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Exercice 1. Déterminer une forme réduite de l’application linéaire f : R2 → R2 donnée.

a. f : (x, y) → (14x+ 25y,−x+ 4y) b. f : (x, y) → (2x+ 5y,−2x) c. f : (x, y) → (10x− 21y, 4x− 9y).

On ne demande pas d’effectuer la réduction explicitement.

Solution:

a. La matrice de f dans la base canonique est :

A =

(
14 25

−1 4

)
,

qui a trace 18 et déterminant 81. Le polynôme caractéristique de f vaut par conséquent :

χf (X) = X2 − 18X + 81 = (X − 9)2.

Comme f n’est pas égale à 9 idR2 , on sait alors qu’elle admet alors pour forme réduite la matrice (triangulaire supérieure) :

R =

(
9 1

0 9

)
.

Autrement dit, on peut trouver (ce n’est pas demandé ici) des bases B de R2 (ou des matrices 2× 2 inversibles P ) telles que :

[f ]B = P−1AP = R.

A noter que l’on pourrait aussi travailler avec la forme réduite suivante (triangulaire inférieure) :(
9 0

1 9

)
.

Il suffirait pour cela simplement d’échanger l’ordre des vecteurs dans la base B (ou les deux colonnes de P ).

b. La matrice de f dans la base canonique est :

A =

(
2 5

−2 0

)
,

dont la trace vaut 2 et le déterminant 10. Le polynôme caractéristique de f vaut par conséquent :

χf (X) = X2 − 2X + 10 = (X − 1)2 + 32.

L’application linéaire f n’admet aucune valeur propre réelle. Une forme réduite de f est la matrice :

R =

(
1 −3

3 1

)
ou

(
1 3

−3 1

)
.

Autrement dit, on peut trouver (ce n’est pas demandé ici) des bases B de R2 (ou des matrices 2× 2 inversibles P ) telles que :

[f ]B = P−1AP = R.

c. La matrice de f dans la base canonique est :

A =

(
10 −21

4 −9

)
dont la trace vaut 1 et le déterminant −6. Le polynôme caractéristique de f vaut par conséquent :

χf (X) = X2 −X − 6 = (X + 2)(X − 3).

L’application linéaire f admet donc deux valeurs propres distinctes. Elle est diagonalisable et admet pour forme réduite :

R =

(
−2 0

0 3

)
ou

(
3 0

0 −2

)
.

Autrement dit, on peut trouver (ce n’est pas demandé ici) des bases B de R2 (ou des matrices 2× 2 inversibles P ) telles que :

[f ]B = P−1AP = R.



Exercice 2. On donne l’application linéaire :

f : R2 → R2, (x, y) → (3x− 2y,−x+ 2y).

a. Calculer le polynôme caractéristique de f et en déduire ses valeurs propres.

b. f est-elle diagonalisable ? Si oui, donner une base propre pour f .

c. Représenter sur un croquis les sous-espaces propres de f ainsi qu’un point (x, y) et son image f(x, y) par f .

Solution:

a. La matrice de f en base canonique est :

A =

(
3 −2

−1 2

)
.

On a donc :

trA = 3 + 2 = 5 et detA = 6− 2 = 4,

si bien que le polynôme caractéristique de f vaut :

χf (X) = X2 − tr(A)X + det(A) = X2 − 5X + 4 = (X − 1)(X − 4).

Par conséquent f possède deux valeurs propres, à savoir 1 et 4.

b. D’après le a. on peut déjà affirmer que f est diagonalisable. Pour déterminer une base propre, calculons la matrice :

A− I2 =

(
2 −2

−1 1

)
=

(
2

−1

)(
1 −1

)
.

Dans la décomposition colonne-ligne que l’on vient d’écrire, la ligne correspond à une équation du sous-espace propre pour la

valeur propre 1 et la colonne à une base de l’autre sous-espace propre, c’est-à-dire celui pour la valeur propre 4 :

Ker(f − idR2) : x− y = 0 et Ker(f − 4 idR2) = Vect((2,−1)).

On aurait bien sûr aussi pu calculer la matrice :

A− 4I2 =

(
−1 −2

−1 −2

)
=

(
−1

−1

)(
1 2

)
.

