Algebre Linéaire & Géométrie Mise & niveau, EPFL

Série 13

Exercice 1. Soit n € N. Dans chacun des cas suivants, calculer A™ en fonction de n, ou A est la matrice proposée.

2 0 4 1 1 1
wa=(5 2 ba=(g 4 ca=(2 1)

Solution:

a. Comme A est diagonale, on a vu au cours que la matrice A™ est obtenue en élevant chacun des coeflicients diagonaux a la

4= (25 o)

4n pgnl 4 n
A" = =41 .
(b " )=r (0 %)
Au passage, expliquons comment retrouver ce résultat a l’aide de la formule du binéme de Newton. On écrit la matrice

proposée sous la forme :
0 1
A =4I
2+ <0 0>

——
N

puissance n :

b. D’apres le résultat vu au cours, on a ici :

puis on éleve & la puissance n (la formule du bindéme s’applique bien ici car les matrices 415 et N commutent) :
~ (1 kark
n_ n—
A ’; ( k>4 N*,
La matrice N étant de carré nul, seuls les indices k = 0 et £k = 1 apportent une véritable contribution a la somme. On trouve

alors :

A" = 4" + nd"TIN = 47 (3 Z) .

c. La matrice A proposée ici ne posséde aucune valeur propre réelle. Elle est en fait ici déja sous forme réduite. Ecrivons-la alors
sous forme ”polaire” :

On a par exemple :

Exercice 2. On donne deux suites numériques (uy)nen €t (Un)nen vérifiant ug =1, vg = 0 et :

Up4+1 = DUy — 3V
Vn € N, " " "
Un+t1 = Up — Up.

Calculer les valeurs exactes de u,, et v,, en fonction de n.




Solution: On considére la matrice :

=5 )

ainsi que l'application linéaire f ayant A pour matrice en base canonique :

f:R? = R? (z,y) — (52 — 3y, 3z — y).
Un 41 _ A Up,
Un+1 Un
() e () =)
Un, - Vo 0

n fois

Pour tout entier n > 0, on a donc la relation :

qui entraine par récurrence que :

Cherchons maintenant & réduire f (ou A). Pour cela, on commence par calculer son polynéme caractéristique :
Xp(X) = X2 —tr(A)X +det(A) = X? —4X +4= (X —2)%

Par conséquent f possede une unique valeur propre, a savoir 2. Comme ’application f n’est pas égale a 2idgz, on sait qu’elle admet

2 1
0 2/)°
On cherche alors une base B = u,v de R? vérifiant :

e (33) @

On sait par ailleurs que dans ce cas on peut prendre pour v n’importe quel vecteur "non propre” de f. Posons par exemple :

pour forme réduite la matrice :

v =(1,0).

Ce n’est pas un vecteur propre de f car :
fv) = f(1,0) = (5,3)

n’est pas proportionnel & v. On déduit alors u de la deuxieme égalité dans le systeme écrit ci-dessus :
u = f(l)) - = (573) - 2(170) = (333)

Ainsi définie, la famille B = u, v est bien une base de R? et les relations ci-dessus sont bien vérifiées :

Au niveau matriciel, on vient d’établir que :

2 1 31
—1 N o
p AP(O 2), ouP<3 0)

est la matrice de changement de base de la base canonique de R? & B. On en déduit :
2 1 2 1\" 1/3 1\ /2" n2v1\ (0 1 3n+2  —3n
A" = (P pPhHr=p Pt=— =2t
( <0 2> ) (O 2) 3 (3 0> (O 2n ) <3 3> 3n 2—-3n)’
un) _ an (1) (3n +2)2" !
vn) 0/ 3n2n—1 '

Finalement, on a donc établi les expressions suivantes pour u, et v, :

puis :

VneN, wu,=Bn+2)2""" et wv,=3n2""".



Exercice 3. On donne deux suites numériques (u, )nen €t (vn)nen vérifiant :

1 1
Up+1 = ﬁun + §'Un

Vn € N,
Vpp1 = (V3 = 2)u, + \/gvn.

a. Calculer la valeur exacte de cos(75).

b. Montrer que les suites données sont périodiques.

