Algebre Linéaire & Géométrie Mise & niveau, EPFL

Série 12

Exercice 1. Déterminer une forme réduite de lapplication linéaire f : R? — R? donnée.

a. f:(z,y) = (1dz + 25y, —z + 4y) b. f: (z,y) = (2 + 5y, —2x) c. f:(z,y) = (10z — 21y, 4z — 9y).

On ne demande pas d’effectuer la réduction explicitement.

Solution:

a. La matrice de f dans la base canonique est :
14 25
(5 F)
qui a trace 18 et déterminant 81. Le polynéme caractéristique de f vaut par conséquent :
xp(X)=X?—18X +81 = (X —9)~%
Comme f n’est pas égale & 9idgez, on sait alors qu’elle admet alors pour forme réduite la matrice (triangulaire supérieure) :
9 1
= (0 9) '
Autrement dit, on peut trouver (ce n’est pas demandé ici) des bases B de R? (ou des matrices 2 x 2 inversibles P) telles que :
[fls = P~'AP = R.
A noter que I'on pourrait aussi travailler avec la forme réduite suivante (triangulaire inférieure) :
(3 )
1 9/)°

11 suffirait pour cela simplement d’échanger l'ordre des vecteurs dans la base B (ou les deux colonnes de P).

2 5
(%)

dont la trace vaut 2 et le déterminant 10. Le polynoéme caractéristique de f vaut par conséquent :

b. La matrice de f dans la base canonique est :

Xp(X)=X?-2X +10 = (X —1)* + 3%

L’application linéaire f n’admet aucune valeur propre réelle. Une forme réduite de f est la matrice :

=y 1) e (G 1)

Autrement dit, on peut trouver (ce n’est pas demandé ici) des bases B de R? (ou des matrices 2 x 2 inversibles P) telles que :

[fls =P 'AP = R.

10 —21
=0 5)

dont la trace vaut 1 et le déterminant —6. Le polyndme caractéristique de f vaut par conséquent :

c. La matrice de f dans la base canonique est :

(X)) =X?-X-6=(X+2)(X -3).
L’application linéaire f admet donc deux valeurs propres distinctes. Elle est diagonalisable et admet pour forme réduite :
-2 0 3 0
R<0 3) ou (O 2).

Autrement dit, on peut trouver (ce n’est pas demandé ici) des bases B de R? (ou des matrices 2 x 2 inversibles P) telles que :

[fls=P 'AP=R.



Exercice 2. On donne I’application linéaire :
f:R* = R2 (z,y) = (3 — 2y, —x + 2y).

a. Calculer le polynéme caractéristique de f et en déduire ses valeurs propres.
b. f est-elle diagonalisable ? Si oui, donner une base propre pour f.

c. Représenter sur un croquis les sous-espaces propres de f ainsi qu'un point (z,y) et son image f(x,y) par f.

Solution:

a. La matrice de f en base canonique est :

On a donc :
trA=342=5 et detA=6-—-2=4,

si bien que le polynéme caractéristique de f vaut :
Xf(X) = X2 —tr(A)X +det(A) = X? —5X +4 = (X - 1)(X —4).

Par conséquent f possede deux valeurs propres, a savoir 1 et 4.

b. D’apres le a. on peut déja affirmer que f est diagonalisable. Pour déterminer une base propre, calculons la matrice :

A-I,= (21 _12) = (21> (1 -1).

Dans la décomposition colonne-ligne que I'on vient d’écrire, la ligne correspond a une équation du sous-espace propre pour la
valeur propre 1 et la colonne a une base de I’autre sous-espace propre, c’est-a-dire celui pour la valeur propre 4 :

Ker(f —idg2):x—y=0 et Ker(f—4idg2) = Vect((2,—1)).
On aurait bien str aussi pu calculer la matrice :
-1 -2 -1
A—4l, = (_1 _2> = (_1> (1 2).