Dans cette décomposition colonne-ligne, la ligne correspond maintenant à une équation du sous-espace propre pour la valeur

propre 4 et la colonne à une base du sous-espace propre pour la valeur propre 1 :

Ker(f − idR2) = Vect((−1,−1)) et Ker(f − 4 idR2) : x+ 2y = 0.

Une autre option est de calculer les deux matrices :

A− I2 =

(
2 −2

−1 1

)
et A− 4I2 =

(
−1 −2

−1 −2

)
et de chercher indépendamment les deux sous-espaces propres, en résolvant les systèmes homogènes correspondant. Pour

construire une base propre de f , il ne reste maintenant plus qu’à choisir un vecteur non nul dans chaque sous-espace propre

et à les mettre ensemble. Par exemple, la famille :

B = v1, v2 avec v1 = (1, 1) , v2 = (2,−1)

est une base propre pour f . On a alors :{
f(v1) = f(1, 1) = (3− 2,−1 + 2) = (1, 1) = v1

f(v2) = f(2,−1) = (6 + 2,−2− 2) = (8,−4) = 4(2,−1) = 4v2

si bien que :

[f ]B =

(
1 0

0 4

)
.

c. Voici une figure représentant les éléments demandés :



Une fois v = (x, y) décomposé selon les deux axes colorés, on ”passe” à f(v) = f(x, y) de la façon suivante : la ”coordonnée

orange” est préservée (elle est multipliée par 1) et la ”coordonnée bleue” est quant à elle multipliée par 4. En coordonnées en

base B, l’application f s’exprime par la formule suivante :{
t′1 = t1

t′2 = 4t2
où [v]B =

(
t1
t2

)
et [f(v)]B =

(
t′1
t′2

)
.

Ce qu’il y a d’agréable dans cette expression, c’est que les deux coordonnées sont ”découplées” (contrairement aux coordonnées

canoniques x et y, qui sont ”mélangées” lorsqu’on passe de v à f(v)).

Exercice 3. On donne l’application linéaire :

f : R2 → R2, (x, y) → (7x+ 5y,−5x− 3y).

a. Calculer le polynôme caractéristique de f et en déduire les valeurs propres (éventuelles).

b. Donner une forme réduite de f .

c. Déterminer une base de R2 dans laquelle f est représentée par cette forme réduite.

Solution:

a. La matrice de f dans la base canonique est :

A =

(
7 5

−5 −3

)
.

On trouve alors que le polynôme caractéristique de f vaut :

χf (X) = X2 − tr(A)X + det(A) = X2 − 4X + 4 = (X − 2)2.

Par conséquent f possède une unique valeur propre, à savoir 2.

b. Comme l’application f n’est pas égale à 2 idR2 , on sait qu’elle admet pour forme réduite la matrice :(
2 1

0 2

)
.

c. On cherche donc une base B = v1, v2 de R2 vérifiant :

[f ]B =

(
2 1

0 2

)
⇔

{
f(v1) = 2v1

f(v2) = v1 + 2v2.

On sait par ailleurs que dans ce cas on peut prendre pour v2 n’importe quel vecteur ”non propre” de f . Posons alors par

exemple :

v2 = (1, 0).



Ce n’est pas un vecteur propre de f car :

f(v2) = f(1, 0) = (7,−5)

n’est pas proportionnel à v2. On déduit alors v1 de la deuxième égalité dans le système écrit ci-dessus :

v1 = f(v2)− 2v2 = (7,−5)− 2(1, 0) = (5,−5).

Ainsi définie, la famille B = v1, v2 est bien une base de R2 et les relations ci-dessus sont bien vérifiées :{
f(v1) = f(5,−5) = (10,−10) = 2(5,−5) = 2v1

f(v2) = (7,−5) = (5,−5) + 2(1, 0) = v1 + 2v2.

Ce n’est pas demandé, mais terminons par un dessin illustrant le travail effectué dans cet exercice :

Une fois v = (x, y) décomposé selon les deux axes colorés, lorsqu’on ”passe” à f(v) = f(x, y) on peut observer que la

”coordonnée bleue” est multipliée par 2. Pour ce qui est de la ”coordonnée orange”, la transformation n’est pas aussi simple.

En coordonnées en base B, l’application f s’exprime par la formule suivante :{
t′1 = 2t1 + t2

t′2 = 2t2
où [v]B =

(
t1
t2

)
et [f(v)]B =

(
t′1
t′2

)
.