Solution:

a. Observons par exemple que :
s

T jus
12 7 3

T

On a alors, d’apres les formules vues au cours de trigonométrie :

1 v2, V3 V2 V246
2 2 2 2 4

Remarque : il y a beaucoup de manieéres de procéder. On pourrait par exemple observer aussi que {5 est la moitié de § et
utiliser les formules de bissection.

cos({5) = cos(§) cos(§) + sin(5) sin(§) =

b. Notons A la matrice : ) .
V2 2
A =
(ﬁ -2 f)

et f l'application linéaire :
[iR2 = R?, (2,y) = (

N[—=

%x +
(un-‘rl) — A (un)
Un+41 Un
()= () = (2)
Un, ~—— \ g Vo

n fois

Pour tout entier n > 0, on a donc la relation :

qui entraine par récurrence que :

Cherchons maintenant a réduire f (ou A). Comme :

V2+v6
2

on voit que f a pour polynéme caractéristique :

— 4l _ 1 3_ 1 —
trA = 2cos(ﬁ) et detA—ﬁ'\gfg(\/gf@fl,

X% - 2cos({5)X +1= (X — cos(%))2 + (5111(%))2
L’application linéaire f admet donc pour forme réduite la matrice de rotation :
R — (cosl’r2 —sin 1”2> .

P T s
12 Sin 13 COS 13

Au niveau matriciel, il existe une matrice 2 x 2 inversible P telle que :
P 'AP=Rx ouencore A=PRxP %L
12 12
Par conséquent, on voit par exemple que :

A** = (PRx P Y)Y =PRY P '=PRy, P! =1L,.
12 12 VI
2

(un+24> _ gnt24 <U0> — A2 47 <U0> e (UO) _ <un>
VUp+24 Vo Vo Vo Un )

VneN, Uptos=1u, €t Vptoq = Vn.

On trouve alors :

Autrement dit :

Les suites (un)nen €t (U )nen sont donc bien périodiques (la période de chacune de ces suites étant un diviseur de 24), et ce
indépendamment de leurs valeurs initiales.

Remarque : pour résoudre cet exercice, il n’a pas été nécessaire d’effectuer concretement la réduction de f. Seule la connaissance
de la forme réduite a été utile.



Exercice 4. Dans chacun des cas suivants, déterminer une matrice B € Ma(R) telle que A = B? :

36 0 34 —15
a'A_<o 49) b'A_<5o 21)

Indication : pour b. et c. on pourra commencer par réduire A.

7T =25
c. A= (2 7).

Solution:

a. Si l'on pose :

o= %)
(69 5

f:R* = R? (z,y) — (342 — 15y, 50z — 21y)

on obtient ici directement :

. Introduisons ’application linéaire :

de matrice A en base canonique et cherchons & réduire f (ou A). Commencons pour cela par calculer son polynéme ca-
ractéristique :

trA=234-21=13 )
XF(X) = X2 13X +36 = (X —4)(X —9).

det A =34 (=21) +15- 50 = —714 + 750 = 36

Par conséquent f possede deux valeurs propres, a savoir 4 et 9. On peut donc déja affirmer que f est diagonalisable. Pour
déterminer une base propre, commengons par calculer les matrices :

30 —15 15 25 —15 5
A—AlL = (50 _25> = (25> (2 -1) e A-9L= (50 _3()) = (10) (5 -3).

On en déduit alors :
Ker(f —4idgz): 2e =y et Ker(f —9idgz) : 5z = 3y.

Vect((1,2)) Vect((3,5))

On voit donc que la famille suivante :

B=(1,2),(3,5)

est une base de R? qui est formée de vecteurs propres pour f : c’est une base propre pour f. Par conséquent, on a :

4 0 1 3
=P AP = W P =
s (0 9) > o (2 5)
est la matrice de changement de base de la base canonique de R? & B. Posons alors :
2 0 1 3 2 0 -5 3 8§ -3
B=P Pl = = :
<0 3> (2 5) (O 3) ( 2 —1> (10 —3)
2

32—(1’(3 S)P1)2—P(§ g) Pl—P(é g)Pl—A.