Dans cette décomposition colonne-ligne, la ligne correspond maintenant a une équation du sous-espace propre pour la valeur
propre 4 et la colonne & une base du sous-espace propre pour la valeur propre 1 :

Ker(f —idge) = Vect((—1,—-1)) et Ker(f —4idge): 2z + 2y =0.
Une autre option est de calculer les deux matrices :
2 =2 -1 =2
A—1Iy = A—4I, =
B

et de chercher indépendamment les deux sous-espaces propres, en résolvant les systemes homogenes correspondant. Pour
construire une base propre de f, il ne reste maintenant plus qu’a choisir un vecteur non nul dans chaque sous-espace propre
et a les mettre ensemble. Par exemple, la famille :

B =wvy,v9 avec v1 = (1,1),v3 = (2,-1)
est une base propre pour f. On a alors :

f(vl) :f(lal) = (3723714’2) = (171) =11
f(’UQ) = f(2, —1) = (6 +2,-2— 2) = (8, —4) = 4(2, —1) = 4uq

[fls = <(1) 2)

c. Voici une figure représentant les éléments demandés :

si bien que :



Ker(f —4idgz) : @ + 2y = 0

Une fois v = (x,y) décomposé selon les deux axes colorés, on ”passe” a f(v) = f(z,y) de la fagon suivante : la ”coordonnée
orange” est préservée (elle est multipliée par 1) et la ”coordonnée bleue” est quant a elle multipliée par 4. En coordonnées en
base B, 'application f s’exprime par la formule suivante :

(670 o e () o o ()

Ce qu'il y a d’agréable dans cette expression, c’est que les deux coordonnées sont ”découplées” (contrairement aux coordonnées
canoniques z et y, qui sont "mélangées” lorsqu’on passe de v a f(v)).

Exercice 3. On donne I'application linéaire :

f:R? 5 R? (z,y) — (Tz + 5y, —5z — 3y).

a. Calculer le polynéme caractéristique de f et en déduire les valeurs propres (éventuelles).
b. Donner une forme réduite de f.

c. Déterminer une base de R? dans laquelle f est représentée par cette forme réduite.

Solution:

a. La matrice de f dans la base canonique est :

7T 5
A= .
On trouve alors que le polynome caractéristique de f vaut :
Xr(X) = X2 —tr(A)X +det(A) = X? —4X +4 = (X —2)%

Par conséquent f posseéde une unique valeur propre, a savoir 2.

b. Comme I'application f n’est pas égale a 2idg2, on sait qu’elle admet pour forme réduite la matrice :

2 1
0 2/)°
c. On cherche donc une base B = vy, vy de R? vérifiant :

A= (3 y) = fhmT
B =
0 2 f(vg) = v1 + 209.
On sait par ailleurs que dans ce cas on peut prendre pour vy n’importe quel vecteur "non propre” de f. Posons alors par

exemple :
Vo = (1,0).



Ce n’est pas un vecteur propre de f car :
f(v2) = f(la O) = (77 *5)

n’est pas proportionnel a vs. On déduit alors v; de la deuxieme égalité dans le systeme écrit ci-dessus :
v = f('l}z) — 21)2 = (7, —5) — 2(1,0) = (5, —5)
Ainsi définie, la famille B = vy, v5 est bien une base de R? et les relations ci-dessus sont bien vérifiées :

flo1) = f(5,-5) = (10, 10) = 2(5, ~5) = 20
f(Uz) = (7’ _5) = (57 _5> + 2(17 0) =+ 2112-

Ce n’est pas demandé, mais terminons par un dessin illustrant le travail effectué dans cet exercice :

(0,0) (1,0)

J(v) = f(z,v)

Une fois v = (x,y) décomposé selon les deux axes colorés, lorsqu’on "passe” & f(v) = f(z,y) on peut observer que la
”coordonnée bleue” est multipliée par 2. Pour ce qui est de la ”coordonnée orange”, la transformation n’est pas aussi simple.
En coordonnées en base B, 'application f s’exprime par la formule suivante :

t =2t +ta ([t (Y]
{té:% o = () e s = (i)

A la différence du cas ou f est diagonalisable, on ne peut pas ici complétement découpler les deux coordonnées.

Exercice 4. On donne I'application linéaire :
f:R?2 = R? (z,y) = 2z + 17y, —z + 4y).

a. Calculer le polynome caractéristique de f. En déduire une forme réduite de f.

b. Déterminer une base de R? dans laquelle f est représentée par cette forme réduite.

Solution:



a. La matrice de f dans la base canonique est :

On trouve alors que le polyndme caractéristique de f vaut :
Xf(X) = X2 —tr(A)X + det(A) = X? — 6X +25 = (X —3)2 + 42

Par conséquent f ne posséde aucune valeur propre (réelle) et d’apres la forme du polynéme caractéristique que l'on vient
d’identifier, on sait qu’elle a pour forme réduite la matrice :

3 —4
4 3 )
b. On cherche donc une base B = vy, vy de R? vérifiant :

] _(3 —4> - f(v1) = 3v1 + 4vy
Fm\4 3 f(v2) = —4vy + 3va.

