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Surface latérale du tronc de cône

On considère un tronc de cône de révolution défini par les rayons r et R de ses deux
bases et par la longueur g des génératrices.

Ce tronc de cône est une surface développable : en le découpant le long d’une génératrice,
on obtient un secteur de couronne circulaire.
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Déterminer la surface A de ce tronc de cône en fonction des données r , R et d .

Notons G la longueur des génératrices du grand cône et g celle du petit cône.
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La surface A du tronc de cône s’exprime comme la différence entre le grand secteur
circulaire et le petit. Soit α l’angle au centre des secteurs circulaires :
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Les longueurs des arcs ` et L des secteurs circulaires sont les circonférences des bases :

` = α · g = 2π r et L = α ·G = 2π R ,

on en déduit l’expression de α en fonction de r et g ou de R et G :
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Et en remplaçant α par
2π R

G
dans l’expression de A :
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On vient de voir que grâce à Thalès, le rapport des génératrices est égal au rapport des
rayons :
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