On a donc bien trouvé une racine carrée de A.

On voit alors que :

. Introduisons lapplication linéaire f ayant A pour matrice en base canonique :
f:R? = R? (z,y) — (Tx — 25y, 22 — Ty)

et cherchons maintenant & réduire f (ou A). Pour cela, on commence par calculer son polynéme caractéristique :

Xf(X) = X? + 1.

trA=7-7=0
det A=-49+50=1

L’application f ne possede donc aucune valeur propre réelle. La forme du polynéme caractéristique que ’on a obtenue montre
que f admet pour forme réduite la matrice :
0 -1
(i)



On cherche alors une base B = u, v de R? vérifiant :

0 -1 flu)=v
fls = ( ) A
L/] 1 0 f(v) = —u.
On sait par ailleurs que dans ce cas on peut prendre pour u n’importe quel élément non nul de R?, comme par exemple (1,0).
On déduit alors v de la premiere égalité ci-dessus :

Ainsi définie, la famille B = u, v est bien une base de R? et les relations ci-dessus sont bien vérifiées :

{f(U) = f(1,0)=(7,2) =0
Fv) = £(7,2) = (~1,0) = —u.

Au niveau matriciel, on vient d’établir que :

0 -1 17
1 N .
P AP<1 0>,ouP<0 2>

est la matrice de changement de base de la base canonique de R? & B. Observons & présent que la forme réduite de A que
I'on a trouvée n’est autre que la matrice de rotation Rx . Pour extraire une racine carrée de cette forme réduite, on peut donc
2
naturellement penser & la matrice de rotation Rx (le processus géométrique de tourner d’un angle de 7 est le méme que celui
1

de tourner deux fois consécutivement d'un angle de 7). On est donc amené a poser :

cosT —sinZ 1 7\ /1 -1\ /1 -1 8 —25
B=pP( 4 it pl=2 2) =2
(Sinz cosl) 2\ 2)\1 1/)\0 1% 2\2 -6

R

[

ISE)

On voit alors que :

B?=(PRxP "2 =PR%P ' =PRzP ' = A
4 4 2

On a donc bien trouvé une racine carrée de A.

Exercice 5. La figure ci-dessous représente deux points P et () reliés entre eux par des chemins & sens unique, dont le nombre

T,
—

a. Compter le nombre de chemins a 2 étapes allant de P a P, de P a ), de Q a P et de Q a Q.

1
est donné par les coefficients de la matrice A = ( 3> :

Q

b. Calculer la matrice A? et comparer avec les nombres trouvés en a. Que constatez-vous ?

c. En généralisant, interpréter, pour tout n > 1, les coefficients de la matrice A™ comme nombres de chemins & n étapes
dans le circuit, puis montrer votre résultat. Indication : on pourra raisonner par récurrence.

d. Calculer, en fonction de lentier n, le nombre de chemins a n étapes joignant P a Q.

Solution:

a. Pour se rendre de P & P en 2 étapes il y a deux options : soit on emprunte deux fois successivement le chemin qui boucle
sur P, soit on se rend au point @ en utilisant I'un des 3 chemins possibles, puis I'on revient a P en empruntant I'un des 2
chemins possibles. Au total, on dénombre donc :

1x14+3x2=7

possibilités. Pour se rendre de P a () en 2 étapes, on doit d’abord emprunter le chemin qui boucle sur P, puis 'un des 3
chemins qui vont de P & @ (et ce car il n’y a pas de chemin qui boucle sur ). On trouve donc ici :

1x3=3

possibilités. En raisonnant de la méme fagon, on constate qu’il y a 2 manieres de passer de () & P en 2 étapes et 6 maniéres
de relier @ a lui-méme en 2 étapes.