On sait par ailleurs que dans ce cas on peut prendre pour v; n’importe quel élément non nul de R2. Posons alors par exemple :
vy = (1,0).
On déduit alors vy de la premiére égalité dans le systéme écrit ci-dessus :
ve = L(F(01) = 3u1) = 1((2,-1) = 3(1,0)) = (=1, —1).
Ainsi définie, la famille B = vy, v, est bien une base de R? et les relations ci-dessus sont bien vérifiées :

flur) = (2,-1) = 3(1,0) + 4(~1, - 1) = 3v; + 40,
Flo2) = (=45 =) = —4(1,0) +3(— 5, —5) = —4v1 + 33,

si bien que la matrice représentant f en base B est bien celle que I'on voulait. Ce n’est pas demandé, mais cherchons a
visualiser sur un dessin le travail effectué ici. Pour cela, commencgons par écrire I'expression de f en coordonnées en base B :

th =3t — 4ty t t

) o o= () e il ().

ty = 4ty + 3t2 to ty
Ici, on ne peut pas découpler les deux coordonnées, ni méme ”en mettre une de c6té”. Les deux vont forcément se " mélanger”
lorsqu’on applique f, peu importe la base de R? que ’on choisit. Ce que I’on a réussi & faire ici, c’est faire apparaitre un

"mélange” dont on peut reconnaitre la géométrie. En effet, si la base B est représentée par une base orthonormée directe dans
le plan, on voit apparaitre une rotation composée avec une homothétie :

fv) = flz,v)

(0,0)

G

v=(z,9)

(0,1)




Pour voir cela, écrivons la forme réduite de f de la maniere suivante :

_4 cos(f) =
(3 ) = 5R9, ou ( )
43 sin(f) =
En coordonnées en base B, I’expression de f devient alors :

1 = 5(cos(0)t; — sin(0)t2)
th, = 5(sin(6)t1 + cos(0)tz).

('S aljee

Par conséquent, si (comme c’est le cas sur le dessin) les coordonnées ¢; et to correspondent & un repere orthonormé direct, on
reconnait les formules de la rotation d’angle 6, qui ont été multipliée par 5. Autrement dit, lorsque 1’on ”passe” de v a f(v),
on tourne de I'angle 6 et on applique I'homothétie de rapport 5 centrée en 'origine.

Exercice 5. Donner un contre-exemple & chacun des énoncés suivants. Pour toutes matrices A, B € M3(R) ...

a. ... si A et B sont diagonalisables alors AB l'est aussi.
b. ... si AB est diagonalisable alors A ou B l’est aussi.

c. ... si A et B sont diagonalisables alors A + B ’est aussi.

Indication : commencer par écrire une liste de matrices diagonalisables et une liste de matrices non-diagonalisables.

Solution: Pour produire des contre-exemples & ces énoncés, il faut avoir en téte des exemples de matrices diagonalisables, comme :

OEYGY CDEYED CDEYEY-

matrices de projection matrices de symétrie 2 valeurs propres distinctes

et aussi des exemples de matrices non diagonalisables, comme :

0 -1y , (1 -1\ (3 —4 0 1 3 1 1 -4
1 0/)'v2\1 1)’°\4 3)° 0 0o/’\0 3)’\1 5
matrices de rotation une seule valeur propre, non proportionnelle a I

A partir de la on peut tenter notre chance, c’est-a-dire piocher dans ces listes et tester par un calcul direct si I’énoncé est vérifié ou
non. On peut aussi essayer d’exploiter une idée géométrique.

1 0 0 1
ae(t0) w e ),

La matrice A est diagonale (et donc a fortiori diagonalisable). La matrice B est aussi diagonalisable, car elle admet deux
valeurs propres distinctes —1 et 1 (c’est une matrice de symétrie). Calculons alors le produit :

1 0 0 1 0 1
AB = = .
0 )0 0)=(5)
Cette matrice est de trace 0 et de déterminant 1. Son polyndéme caractéristique vaut donc :

XAB(X> :X2 + 17

a. Prenons par exemple :

us

qui n’admet aucune racine. Elle n’est donc pas diagonalisable (c’est la matrice de rotation d’angle —%). On a donc trouvé un
contre-exemple & ’énoncé proposé, puisque A et B sont diagonalisables, mais pas leur produit AB.

Remarque : I'idée géométrique derriere ce contre-exemple est que la composée de deux réflexions (qui sont des applications
diagonalisables) est une rotation (qui n’est généralement pas diagonalisable), résultat que I'on avait rencontré par exemple &

11 (1 -1
a=(f 1) @ mmar=(5 ).