A la différence du cas où f est diagonalisable, on ne peut pas ici complètement découpler les deux coordonnées.

Exercice 4. On donne l’application linéaire :

f : R2 → R2, (x, y) → (2x+ 17y,−x+ 4y).

a. Calculer le polynôme caractéristique de f . En déduire une forme réduite de f .

b. Déterminer une base de R2 dans laquelle f est représentée par cette forme réduite.

Solution:



a. La matrice de f dans la base canonique est :

A =

(
2 17

−1 4

)
.

On trouve alors que le polynôme caractéristique de f vaut :

χf (X) = X2 − tr(A)X + det(A) = X2 − 6X + 25 = (X − 3)2 + 42.

Par conséquent f ne possède aucune valeur propre (réelle) et d’après la forme du polynôme caractéristique que l’on vient

d’identifier, on sait qu’elle a pour forme réduite la matrice :(
3 −4

4 3

)
.

b. On cherche donc une base B = v1, v2 de R2 vérifiant :

[f ]B =

(
3 −4

4 3

)
⇔

{
f(v1) = 3v1 + 4v2

f(v2) = −4v1 + 3v2.

On sait par ailleurs que dans ce cas on peut prendre pour v1 n’importe quel élément non nul de R2. Posons alors par exemple :

v1 = (1, 0).

On déduit alors v2 de la première égalité dans le système écrit ci-dessus :

v2 = 1
4 (f(v1)− 3v1) =

1
4 ((2,−1)− 3(1, 0)) = (− 1

4 ,−
1
4 ).

Ainsi définie, la famille B = v1, v2 est bien une base de R2 et les relations ci-dessus sont bien vérifiées :{
f(v1) = (2,−1) = 3(1, 0) + 4(− 1

4 ,−
1
4 ) = 3v1 + 4v2

f(v2) = (− 19
4 ,− 3

4 ) = −4(1, 0) + 3(− 1
4 ,−

1
4 ) = −4v1 + 3v2,

si bien que la matrice représentant f en base B est bien celle que l’on voulait. Ce n’est pas demandé, mais cherchons à

visualiser sur un dessin le travail effectué ici. Pour cela, commençons par écrire l’expression de f en coordonnées en base B :{
t′1 = 3t1 − 4t2

t′2 = 4t1 + 3t2
où [v]B =

(
t1
t2

)
et [f(v)]B =

(
t′1
t′2

)
.

Ici, on ne peut pas découpler les deux coordonnées, ni même ”en mettre une de côté”. Les deux vont forcément se ”mélanger”

lorsqu’on applique f , peu importe la base de R2 que l’on choisit. Ce que l’on a réussi à faire ici, c’est faire apparaitre un

”mélange” dont on peut reconnaitre la géométrie. En effet, si la base B est représentée par une base orthonormée directe dans

le plan, on voit apparaitre une rotation composée avec une homothétie :



Pour voir cela, écrivons la forme réduite de f de la manière suivante :

(
3 −4

4 3

)
= 5Rθ , où

{
cos(θ) = 3

5

sin(θ) = 4
5 .

En coordonnées en base B, l’expression de f devient alors :{
t′1 = 5(cos(θ)t1 − sin(θ)t2)

t′2 = 5(sin(θ)t1 + cos(θ)t2).

Par conséquent, si (comme c’est le cas sur le dessin) les coordonnées t1 et t2 correspondent à un repère orthonormé direct, on

reconnait les formules de la rotation d’angle θ, qui ont été multipliée par 5. Autrement dit, lorsque l’on ”passe” de v à f(v),

on tourne de l’angle θ et on applique l’homothétie de rapport 5 centrée en l’origine.

Exercice 5. Donner un contre-exemple à chacun des énoncés suivants. Pour toutes matrices A,B ∈ M2(R) ...

a. ... si A et B sont diagonalisables alors AB l’est aussi.

b. ... si AB est diagonalisable alors A ou B l’est aussi.

c. ... si A et B sont diagonalisables alors A+B l’est aussi.

Indication : commencer par écrire une liste de matrices diagonalisables et une liste de matrices non-diagonalisables.