b. Un calcul direct montre que :
42 L3\ (1 3\ _ 7 3
2 0/\2 0 2 6)°
On constate alors que les coefficients dans cette matrice sont exctement ceux que l'on a trouvé en a.

c. Pour tout n > 1, introduisons les nombres de chemins a n étapes dans le circuit, selon le schéma suivant :

Yo On nombre de chemins a n étapes allant de Q a P nombre de chemins & n étapes allant de Q a @

ay By (1 3\ _ az P2\ (T 3\ _ o
(71 51>_<2 0>_A « (72 52>_<2 6)_14'

En se basant sur ces premieres valeurs, on conjecture que :

Qo 5n _An
b (vn 6n>_A‘

Montrons a présent ce résultat en raisonnant par récurrence, 'initialisation ayant déja été faite. Supposons maintenant que
cette égalité a lieu pour n et cherchons a ’établir pour n+1. Intéressons-nous alors par exemple au coefficient a,41. Observons
que pour relier P a lui-méme en n + 1 étapes il y a deux cas : soit on emprunte I’'un des a,, chemins a n étapes qui partent
et arrivent en P et on ajoute comme n + 1-éme étape le chemin qui boucle sur P (une seule possibilité), soit on se rend au
point Q en n étapes (il y a donc 3, possibilités) et on termine en empruntant 'un des 2 chemins qui reviennent sur P depuis

(an ﬁn> B (nombre de chemins & n étapes allant de P & P nombre de chemins & n étapes allant de P & Q)

On a par exemple :

Vn

WV

Q. En définitive, on a donc la relation :
Ong1 = Qp + 206,.

Passons a I’étude du coefficient 5,1. Cette fois-ci, comme il n’y aucun chemin qui boucle sur ), on voit que pour rejoindre
P a @ en n+ 1 étapes il faut emprunter I'un des «, chemins qui conduisent de P & lui-méme en n étapes, puis finir en
empruntant I'un des 3 chemins allant de P a (). Ceci montre la relation :

ﬁn-&-l = 3ap.-

En raisonnant de méme, on prouve aussi les deux relations :

Y+l =Yn + 20, €t Spp1 = 3.

Au niveau matriciel, on obtient alors :

<an+1 6n+1) _ (an +25n 3an> _ (an 671) (1 3) — Antl
Yn+1 6n+1 Tn + 2571 3'771 Tn 6n 2 0

—_—— ——
A™ par hypothese A

Ceci acheve de prouver par récurrence la propriété voulue.

d. D’apres le c., le nombre recherché ici est donc le coefficient en haut & droite dans la matrice A™. Pour trouver ce coefficient,
introduisons ’application linéaire :
fiR? 5 R? (2,y) = (z + 3y, 22)

de matrice A en base canonique et cherhcons & réduire f (ou A). Commengons pour cela par calculer son polynéme ca-
ractéristique :
(X)) = X2 —tr(A)X +det(A) = X? - X — 6= (X +2)(X —3).

Par conséquent f possede deux valeurs propres, a savoir —2 et 3. On peut donc déja affirmer que f est diagonalisable. Pour
déterminer une base propre, commencgons par calculer les matrices :

A+212:(‘;’ ;’)=<2>(1 1) et A—312:<22 33)2(1)(—2 3).

Ker(f 4+ 2idg2) :z+y=0 et Ker(f —3idge): 2z =3y.

Vect((1,—1)) Vect((3,2))

On en déduit alors :

On voit donc que la famille suivante :
B=(1,-1),(3,2)

est une base de R? qui est formée de vecteurs propres pour f : c’est une base propre pour f. Par conséquent, on a :

_ -2 0 . 1 3
[f]B:PlAP:<O 3>,ouP:<_1 2)



est la matrice de changement de base de la base canonique de R? & B. On trouve maintenant :

-2 0\ ,_ -2 0\ _ 1 3\ /(=2 0\ /2 -3
( (0 3) ) <O 4) 5\ -1 2 0 3/ \1 1
a1 3 [2(=2)" =3(=2)"\ _, gntl 4 2(—2)n  3ntl —3(=2)"
5\-1 2 3" 3" S\ 23" — (=2)™) 2-3"+3(-=2)")"
Le nombre de chemins a n étapes joignant le sommet de gauche a celui de droite est donc :
s =3(=2)") = 3" - (-2)").
Voila alors les premieres valeurs de la suite obtenue :

3,3,21,39,165,399,1389...

