La question posée revient à demander à ce que la matrice de f dans la base B soit de la forme suivante :

[f ]B =

α γ 0

β δ 0

0 0 0


pour certains réels α, β, γ et δ. De manière équivalente, on souhaite satisfaire des relations du type :

f(v1) = αv1 + βv2

f(v2) = γv1 + δv2

f(v3) = (0, 0, 0).

Les deux premières relations seront vérifiées si v1, v2 forment une base de Im f : en effet, dans ce cas f(v1) et f(v2) s’écriront

automatiquement comme combinaison linéaire de v1 et v2, puisqu’ils appartiennent à Im f . Posons alors :

v1 = (1,−1, 0), v2 = (2, 0,−1), v3 = (1,−3, 3).

La famille B ainsi définie est bien base de R3 : les deux premiers éléments ne sont pas proportionnels et engendrent le plan

vectoriel d’équation x + y + 2z = 0, sur lequel le troisième élément ne se trouve pas. Elle vérifie bien des relations du type



ci-dessus et répond donc bien au problème posé, d’après l’argument donné ci-dessus. Ce n’est pas demandé, mais cherchons

explicitement la matrice [f ]B. Pour cela, calculons la famille f(B) et décomposons-la sur B. On trouve :
f(1,−1, 0) = (1,−3, 1) = 3(1,−1, 0)− (2, 0,−1)
f(2, 0,−1) = (5,−7, 1) = 7(1,−1, 0)− (2, 0,−1)
f(v3) = (0, 0, 0).

si bien que :

[f ]B =

 3 7 0

−1 −1 0

0 0 0

 .

c. En reprenant les notations ci-dessus, on voit que l’on souhaite maintenant satisfaire des relations du type :
f(v1) = v2

f(v2) = γv1 + δv2

f(v3) = (0, 0, 0)

(correspondant au cas où α = 0 et β = 1). Posons alors :

v1 = (1,−1, 0), v2 = (1,−3, 1)︸ ︷︷ ︸
f(v1)

, v3 = (1,−3, 3).

La famille B ainsi définie est bien base de R3 : les deux premiers éléments ne sont pas proportionnels et engendrent le plan

vectoriel d’équation x + y + 2z = 0 (c’est-à-dire Im f), sur lequel le troisième élément ne se trouve pas. Calculons alors la

famille f(B) et décomposons-la sur B. On trouve :
f(1,−1, 0) = (1,−3, 1)
f(1,−3, 1) = (−2,−2, 2) = −4(1,−1, 0) + 2(1,−3, 1)
f(v3) = (0, 0, 0).

si bien que :

[f ]B =

0 −4 0

1 2 0

0 0 0


a bien la forme voulue.

Exercice 7. On donne les applications linéaires suivantes, dont on note A et B les matrices respectives en base canonique :

f : R3 → R3

(x, y, z)→ (5x+ 4y + z, x+ 5y + 5z,−x+ 2y + 3z)

g : R3 → R3

(x, y, z)→ (3x+ y + 2z, x+ 2y + z,−7x+ 6y − 3z)

a. Les matrices A et B sont elles équivalentes ? colonne-équivalentes ? ligne-équivalentes ?

b. Dans M3(R), déterminer une matrice qui est colonne-équivalente à A et ligne-équivalente à B.

Solution:

a. Cherchons le rang de la matrice A :

A =

 5 4 1

1 5 5

−1 2 3

 .

Il n’y a visiblement pas de relation de proportionnalité entre ses colonnes prises deux-à-deux. Par conséquent, A est de rang

supérieur ou égal à 2. Pour savoir si elle est de rang 2 ou de rang 3, on peut par exemple calculer son déterminant :

detA =

∣∣∣∣∣∣
5 4 1

1 5 5

−1 2 3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
0 −21 −24
1 5 5

0 7 8

∣∣∣∣∣∣ = −
∣∣∣∣−21 −24
7 8

∣∣∣∣ = 3

∣∣∣∣7 8

7 8

∣∣∣∣ = 0.

On voit donc que A est de rang 2. Passons à l’étude du rang de B :

B =

 3 1 2

1 2 1

−7 6 −3

 .



Il n’y a visiblement pas non plus de relation de proportionnalité entre ses colonnes prises deux-à-deux. Par conséquent, B est

de rang supérieur ou égal à 2. Pour savoir si elle est de rang 2 ou de rang 3, calculons aussi son déterminant :

detB =

∣∣∣∣∣∣
3 1 2

1 2 1

−7 6 −3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
0 1 0

−5 2 −3
−25 6 −15

∣∣∣∣∣∣ = −
∣∣∣∣ −5 −3
−25 −15

∣∣∣∣ = −5 ∣∣∣∣5 3

5 3

∣∣∣∣ = 0.

On voit donc que B est de rang 2. Les matrices A et B ont donc le même rang : elles sont équivalentes. En termes matriciels,

il est possible de décomposer A et B en utilisant le même nombre de colonnes et de lignes, ou de relier A à B par une suite

d’opérations élémentaires portant sur les colonnes et sur les lignes. Pour déterminer si A et B sont colonne-équivalentes, il

faut déterminer si les plans vectoriels image de f et g sont égaux. Pour cela, calculons par exemple une équation de Im f :∣∣∣∣∣∣
5 4 x

1 5 y

−1 2 z

∣∣∣∣∣∣ =
∣∣∣∣ 1 5

−1 2

∣∣∣∣x− ∣∣∣∣ 5 4

−1 2

∣∣∣∣ y + ∣∣∣∣5 4

1 5

∣∣∣∣ z = 7x− 14y + 21z︸ ︷︷ ︸
7(x−2y+3z)

= 0.