Solution: Pour produire des contre-exemples à ces énoncés, il faut avoir en tête des exemples de matrices diagonalisables, comme :(
1 0

0 0

)
,

(
0 1

0 1

)
,

(
2 −4
1
2 −1

)
︸ ︷︷ ︸

matrices de projection

,

(
1 0

0 −1

)
,

(
0 1

1 0

)
,

(
2 −1

3 −2

)
︸ ︷︷ ︸

matrices de symétrie

,

(
1 −1

0 2

)
,

(
3 0

2 5

)
,

(
2 1

3 0

)
︸ ︷︷ ︸

2 valeurs propres distinctes

· · ·

et aussi des exemples de matrices non diagonalisables, comme :(
0 −1

1 0

)
, 1√

2

(
1 −1

1 1

)
, 1
5

(
3 −4

4 3

)
︸ ︷︷ ︸

matrices de rotation

,

(
0 1

0 0

)
,

(
3 1

0 3

)
,

(
1 −4

1 5

)
︸ ︷︷ ︸

une seule valeur propre, non proportionnelle à I2

· · ·

A partir de là on peut tenter notre chance, c’est-à-dire piocher dans ces listes et tester par un calcul direct si l’énoncé est vérifié ou

non. On peut aussi essayer d’exploiter une idée géométrique.

a. Prenons par exemple :

A =

(
1 0

0 −1

)
et B =

(
0 1

1 0

)
.

La matrice A est diagonale (et donc a fortiori diagonalisable). La matrice B est aussi diagonalisable, car elle admet deux

valeurs propres distinctes −1 et 1 (c’est une matrice de symétrie). Calculons alors le produit :

AB =

(
1 0

0 −1

)(
0 1

1 0

)
=

(
0 1

−1 0

)
.

Cette matrice est de trace 0 et de déterminant 1. Son polynôme caractéristique vaut donc :

χAB(X) = X2 + 1,

qui n’admet aucune racine. Elle n’est donc pas diagonalisable (c’est la matrice de rotation d’angle −π
2 ). On a donc trouvé un

contre-exemple à l’énoncé proposé, puisque A et B sont diagonalisables, mais pas leur produit AB.

Remarque : l’idée géométrique derrière ce contre-exemple est que la composée de deux réflexions (qui sont des applications

diagonalisables) est une rotation (qui n’est généralement pas diagonalisable), résultat que l’on avait rencontré par exemple à

l’exercice 7 de la série 10.

b. Prenons par exemple :

A =

(
1 1

0 1

)
et B = A−1 =

(
1 −1

0 1

)
.

Les matrices A et B ne sont pas diagonalisables (elles ont toutes les deux pour unique valeur propre 1 et ne sont pas égales

à I2). Par ailleurs, leur produit :

AB = I2 =

(
1 0

0 1

)
est une matrice diagonale (et donc a fortiori diagonalisable). On a donc trouvé un contre-exemple à l’énoncé proposé, puisque

AB est diagonalisable mais ni A ni B ne l’est.



c. Prenons par exemple :

A =

(
1 0

0 0

)
et B =

(
0 1

0 1

)
.

Les matrices A et B sont diagonalisables car ce sont des matrices de projection : en effet, elles sont de rang 1 et de trace 1.

Par ailleurs, leur somme :

A+B =

(
1 1

0 1

)
n’est pas diagonalisable, comme on l’a déjà dit au b. On a donc trouvé un contre-exemple à l’énoncé proposé, puisque A et

B sont diagonalisables, mais pas leur somme A+B.

Exercice 6. Déterminer un exemple d’application linéaire :

f : R2 → R2

qui n’est pas diagonalisable et telle que f(1, 2) = (3, 6). Indication : quelle est la forme réduite de f ?

Solution: Supposons donnée une application f solution du problème posé et notons A sa matrice en base canonique. De l’égalité :

f(1, 2) = (3, 6) = 3(1, 2)

on déduit que 3 est valeur propre de f et que (1, 2) est un vecteur propre associé. Comme f n’est pas diagonalisable, on voit que

l’unique sous-espace propre de f est une droite vectorielle :

Ker(f − 3 idR3) : y = 2x︸ ︷︷ ︸
Vect((1,2))

.