Les matrices A et B ne sont pas diagonalisables (elles ont toutes les deux pour unique valeur propre 1 et ne sont pas égales

a I). Par ailleurs, leur produit :
1 0
AB =1, =
= (5 1)

est une matrice diagonale (et donc a fortiori diagonalisable). On a donc trouvé un contre-exemple & ’énoncé proposé, puisque
AB est diagonalisable mais ni A ni B ne ’est.

I’exercice 7 de la série 10.

b. Prenons par exemple :



c. Prenons par exemple :

10 0 1
A = B == .

Les matrices A et B sont diagonalisables car ce sont des matrices de projection : en effet, elles sont de rang 1 et de trace 1.

11
e

n’est pas diagonalisable, comme on 1’a déja dit au b. On a donc trouvé un contre-exemple & ’énoncé proposé, puisque A et

Par ailleurs, leur somme :

B sont diagonalisables, mais pas leur somme A + B.

Exercice 6. Déterminer un exemple d’application linéaire :
f:R? - R?

qui n’est pas diagonalisable et telle que f(1,2) = (3,6). Indication : quelle est la forme réduite de f ?

Solution: Supposons donnée une application f solution du probleme posé et notons A sa matrice en base canonique. De 1’égalité :
f(1,2) =(3,6) = 3(1,2)

on déduit que 3 est valeur propre de f et que (1,2) est un vecteur propre associé. Comme f n’est pas diagonalisable, on voit que
I'unique sous-espace propre de f est une droite vectorielle :

Ker(f — 3idgs) : y = 2.

Vect((1,2))

(o 3)

pour forme réduite. Autrement dit, il existe une base de R? :

Par ailleurs, f admet la matrice :

telle que :

Comme v; est un vecteur propre de f on voit que :
B=2a < v =(aa).

Au niveau matriciel, on a donc montré ’égalité :

3 1 31
-1 -1
P AP-(0 3) & A—P(0 3>P

ol P est la matrice de changement de base de la base canonique de R? & la base B :

a
P= .
(2a 5)
Pour déterminer une application f solution du probléme (c’est tout ce qui est demandé ici), choisissons par exemple :

a=1, yv=0, §d=1.

On obtient alors : 1

CEEDC Y E N (Y

f : RQ — sz (l‘,y) — (x+y,—4a:+5y)

ou encore :

Vérifions que 'application que 'on vient d’obtenir convient. Tout d’abord, on a bien :
f(1,2)=(14+2,—4+10) = (3,6).

Par ailleurs, on trouve que :
xf(X)=X*-6X+9=(X-3)?

si bien que 3 est la seule valeur propre de f. Comme f n’est pas égale a 3idg2 on voit qu’elle n’est pas diagonalisable.



Exercice 7. En discutant selon la valeur des réels a, 3, y, déterminer une forme réduite de I’application linéaire :
fiR? = R? (2,y) = (e + By, vz + ay).

On ne demande pas de produire une base de R? dans laquelle f est représentée par cette forme réduite.

SO|utI0n. La matrlce (ie ’ daIlb 1a babe CaHOqu ue ebt .

tr(A) =2a et det(A) =a® - By

On trouve donc que :

si bien que le polynéme caractéristique de f vaut :
(X)) = X2 —tr(A)X +det(A) = X2 —2aX +a? — By = (X —a)? — 3.

Pour décrire la réduction de f on voit donc que l'on doit discuter selon le signe du produit Sy (le discriminant vaut ici 457).
Supposons d’abord que S > 0. On a alors la factorisation :

Xf(X) = (X —a—/BY)(X —a+/By)
f possede dans ce cas deux valeurs propres distinctes. Elle est diagonalisable et admet pour forme réduite la matrice diagonale :

(7 )

Supposons a présent que 5y = 0. Dans ce cas, on trouve que :
X (X) = (X —a)?

si bien que f posséde pour unique valeur propre «. Elle est donc diagonalisable si et seulement si elle est égale a aidg2, ou autrement
dit, si et seulement si § = = 0. Dans ce cas, elle admet pour forme réduite la matrice :

a 0
OéIQ—(O a).