Or cette équation n’est pas satisfaite par les triplets suivants, qui appartiennent tous à Im g :

g(1, 0, 0) = (3, 1,−7)︸ ︷︷ ︸
3−2−21=−20̸=0

, g(0, 1, 0) = (1, 2, 6)︸ ︷︷ ︸
1−4+18=15̸=0

et g(0, 0, 1) = (2, 1,−3)︸ ︷︷ ︸
2−2−9=−9̸=0

.

Les plans vectoriels image de f et g sont différents : A et B ne sont pas colonne-équivalentes. En termes matriciels, il est

impossible de décomposer A et B en utilisant les mêmes colonnes, ou de relier A à B par une suite d’opérations élémentaires

portant uniquement sur les colonnes. Passons à l’étude de la ligne-équivalence de A et B. Il faut cette-fois ci déterminer si les

noyaux de f et g (qui sont des droites vectorielles) sont égaux. Pour cela, cherchons par exemple celui de f , en résolvant le

système suivant :
5x+ 4y + z = 0

x+ 5y + 5z = 0

− x+ 2y + 3z = 0

⇔


− 21y − 24z = 0

x+ 5y + 5z = 0

7y + 8z = 0

⇔

{
x = 5

7z

y = − 8
7z

⇔ (x, y, z) = z
7 (5,−8, 7).

Il n’y a alors plus qu’à constater que :

g(5,−8, 7) = (21,−4,−104) ̸= (0, 0, 0)

pour affirmer que les noyaux de f et g sont distincts : A et B ne sont pas ligne-équivalentes. En termes matriciels, il est

impossible de décomposer A et B en utilisant les mêmes lignes, ou de relier A à B par une suite d’opérations élémentaires

portant uniquement sur les lignes.

b. Il y a de nombreuses matrices solutions du problème posé. On peut prendre par exemple :

C =

 5

1

−1

(
3 1 2

)
+

4

5

2

(
1 2 1

)
=

19 13 14

8 11 7

−1 3 0

 .

En effet, de cette manière on définit une matrice de rang 2 : elle admet une décomposition colonne-ligne de longueur 2 (et est

donc de rang inférieur ou égal à 2) et ses colonnes ne sont visiblement pas deux-à-deux proportionnelles. La décomposition de

C écrite ci-dessus est minimale, si bien que, si l’on appelle h : R3 → R3 l’application linéaire de matrice C en base canonique,

on a :

Imh = Im f︸ ︷︷ ︸
Vect((5,1,−1),(4,5,2))

et Kerh = Ker g :

{
3x+ y + 2z = 0

x+ 2y + z = 0.

On en déduit bien que C est colonne-équivalente à A et ligne-équivalente à B.

Exercice 8. Est-il vrai ou faux de dire que, pour tout choix de matrices colonne-équivalentes A,B ∈ M2(R) on a :

a. A et A+B sont colonne-équivalentes ? b. BA et B2 sont colonne-équivalentes ? c. A2 et B2 sont colonne-équivalentes ?

Si vous pensez que c’est vrai expliquez pourquoi. Si vous pensez que c’est faux, donnez un contre-exemple.

Solution:



a. C’est faux. Prenons par exemple :

A =

(
1 0

0 1

)
︸ ︷︷ ︸

I2

et B =

(
−1 0

0 −1

)
︸ ︷︷ ︸

−I2

.

Les matrices A et B sont inversibles. On sait donc qu’elles sont colonne-équivalentes (et aussi ligne-équivalentes). On peut

par exemple écrire :

B = AP avec P = A−1B = −I2.

Cependant, A + B est la matrice nulle, et n’est donc pas équivalente à A (elles n’ont pas le même rang) : les matrices A et

A+B ne sont donc pas colonne-équivalentes.

b. C’est vrai. En effet, comme A et B sont colonne-équivalentes, il existe une matrice inversible P telle que :

B = AP.

Multiplions les deux membres de cette égalité par B à gauche. On obtient :

B2 = B(AP ) = (BA)P,

ce qui montre bien que B2 et BA sont colonne-équivalentes. En fait, une suite d’opération élémentaires sur les colonnes qui

transforme A en B transforme aussi BA en B2.

c. C’est faux. Prenons par exemple :

A =

(
1 1

0 0

)
et B =

(
0 1

0 0

)
.

Ces deux matrices sont colonne-équivalentes. Elles peuvent en effet être décomposées en utilisant la même colonne :

A =

(
1

0

)(
1 1

)
et B =

(
1

0

)(
0 1

)
.

On peut aussi observer que B est obtenue à partir de A par l’opération C1 ← C1 −C2. Calculons alors les carrés de A et B :

A2 =

(
1 1

0 0

)(
1 1

0 0

)
=

(
1 1

0 0

)
= A︸ ︷︷ ︸

A est une matrice de projection

et B2 =

(
0 1

0 0

)(
0 1

0 0

)
=

(
0 0

0 0

)
︸ ︷︷ ︸

B est nilpotente

.

Les matrices A2 et B2 n’ont pas le même rang : elles ne sont pas équivalentes, et a fortiori pas colonne-équivalentes.