Par ailleurs, f admet la matrice : (
3 1

0 3

)
pour forme réduite. Autrement dit, il existe une base de R2 :

B = (α, β)︸ ︷︷ ︸
v1

, (γ, δ)︸ ︷︷ ︸
v2

telle que :

[f ]B =

(
3 1

0 3

)
⇔

{
f(v1) = 3v1

f(v2) = v1 + 3v2.

Comme v1 est un vecteur propre de f on voit que :

β = 2α ⇔ v1 = (α, 2α).

Au niveau matriciel, on a donc montré l’égalité :

P−1AP =

(
3 1

0 3

)
⇔ A = P

(
3 1

0 3

)
P−1

où P est la matrice de changement de base de la base canonique de R2 à la base B :

P =

(
α γ

2α δ

)
.

Pour déterminer une application f solution du problème (c’est tout ce qui est demandé ici), choisissons par exemple :

α = 1, γ = 0, δ = 1.

On obtient alors :

A =

(
1 0

2 1

)(
3 1

0 3

)(
1 0

2 1

)−1

=

(
3 1

6 5

)(
1 0

−2 1

)
=

(
1 1

−4 5

)
,

ou encore :

f : R2 → R2, (x, y) → (x+ y,−4x+ 5y).

Vérifions que l’application que l’on vient d’obtenir convient. Tout d’abord, on a bien :

f(1, 2) = (1 + 2,−4 + 10) = (3, 6).

Par ailleurs, on trouve que :

χf (X) = X2 − 6X + 9 = (X − 3)2

si bien que 3 est la seule valeur propre de f . Comme f n’est pas égale à 3 idR2 on voit qu’elle n’est pas diagonalisable.



Exercice 7. En discutant selon la valeur des réels α, β, γ, déterminer une forme réduite de l’application linéaire :

f : R2 → R2, (x, y) → (αx+ βy, γx+ αy).

On ne demande pas de produire une base de R2 dans laquelle f est représentée par cette forme réduite.

Solution: La matrice de f dans la base canonique est :

A =

(
α β

γ α

)
.

On trouve donc que :

tr(A) = 2α et det(A) = α2 − βγ

si bien que le polynôme caractéristique de f vaut :

χf (X) = X2 − tr(A)X + det(A) = X2 − 2αX + α2 − βγ = (X − α)2 − βγ.

Pour décrire la réduction de f on voit donc que l’on doit discuter selon le signe du produit βγ (le discriminant vaut ici 4βγ).

Supposons d’abord que βγ > 0. On a alors la factorisation :

χf (X) = (X − α−
√
βγ)(X − α+

√
βγ).

f possède dans ce cas deux valeurs propres distinctes. Elle est diagonalisable et admet pour forme réduite la matrice diagonale :(
α+

√
βγ 0

0 α−
√
βγ

)
.

Supposons à présent que βγ = 0. Dans ce cas, on trouve que :

χf (X) = (X − α)2

si bien que f possède pour unique valeur propre α. Elle est donc diagonalisable si et seulement si elle est égale à α idR2 , ou autrement

dit, si et seulement si β = γ = 0. Dans ce cas, elle admet pour forme réduite la matrice :

αI2 =

(
α 0

0 α

)
.

Si l’un des réels β ou γ est nul et que l’autre est non nul, alors f n’est pas diagonalisable et admet pour forme réduite la matrice :(
α 1

0 α

)
.

Enfin, supposons que βγ < 0, si bien que f ne possède aucune valeur propre réelle. En écrivant son polynôme caractéristique sous

la forme :

χf (X) = (X − α)2 − βγ = (X − α)2 + (
√
−βγ)2

on voit que f admet alors pour forme réduite la matrice :(
α −

√
−βγ√

−βγ α

)
.

Exercice 8. On donne une application linéaire dont la matrice est symétrique :

f : R2 → R2, (x, y) → (αx+ βy, βx+ γy).

a. Montrer que f est diagonalisable.

b. On suppose que f ̸= α idR2 . Montrer que si l’on visualise R2 à l’aide d’un repère orthonormé direct du plan alors f

possède comme sous-espaces propres 2 droites vectorielles orthogonales. Indication : discuter selon que β = 0 ou β ̸= 0.

Solution:



a. La matrice de f dans la base canonique est :

A =

(
α β

β γ

)
.