Exercice 6. Soit a € R. On considére une suite numérique (u,,)nen définie par les données initiales ug = a, u; = 1 et :
VneN, Upto = Tupt1 — 12u,.

a. Dans le cas ou o = 0, calculer la valeur exacte de u,, en fonction de n.

b. Déterminer la valeur de o sachant que la suite (5%),en possede une limite finie, et calculer cette limite.

Solution:  Avant de répondre aux deux questions posées, rappelons la stratégie vue au cours pour manier ce genre de suites. On
considére I'application linéaire :
f:R?2 5 R? (z,y) — (T — 12y, z)

A (7 —12)
1 0
(un+2> _ <7un+1 - 12un> — A (Un+1>
Un+1 Un+1 Un
Un+1 —A... A Uy — A" 1
Up, —— \up a)’

fois

et sa matrice :

en base canonique. On a alors :

si bien que, par récurrence :

a. Dans le cas ou o = 0, la discussion qui précede montre que u,, est le coefficient en bas a gauche dans la matrice A™. Pour
trouver ce coefficient, on va chercher a réduire f (ou A). Commencgons par calculer son polyndme caractéristique :

(X)) = X2 —tr(A)X +det(A) = X? —7X +12= (X - 3)(X — 4).

Par conséquent f possede deux valeurs propres, a savoir 3 et 4. On peut donc déja affirmer que f est diagonalisable. Pour
déterminer une base propre, commencons par calculer les matrices :

A=3I = (‘11 __132) = (f) (1 -3) et A-4L= G __142) = (i’) (1 —4).

On en déduit alors :
Ker(f —3idg2) : 2 =3y et Ker(f —4idg2) : 2z =4y.

Vect((3,1)) Vect((4,1))

On voit donc que la famille suivante :
B=(3,1),(4,1)

est une base de R? qui est formée de vecteurs propres pour f : c’est une base propre pour f. Par conséquent, on a :

30 3 4
_ p-1 _ LoD
fls=P AP<O 4>,ouP<1 1)
est la matrice de changement de base de la base canonique de R? & B. On trouve maintenant :
3 0 3 0\ 3 4\ /3" 0 -1 4 gntl _gntl 4. gntl 3. yntl
A" = (P phr=p Pl = = :
e =@l =0 )@ 2GS =T )

On a déja dit que u,, se trouve en bas a gauche dans cette matrice :

VneN, wu,=4"-3".



b. Revenant au cas général, on peut utiliser la formule pour A™ trouvée au a. et la relation :
Un+1 _ An 1
Up, @

Up = 4" —3" + a(4-3" — 3-4") = (da — 1)3" + (1 — 3a)4"™.

obtenue ci-dessus pour trouver I'expression :

On en déduit alors :
Up

T (dor— 1) + (1 = 3a)(3)™

Pour que cette suite possede une limite finie, il faut donc que « soit égal a %, auquel cas la limite recherchée est %

Exercice 7. On donne une matrice A € My(R). Montrer ’égalité suivante :
A? —tr(A)A + det(A)I, = 0.

Ce résultat porte le nom de théoréme de Cayley-Hamilton.

Solution: Notons :

-9

On a donc :

det(A) =a6—ﬁ'y7 tr(A) —a+d et A2 — <a2+ﬁ’y (Oé—i—é)ﬁ) .

(a+9d)y 62+ By

si bien que :

A% — tr(A)A + det(A) I, = <a2 + By — (a+8)a+ (ad — B7)

1 (a+8)B—(a+8)B+ (ad—By)-0
(a+68)y—(a+8)y+ (ad—By)-0 (82+By) — (a+686)5+ (ad — By) - 1

)=o)