Si I'un des réels 8 ou  est nul et que I'autre est non nul, alors f n’est pas diagonalisable et admet pour forme réduite la matrice :

a 1

0 o
Enfin, supposons que v < 0, si bien que f ne possede aucune valeur propre réelle. En écrivant son polynéme caractéristique sous
la forme :

X (X) = (X =)’ = By = (X =)’ + (v-7)?
on voit que f admet alors pour forme réduite la matrice :

( fﬁv ﬂéj%) ‘

Exercice 8. On donne une application linéaire dont la matrice est symétrique :
fR? 5 R (2,y) = (aw + By, Bz + 7y)-

a. Montrer que f est diagonalisable.

b. On suppose que f # aidgz. Montrer que si 'on visualise R? & l'aide d’un repére orthonormé direct du plan alors f
possede comme sous-espaces propres 2 droites vectorielles orthogonales. Indication : discuter selon que 8 =0 ou 3 # 0.

Solution:



a. La matrice de ’ dans la, base Canonique eSt :

tr(A) = a+ v et det(A) = ay — 32

On trouve donc que :

si bien que le polynéme caractéristique de f vaut :
(X)) = X2 —tr(A)X +det(A) = X? — (a+7)X +ay — 5%
Le discriminant de ce trindme du second degré vaut donc :
A=(a+7)? —4lay = 5%) = a® =207 +9° +46° = (a — 7)* +45°.

Sia =+ et =0, alors ce discriminant est nul. On voit que dans ce cas la matrice A est égale a al, et est donc diagonale.
Par conséquent f est bien diagonalisable. Sinon le discriminant A est strictement positif, ce qui implique que f est aussi
diagonalisable.

b. Si f # aidge, alors on a vu en a. que le discriminant du polynéme caractéristique est strictement positif, ce qui implique que
f possede deux valeurs propres distinctes w et £&. On sait alors d’apres le cours que les sous-espaces propres :

Ker(f —widge) et Ker(f — €idge)

de f sont des droites vectorielles. Il nous reste donc & montrer qu’elles sont orthogonales, lorsqu’on visualise R? via un repere
orthonormé direct du plan. Si 8 = 0, alors la matrice de f dans la base canonique est diagonale :

0
A= (O‘ ) .
0 ~
Les deux valeurs propres sont « et -, et les sous-espaces propres de f se visualisent comme les axes de coordonnées, qui sont
par hypothese orthogonaux :
Ker(f —aidg2):y=0 et Ker(f —yidge):2=0.

Vect((1,0)) Vect((0,1))

Supposons dorénavant que 8 # 0 et observons la matrice :

A—WIQZ (Ckgw ’yﬁw)

On sait par avance qu’elle est de rang 1. Ses deux lignes sont proportionnelles et non nulles (& cause de la présence de f3).
Elles donnent donc toutes les deux des équations du sous-espace propre pour la valeur propre w :

Ker(f —widgz) : (¢ —w)x+ Py =0 ou Bz + (y —w)y=0.

De la méme fagon, ses deux colonnes sont proportionnelles et non nulles (& cause de la présence de ). Elles donnent donc
chacune une base du sous-espace propre pour la valeur propre ¢ :

Ker(f — €idg2) = Im(f — widgz) = Vect((a — w, 8)) = Vect((8,v — w)).

Une autre fagon de procéder pour identifier cette droite vectorielle est de considérer la matrice :

A_SIF(Q/;& 'yéﬁ)'

Elle est de rang 1 et chacune de ses lignes donne une équation du sous-espace propre pour la valeur propre & :

Ker(f — {idgz) : (a = &)z + By =0 ou Ba+ (y— &y =0.

Pour vérifier que les deux descriptions que I’on vient de trouver pour ce sous-espace propre coincident, on peut alors constater
que :
(a=gla-w + 2= —aw+&+ w¢ +57=0,
—_——— =~
a-+y ay—p2

si bien que (o — w, B) vérifie bien 'équation (o — &)z + By = 0. Montrons a présent que les deux sous-espaces propres sont
bien orthogonaux lorsqu’on visualise R? par un repere orthonormé direct. Pour cela, donnons-nous par exemple un vecteur
propre pour la valeur propre £, comme :

U2 = (a_waﬁ)a



et tournons-le de 5 autour de (0,0). On obtient :
v =(—f,a—w)

(rappelons que lorsqu’on applique cette rotation on passe de (z,y) & (—y,x)). Il n’y a alors plus qu’a constater que vy est un
vecteur propre (non nul) pour la valeur propre w, puisqu’on a :

(@ —w)(=p) + Bla—w) =0.

vy vérifie I’équation (a—w)z+By=0

Résumons. On a établi que :

Ker(f —widge) = Vect(v1) et Ker(f — £idgz) = Vect(vq)

™

olt v1 est obtenu a partir de vo en tournant de 7. Les deux sous-espaces propres de f sont donc bien orthogonaux.