On trouve donc que :

tr(A) = α+ γ et det(A) = αγ − β2

si bien que le polynôme caractéristique de f vaut :

χf (X) = X2 − tr(A)X + det(A) = X2 − (α+ γ)X + αγ − β2.

Le discriminant de ce trinôme du second degré vaut donc :

∆ = (α+ γ)2 − 4(αγ − β2) = α2 − 2αγ + γ2 + 4β2 = (α− γ)2 + 4β2.

Si α = γ et β = 0, alors ce discriminant est nul. On voit que dans ce cas la matrice A est égale à αI2 et est donc diagonale.

Par conséquent f est bien diagonalisable. Sinon le discriminant ∆ est strictement positif, ce qui implique que f est aussi

diagonalisable.

b. Si f ̸= α idR2 , alors on a vu en a. que le discriminant du polynôme caractéristique est strictement positif, ce qui implique que

f possède deux valeurs propres distinctes ω et ξ. On sait alors d’après le cours que les sous-espaces propres :

Ker(f − ω idR2) et Ker(f − ξ idR2)

de f sont des droites vectorielles. Il nous reste donc à montrer qu’elles sont orthogonales, lorsqu’on visualise R2 via un repère

orthonormé direct du plan. Si β = 0, alors la matrice de f dans la base canonique est diagonale :

A =

(
α 0

0 γ

)
.

Les deux valeurs propres sont α et γ, et les sous-espaces propres de f se visualisent comme les axes de coordonnées, qui sont

par hypothèse orthogonaux :

Ker(f − α idR2) : y = 0︸ ︷︷ ︸
Vect((1,0))

et Ker(f − γ idR2) : x = 0︸ ︷︷ ︸
Vect((0,1))

.

Supposons dorénavant que β ̸= 0 et observons la matrice :

A− ωI2 =

(
α− ω β

β γ − ω

)
.

On sait par avance qu’elle est de rang 1. Ses deux lignes sont proportionnelles et non nulles (à cause de la présence de β).

Elles donnent donc toutes les deux des équations du sous-espace propre pour la valeur propre ω :

Ker(f − ω idR2) : (α− ω)x+ βy = 0 ou βx+ (γ − ω)y = 0.

De la même façon, ses deux colonnes sont proportionnelles et non nulles (à cause de la présence de β). Elles donnent donc

chacune une base du sous-espace propre pour la valeur propre ξ :

Ker(f − ξ idR2) = Im(f − ω idR2) = Vect((α− ω, β)) = Vect((β, γ − ω)).

Une autre façon de procéder pour identifier cette droite vectorielle est de considérer la matrice :

A− ξI2 =

(
α− ξ β

β γ − ξ

)
.

Elle est de rang 1 et chacune de ses lignes donne une équation du sous-espace propre pour la valeur propre ξ :

Ker(f − ξ idR2) : (α− ξ)x+ βy = 0 ou βx+ (γ − ξ)y = 0.

Pour vérifier que les deux descriptions que l’on vient de trouver pour ce sous-espace propre cöıncident, on peut alors constater

que :

(α− ξ)(α− ω) + β2 = α2 − α (ω + ξ)︸ ︷︷ ︸
α+γ

+ ωξ︸︷︷︸
αγ−β2

+β2 = 0,

si bien que (α − ω, β) vérifie bien l’équation (α − ξ)x + βy = 0. Montrons à présent que les deux sous-espaces propres sont

bien orthogonaux lorsqu’on visualise R2 par un repère orthonormé direct. Pour cela, donnons-nous par exemple un vecteur

propre pour la valeur propre ξ, comme :

v2 = (α− ω, β),



et tournons-le de π
2 autour de (0, 0). On obtient :

v1 = (−β, α− ω)

(rappelons que lorsqu’on applique cette rotation on passe de (x, y) à (−y, x)). Il n’y a alors plus qu’à constater que v1 est un

vecteur propre (non nul) pour la valeur propre ω, puisqu’on a :

(α− ω)(−β) + β(α− ω) = 0︸ ︷︷ ︸
v1 vérifie l’équation (α−ω)x+βy=0

.

Résumons. On a établi que :

Ker(f − ω idR2) = Vect(v1) et Ker(f − ξ idR2) = Vect(v2)

où v1 est obtenu à partir de v2 en tournant de π
2 . Les deux sous-espaces propres de f sont donc bien orthogonaux.


