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Série 12: Fonction dérivée

Ex-12-01: On donne ci-dessous la courbe � d’équation y = f(x) . Esquisser le graphe de la
fonction dérivée de f .



On donne ci-dessous la courbe � d’équation y = f(x) . Esquisser le graphe de la fonction
dérivée de f .



Ex-12-02: En utilisant les règles de dérivation, calculer la fonction dérivée des fonctions sui-
vantes, en précisant leur ensemble de définition et celui de la fonction dérivée.
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Ex-12-03:

a) Soit g(x) = (x� 1)5(2x+ 1)5 ; pour quelles valeurs de x la dérivée g0(x) est-elle nulle ?

b) Soit h(x) = 3
p

(x� 1)2(x+ a) ; pour quelle valeur de a la dérivée h0(x) est-elle nulle en
x = �1 ?

Ex-12-04: Les assertions suivantes sont-elles vraies ou fausses ? Justifier votre réponse en don-
nant une preuve ou un contre-exemple.

a) Si f + g est dérivable sur R, alors f et g sont aussi dérivables sur R.
b) Si f � g est dérivable sur R, alors f et g sont aussi dérivables sur R.
c) Si fg est dérivable sur R, alors f et g sont aussi dérivables sur R.
d) Si �f est dérivable sur R pour une constante � 2 R, alors f est aussi dérivable sur R.
e) Si �f est dérivable sur R pour une constante � 2 R⇤, alors f est aussi dérivable sur R.

Ex-12-05:

a) Soient f et g dérivables en x0 et telles que f(x) ⇠ g(x) au voisinage de x0. Prouver que
f 0(x0) = g0(x0).

b) Montrer que la dérivée d’une fonction f : R ! R paire dérivable est impaire.

c) Montrer que la dérivée d’une fonction f : R ! R impaire dérivable est paire.

Pour b) et c), on n’utilisera pas de règles de dérivation.

Ex-12-06: Soit bb la prolongée de la fonction b de l’Ex-08-08 b) (voir Ex-11-06).

a) Montrer que bb est dérivable sur R, en donnant bb0(x) pour tout x 2 R.
b) Montrer que bb0 est continue en x0 = 0.

Ex-12-07: (Facultatif) Soient f et g deux fonctions dérivables en x 2 R . Démontrer les règles
de dérivations suivantes :

a) ( f + g)0 (x) = f 0(x) + g0(x)

b) (�f)0 (x) = �f 0(x) , � 2 R
c) ( f · g)0 (x) = f 0(x) · g(x) + f(x) · g0(x)
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Ex-12-03:

a) g0(x) = 5(4x� 1)(x� 1)4(2x+ 1)4, Dg = Dg0 = R
g0(x) = 0 si et seulement si x 2 {�1

2 ,
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, Dh = R , Dh0 = R \ {1,�a}

h0(�1) = 0 si et seulement si a = 2.

Ex-12-04: Toutes les a�rmations sont fausses sauf la dernière.


